
ON ELLIPTIC CURVES AND BINARY QUARTIC FORMS

W. DUKE

Abstract. A Dirichlet series is defined whose coefficients are determined by counting cer-
tain integral points on the quadratic twists of an elliptic curve. The function defined by this
series has a meromorphic continuation with at most a simple pole at a certain distinguished
point. In certain cases the residue there gives a class number formula for positive definite
binary quartic forms.

To John Friedlander, in honor of his eightieth birthday...

1. Introduction

Mordell was among the first to exploit directly the close relationship between rational or
integral points on an elliptic curve and binary quartic forms. His first proof [24] of the finite-
ness of the rank of an elliptic curve over the rational numbers made use of a correspondence
between rational points on the curve and integral squares represented by associated binary
quartic forms. Further developments of this relationship have been applied recently by Bhar-
gava and Shankar [1] to obtain striking results on the average rank of elliptic curves defined
over the rational numbers.

In this paper I give a different kind of application of the connection between elliptic curves
and binary quartic forms. For integers A and B let

y2 = x3 + Ax+B

be the Weierstrass equation in global minimal form of an elliptic curve E. There is a Dirichlet
series whose coefficients count certain integral points on the quadratic twists of E. I will show
that for certain E the function defined by this series has a simple pole whose residue gives
a class number formula for positive definite integral binary quartic forms. The formula is
analogous to one for Gaussian binary quadratic forms of the kind proven by Dirichlet, when
that is given as the residue of a Dirichlet series whose coefficients count integer points on a
family of conics.

It is instructive to review this genus zero result. For ∆ ∈ Z+ consider the affine conic C
defined by

y = x2 + ∆

and for n ∈ Z+ let Cn denote the “twisted” conic given by ny = x2 + ∆. Define

(1.1) ν(n) = #{(x, y) ∈ Z2; ny = x2 + ∆ where gcd(x, n) = 1 and 0 ≤ x
n
< 1},

so that ν(n) counts certain integral points on Cn. Consider the associated Dirichlet series
defined for Re(s) > 1 by

(1.2) Z(s) = ζ(2s)
∏
p|∆

(1 + p−s)
∑
n≥1

ν(n)n−s.
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2 W. DUKE

This function has an analytic continuation to the s-plane with only a simple pole at s = 1.
The residue there gives a version of Dirichlet’s class number formula for the integral binary
quadratic forms of Gauss.

To explain this, let F be the set of all (primitive) Gaussian binary quadratic forms

Q(x, y) = (a, b, c) = ax2 + 2bxy + cy2 (note the 2!),

where a, b, c are integers such that gcd(a, b, c) = 1 and ∆ = ac− b2 > 0. Assume that a > 0
so that the forms are positive definite. Suppose that g =

(m1 m2

m′1 m
′
2

)
∈ Γ = SL(2,Z) acts as

usual on any binary form F by

(1.3) (F |g)(x, y) = F (m1x+m2y,m
′
1x+m′2y).

Let AutQ ⊂ Γ be the group of automorphs of Q, which is well-known to be finite with two
elements unless Q = (1, 0, 1) or Q = (2, 1, 2), when it has four or six elements, respectively.
Define the weighted class number by

(1.4) h = h∆ =
∑

Q∈F/Γ

2
#Aut Q

,

which is also known to be finite. The family F splits into two orders, comprising properly
primitive or improperly primitive forms, according to whether the value of gcd(a, 2b, c) is one
or two. Thus h accounts for both types. For example, h3 = 4

3
since F/Γ is represented by

the improperly primitive (2, 1, 2) and the properly primitive (3, 0, 1).
The following result is a restatement of a fundamental theorem of Dirichlet [10, §5]1:

Theorem 1. For any ∆ ∈ Z+ the function Z(s) has an analytic continuation to the s-plane
with only a simple pole at s = 1 where

(1.5) Ress=1 Z(s) = 1
2
Ωh.

Here Ω =
∫
R
dx
y

=
∫
R

dx
x2+∆

= π√
∆
.

Note that (1.5) holds for any positive integer ∆ and yet it still applies to (properly or
improperly) primitive forms. It yields the limit formula

lim
N→∞

1
N

∑
n≤N

ν(n) = 3
√

∆
π ψ(∆)

h,

where ψ(n) = n
∏

p|n(1 + 1
p
) is the Dedekind ψ-function.

For a discriminant d let χd be the Kronecker symbol, which is a Dirichlet character defined
modulo |d|, with associated Dirichlet L-function given by

L(s, χd) =
∑
n≥1

χd(n)n−s.

From (1.2) we can derive the factorization Z(s) = L(s)ζ(s), where

(1.6) L(s) =

{
L(s, χ−4∆), ∆ 6≡ 3 (mod 4)(
1− χ−∆(2)2−s + 21−2s

)
L(s, χ−∆), ∆ ≡ 3 (mod 4).

Now (1.5) implies that

(1.7) h = 2
√

∆
π

L(1),

1For a translation to English see [11].
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so (1.6) allows us to express h as a finite sum.2 Furthermore, the Euler product expansion
of L(1) realizes Dirichlet’s formula as special case of Siegel’s main theorem [31, p.113].

2. A Dirichlet series for integral points on twists of an elliptic curve

It is natural to consider the genus one case. For integers A and B let

(2.1) y2 = x3 + Ax+B

be the Weierstrass equation of an elliptic curve E in global minimal form with discriminant

∆ = −16(4A3 + 27B2).

The real period of E is

(2.2) ΩE =

∫
dx

y
=

∫
dx√

x3 + Ax+B
,

where the integral is taken over {x; x3 + Ax+B ≥ 0}.

Figure 1. E(R) : y2 = x3 − 2x+ 1

For n ∈ Z+ let

(2.3) y2 = x3 + n2Ax+ n3B

represent the twisted curve En. Denote by En(Z) the set of integral points on the model (2.3)
and by E∗n(Z) the subset of those (x, y) ∈ En(Z) with gcd(x, n) = 1.

Assume that ∆ > 0. Then A < 0 and En(R) is the disjoint union of two connected com-
ponents: the connected component of the identity and a compact component that contains
those (x, y) ∈ En(R) with e1 ≤ x

n
≤ e2. Here e1 < e2 < e3 are the zeros of x3 + Ax+ B. See

Figure 1 for an illustration of E(R) when E is given by y2 = x3 − 2x+ 1.
Let νE(n) denote the number of points in E∗n(Z) that are on the compact component. Thus

νE(n) = #{(x, y) ∈ Z2; y2 = x3 + An2x+Bn3 where gcd(n, x) = 1 and e1 ≤ x
n
≤ e2}.

(2.4)

Although in general it is non-trivial that En(Z) is finite for a fixed n, the finiteness of
the restricted counting function νE(n) for a fixed n is obvious.3 Actually, we have the
estimate νE(n) � n since for (x, y) in the compact component we have that |x| � n and y
is determined up to sign. On the other hand, it might happen that ν(n) = 0 for all n, but

2Formulas (1.7) and (1.6) yield the usual class number formula for primitive integral quadratic forms of
the type ax2 + bxy + cy2 with negative (but not necessarily fundamental) discriminant d = b2 − 4ac. If h′

denotes the sum in (1.4) restricted to properly primitive classes then h = h′ unless ∆ ≡ 3 (mod 4) when
h = 2h′ if ∆ ≡ 7 (mod 8) and h = 4

3h
′ otherwise [13, art. 256]. It is now straightforward to deduce the usual

class number formula as given in [9] for fundamental d and in [6] in general.
3The general result was first deduced by Mordell [25] from a theorem of Thue in [34]. See also [30].
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we will see that if the binary quartic forms of interest exist then ν(n) > 0 for infinitely many
n. In any case, the Dirichlet series

(2.5) ZE(s) = ζ(4s)
∏
p|∆

(1 + p−2s)
∑
n≥1

νE(n)n−s

clearly converges for Re s > 2. In fact, it converges for Re s > 1
2

since it will be shown
that ZE(s) has an analytic continuation to a meromorphic function that is holomorphic for
Re s > 1

4
except for a (possible) simple pole at s = 1

2
. The convergence claim then follows

from a well-known theorem of Landau [20, II, p. 697]. Our main goal is to show that, under
an additional assumption on the discriminant, the residue at s = 1

2
gives a class number

formula for positive definite binary quartic forms.

3. A class number formula for binary quartic forms

For integers a, b, c, d, e let

(3.1) F (x, y) = (a, b, c, d, e) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4

be a binary quartic form of Gaussian type, meaning that it comes with binomial coefficients.
By an arithmetic invariant of F we mean a function KF (a, b, c, d, e) such that KF |g = KF for
all g ∈ Γ = SL(2,Z). Say that F is primitive if gcd(a, b, c, d, e) = 1. Another basic invariant

is F̂ = gcd(a, 4b, 6c, 4d, e). Note that this is the gcd of the actual coefficients of F . If F

is primitive then F̂ ∈ {1, 2, 3, 4, 6, 12}. Those primitive forms F with F̂ = 1 are said to be

properly primitive while those with F̂ > 1 are said to be improperly primitive. The other
basic invariants of F are given by

I = IF := ae− 4bd+ 3c2 and J = JF := ace+ 2bcd− b2e− d2a− c3(3.2)

and the discriminant of F , which is defined to be ∆F = I3
F − 27J2

F .
Suppose that ∆F 6= 0. Then the group AutF of all Γ–automorphs of F is finite. Every form

has the trivial automorphs ±1. For F in (3.1) a non-trivial automorph must be conjugate
in Γ to one of ± ( 0 −1

1 0 ), which fix precisely those F that are reciprocal: F = (a, b, c,−b, a).
Thus #AutF ∈ {2, 4}. Given integers I0,J0 which are such that ∆F = I3

0 − 27J2
0 let

F = F(I0, J0) = {F = (a, b, c, d, e); F primitive with IF = I0, JF = J0 }.
This F may contain both properly and improperly primitive forms F .

After Hermite [14, 15] and Julia [19], cf. [26, p.163], F/Γ consists of finitely many equiva-
lence classes.4 For a collection of classes F0 ⊂ F define the weighted class number

(3.3) h(F0) =
∑

F∈F0/Γ

2
#Aut F

.

A form F is positive definite if ∆F > 0 and F (x, y) > 0 unless x = y = 0. Let F+ ⊂ F be
the collection of classes consisting of those F ∈ F that are positive definite.

Given the elliptic curve E in (2.1) set

(3.4) FE = F+(−4A,−4B) and hE = h(F+
E ).

Note that for each F ∈ FE we have ∆F = ∆. The following result includes a genus one
version of the class number formula (1.5).

4In fact, there are only finitely many classes of forms with a given discriminant. For a general result that
includes the quartic case see [2].
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Theorem 2. Let E : y2 = x3 + Ax + B be an elliptic curve as in (2.1) with positive
discriminant and define ZE(s) by (2.5). Then ZE(s) has a meromorphic continuation to C
that is holomorphic for Re s > 1

4
except for a (possible) simple pole at s = 1

2
. Suppose that 2

is the only prime whose square divides ∆. Then

(3.5) Ress= 1
2
ZE(s) = 1

8
ΩE hE,

where ΩE was given in (2.2).

By Ikehara’s version of the Wiener-Ikehara theorem [18], Theorem 2 yields the limit formula

(3.6) lim
N→∞

1√
N

∑
n≤N

νE(n) = 3∆ΩE

2π2 ψ(∆)
hE.

Although it converges slowly, (3.6) is still useful for computing examples.
It follows from the final theorem of [16] that the curves to which Theorem 2 applies exist

in abundance. Explicitly, if B is a fixed odd integer, then for a positive proportion of values
of −A ∈ Z+ we have that ∆ = 24N with N ∈ Z+ square-free. See the end of §8 for a remark
about weakening the assumption that 2 is the only prime whose square divides ∆.

As was done in the genus zero case, it is possible to define

L(s) =
∑
n≥1

α(n)n−s

through the factorization ζ(2s)L(s) = ZE(s). Explicitly

α(n) =
∑
d2|n

gcd(d,∆)=1

λ(d) νE( n
d2

),

where λ is the Liouville function defined by λ(n) = (−1)a1+···+a` , when the prime factorization
of n is n = pa11 · · · p

a`
` . By Theorem 2, L(s) is holomorphic for Re(s) ≥ 1

2
and, if we assume

RH, for Re(s) > 1
4
. In any case, we have that

L(1
2
) = 1

4
ΩE hE.

Whether or not L(s) is entire is open.

4. Examples

One may in practice always determine a complete set of representatives for the classes
FE/Γ. The method is explained in an appendix. Here I will record the results for some
examples.

Example 1. The curve E : y2 = x3 − x has CM. Here ∆ = 26 and I = 4, J = 0 and

ΩE =

√
π Γ
(

1
4

)
Γ
(

3
4

) .

There are two classes in F+
E represented by F1 = (1, 0, 1, 0, 1) and F2 = (1, 0, 0, 0, 4), both

properly primitive. Only F1 has non-trivial automorphs. Thus

hE = 3
2
.

By Theorem 2 we have

Ress=1 ZE(s) = 3
16

ΩE.
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As can be easily checked, for N = 5000

(4.1)
π

3
2 Γ( 3

4
)

Γ( 1
4

)
1√
N

∑
n≤N

νE(n) = 1.4905 . . . .

Example 2. The example illustrated in Figure 1 is E : y2 = x3 − 2x + 1, for which ∆ = 24 5
with I = 8 and J = −4. Here

ΩE = 5.93764989368 . . . .

There are four classes in F+
E represented by

F1 = (1, 1, 1,−1, 1) F ′1 = (1,−1, 1, 1, 1)

F2 = (2, 1, 0,−1, 2) F ′2 = (2,−1, 0, 1, 2).

Note that F2 and F ′2 are improperly primitive: F̂2 = F̂ ′2 = 2. All of the forms have non-trivial
automorphs. Thus hE = 2. By Theorem 2 we have

Ress=1 ZE(s) = 1
4
ΩE.

Now for N = 5000
6π2

5ΩE

1√
N

∑
n≤N

νE(n) = 2.03102 . . . .

Example 3. Take E : y2 = x3 − 13x+ 5, with ∆ = 24 · 7 · 19 · 61, I = 52 and J = −20. Here

ΩE = 2.88096982267237 . . . .

There are four classes in F+
E represented by

F1 = (2,−1, 2, 4, 12) F ′1 = (2, 1, 2,−4, 12)

F2 = (3, 2, 2,−2, 8) F ′2 = (3,−2, 2, 2, 8).

All are properly primitive. None have nontrivial automorphs. Thus hE = 4. By Theorem 2
we have

Ress=1 ZE(s) = 1
2
ΩE

and for N = 5000
9920π2

8113 ΩE

1√
N

∑
n≤N

νE(n) = 4.02824 . . . .

5. Arithmetic covariants and a syzygy of Cayley and Hermite

The proof of Theorem 2 relies on the arithmetic invariant theory5 of binary quartic forms.
Given any integral quartic form F = (a, b, c, d, e), say that a binary form PF (x, y) whose
coefficients are integral polynomials in a, b, c, d, e is an (arithmetic) covariant for F if

PF |g = PF |g

for all g ∈ Γ. An invariant is also a covariant. The most basic arithmetic covariant of F is
F itself. Clearly the gcd of the coefficients of a covariant PF is an invariant, say P̂F . The
(normalized) Hessian of F is

HF (x, y) = 1
144

det
(
Fxx Fxy

Fyx Fyy

)
= a1x

4 + b1x
3y + c1x

2y2 + d1xy
3 + e1y

4.(5.1)

5The qualifer “arithmetic” was employed in [28] to distinguish the theory of invariants with respect to
SL(2,Z) from the theory over R or C.
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The coefficients of HF are integers and are given by

(5.2) a1 = ac− b2, b1 = 2(ad− bc), c1 = ae+ 2bd− 3c2, d1 = 2(eb− dc), e1 = ec− d2.

The sextic covariant TF of F is defined in terms of Jacobian of F and HF :

TF (x, y) = −1
8

det
(

∂xF ∂yF
∂xHF ∂yHF

)
(5.3)

= a2x
6 + b2x

5y + c2x
4y2 + d2x

3y3 + c′2x
2y4 + b′2xy

5 + a′2y
6.

Here the coefficients are given by

a2 =a2d− 3abc+ 2b3 a′2 = −e2b+ 3edc− 2d3(5.4)

b2 =a2e+ 2abd− 9ac2 + 6b2c b′2 = −e2a− 2edb+ 9ec2 − 6d2c

c2 =5abe− 15acd+ 10b2d c′2 = −5eda+ 15ecb− 10d2b

d2 =10eb2 − 10ad2.

Conventions: In the following I will usually omit the subscript for an invariant or a covariant
when the form is F , e.g. assume that H = HF . Also, I will use the notation

[a, b, c] = ax2 + bxy + cy2, [a, b, c, d] = ax3 + bx2y + cxy2 + dy3, etc.

for forms without binomial coefficients.

The relationship that exists between binary quartic forms and elliptic curves is due to a
remarkable identity, or syzygy, discovered independently by Cayley [4] and Hermite [14] (cf.
[35] and [36]). Its application to Diophantine equations was apparently first made by Mordell
in 1914 [23] (see also [26]). This syzygy is an identity that relates F, I, J,H and T . Once
given, it may be verified by direct computation.

Proposition 1. The covariants and invariants F, I, J,H and T satisfy for all x, y

(5.5) T 2 = −4H3 + IF 2H − JF 3.

Clearly, invariants and covariants of covariants give new invariants and covariants. The
following identities, which were also given by Cayley [5, §134], can be verified by direct
calculation as well. For more on their derivation see [3, §180] (see also [29, p. 201]).

Lemma 1. For a binary quartic form F and its Hessian H we have for all x, y

i) ∆xF+6yH = ∆[1, 0,−9I,−54J ]2 = ∆(x3 − 9Ixy2 − 54Jy3)2

ii) HxF+6yH = [0, I, 9J ]F + [1, 0,−3I]H = (Ixy + 9Jy2)F + (x2 − 3Iy2)H.

A special quartic covariant we will need is

KF (x, y) = 2IH(x, y)− 3JF (x, y).(5.6)

Here Lemma 1 gives the elegant formulas

∆KF
= J2∆3 and H3KF

= −3∆H.(5.7)

Suppose that
P (x, y) = [a1, a2, . . . , a7]

is a sextic. Denote its (normalized) discriminant by ∆P , so that

∆P = (a1a2a3a4a5)2 + · · ·
is of degree ten as a homogeneous form in the coefficients of P . A straightforward computation
yields the following formula, which we will need in the proof of Theorem 2.
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Lemma 2. The discriminant of the sextic covariant T of F satisfies

(5.8) ∆T = −28∆5.

6. A correspondence of Mordell

The Cayley-Hermite syzygy leads one to suspect that a correspondence exists between
integral points on E∗n and binary quartic forms. The suspicion is correct and we must make
the correspondence precise.

Say F = (a, b, c, d, e) is admissible if gcd(a, b) = 1. Clearly an admissible F is primitive.
The set of all admissible binary quartic forms F = (a, b, c, d, e) with invariants I = −4A and
J = −4B splits into classes under

Γ∞ = {± ( 1 `
0 1 )}; ` ∈ Z}.

Note that while the condition gcd(a, b) = 1 is not preserved in general under Γ-equivalence,
it is preserved under Γ∞-equivalence since

(6.1) (a, b, c, d, e)|(± ( 1 `
0 1 )) = (a, b+ `a, ∗, ∗, ∗).

The following result6 is a refinement and reworking of a theorem of Mordell [26, p.233].

Proposition 2. Suppose that A,B ∈ Z have ∆ = −4(4A3 − 27B2) 6= 0. The map

(6.2) F 7→
(
−H(1, 0), 1

2
T (1, 0), F (1, 0)

)
gives a well-defined bijection from the set F of all Γ∞-classes of admissible binary quartic
forms F with invariants I = −4A and J = −4B and with F (1, 0) > 0 to the set of integer
triples

S = {(x, y, n) ∈ Z2 × Z+; with y2 = x3 + Axn2 +Bn3 and gcd(x, n) = 1}.

Proof. First, F with F (1, 0) > 0 is admissible if and only if gcd(F (1, 0), H(1, 0)) = 1 since
H(1, 0) = ac− b2 by (5.2). By the Cayley-Hermite syzygy (5.5) we see that(

−H(1, 0), 1
2
T (1, 0), F (1, 0)

)
∈ S

for F ∈ F, upon noticing that 4|I and 4|J implies that 2|T (1, 0). The values −H(1, 0),
1
2
T (1, 0) and F (1, 0) are semi-invariants, meaning that they are invariant under Γ∞, so the

map from F to S determined by (6.2) is well-defined.
We next show it is surjective. Given (x, y, n) ∈ S we must find F = (a, b, c, d, e) with

a = F (1, 0) = n, −H(1, 0) = x, and 1
2
T (1, 0) = y. Also we require that I = −4A and

J = −4B. We have that gcd(x, n) = 1 so any F we find will be admissible. As is forced,
choose a = n.

If x = 0 then a = 1 and let b = 0. Otherwise choose

b ≡ y/x (mod a2).

Then c, d, e are determined as rational numbers from (3.2), (5.2) and (5.4):

(6.3) x = b2 − ac, 2y = a2d− 3abc+ 2b3, −4A = ae− 4bd+ 3c2.

If x = 0 these require that F = [1, 0, 0, 2y,−4A], which has the correct invariants.
Otherwise,

ac ≡ (y2 − x2)/x2 (mod a2)

6In the published version the condition F (1, 0) > 0 was left out in the statement and in the first line of
the proof.
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implies that c ∈ Z. Similarly,

a2d = b3 − 3bx+ 2y ≡ y(y2−x3)
x3

≡ 0 (mod a2)

so d ∈ Z. Finally, from (6.3) and using

y2 = x3 + Aa2x+Ba3

we get after a calculation that

(6.4) −4B = ace+ 2bcd− ad2 − b2e− c3.

By the formula for −4A in (6.3) we see that ae is an integer and (ac− b2)e is an integer by
(6.4). Since gcd(a, b) = gcd(a, ac − b2) = 1, we have that e ∈ Z. That F = (a, b, c, d, e) has
the correct invariants follows from (6.3) and (6.4).

To see that the map is injective observe that once b is chosen (mod a2), the other coefficients
are determined. But in view of (6.1) different choices of b result in Γ∞-equivalent forms. �

Next we restrict this correspondence to the positive definite forms.

Proposition 3. If ∆ > 0 the bijection of Proposition 2 restricts to one between those classes
in F consisting of positive definite forms and triples (x, y, n) ∈ S where e1 ≤ x

n
≤ e2. Here

e1 < e2 < e3 are the zeros of x3 + Ax+B.

Proof. It is enough to show that F with ∆F = ∆ > 0 and invariants I = −4A and J = −4B
is positive definite precisely when

(6.5) e1 ≤
−H(1, 0)

F (1, 0)
≤ e2.

Given that ∆ > 0, F is positive definite if and only if a > 0 and F (x, 1) = 0 has no real
roots. By [3, §68] this is equivalent to ∆ > 0, a > 0 and

a2I + 12H(1, 0) ≥ 0.

Figure 2. y = x3 − 2x+ 1

Thus the form F is positive definite if and only if ∆F > 0, F (1, 0) = a > 0 and

(6.6)
−H(1, 0)

F (1, 0)
≤
√

I

12
.

Now (6.5) holds if and only if −H(1,0)
F (1,0)

< e3. This is equivalent to (6.6) since the local minimum

on the curve y = x3 + Ax+B occurs when

x =

√
|A|
3

=

√
I

12

See Figure 2 for the case A = −2, B = 1 and
√
|A|/3 = .816 . . . . �
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7. The counting function

We need to express νE(n) from (2.4) in an analytically usable form. For this we will
rephrase Mordell’s correspondence. For a fixed form F ∈ F = F(I, J) and prime p define

(7.1) BF (p) = {r = (r1, r2) ∈ (Z/pZ)2;F (r) ≡ 0 and H(r) ≡ 0 (mod p)}.
Let q =

∏
p|∆ p be the product of all distinct primes dividing ∆ and define RF to be the set

of all r ∈ (Z/qZ)2 which, when reduced mod p, are not in BF (p) for any p|∆.

Proposition 4. Let E : y2 = x3 + Ax + B be an elliptic curve as in (2.1) with positive
discriminant. Notation as above, for n ∈ Z+ we have

(7.2) νE(n) =
∑

F∈FE/Γ

#{m ∈ Z2; gcd(m1,m2) = 1, m ∈ RF ; and F (m) = n}
#AutF

,

where m denotes the reduction of m modulo q.

Proof. Note that as a set RF is not a class invariant. Nonetheless, the sum in (7.2) is well-
defined. To see this recall that H, which occurs in the definition (7.1), is a covariant.

Observe that the Γ∞-classes of a form F are represented by

M = {m = (m1,m2) ∈ Z2 with gcd(m1,m2) = 1}
via F 7→ F | (m1 ∗

m2 ∗ ) . Here m and −m give rise to the same class and if #AutF = 4 so do two
other pairs. With this proviso, the representation is unique. For any form F say that m is
admissible (for F ) if F | (m1 ∗

m2 ∗ ) is admissible, as defined near the beginning of §6. The map
of Proposition 2 induces a map

m 7→
(
−H(m1,m2), 1

2
T (m1,m2), F (m1,m2)

)
from admissible m for F to S, where F is a fixed representative of a class in F/Γ. It is either
two-to-one or four-to-one and, when applied to a full set of representatives for F/Γ, it is
surjective. By Proposition 3 it restricts appropriately when we only choose representatives
from FE/Γ.

Recall that F is admissible if and only if gcd(F (1, 0), H(1, 0)) = 1. In order to isolate
admissible m for each representative F , we must remove all m ∈M with

p| gcd(F (m), H(m))

for any prime p. The following lemma shows that we need only do this for p|∆.

Lemma 3. Let F = (a, b, c, d, e). If p| gcd(a, b) then p|∆F .

Proof. The discriminant of F expanded out is

∆F = −27a2d4 − 27b4e2 − 54b2c3e+ 54ab2ce2 − 180abc2ed+(7.3)

108b3ced− 6ab2ed2 + 81ac4e+ a3e3 + 54a2ced2 − 12a2be2d

− 18a2c2e2 − 54ac3d2 + 108abcd3 − 64b3d3 + 36b2c2d2.

If p| gcd(a, b) then an examination of each term shows that p|∆F .
�

Proposition 4 now follows from the next lemma. �

Lemma 4. The admissible m ∈ M for F are precisely those that reduce modulo q to some
r ∈ RF . Every r ∈ RF will be represented by some admissible m ∈M reduced modulo q.
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Proof. The first statement follows by Lemma 3 and the definition of RF given below (7.1).
For the second, if r = (r1, r2) ∈ RF then gcd(r1, r2, q) = 1. If r1 = 0 choose m = (q, r2).
Otherwise, let

P =
∏

p|r1, p -q
p prime

p

and choose m1 = r1 and m2 = r2 + `q where ` satisfies

`q ≡ 1− r2 (modP ).

This is possible since gcd(q, P ) = 1. �

8. Arithmetic invariants and covariants modulo a prime

In this section I will provide some results about the reductions of arithmetic invariants
and covariants of a primitive quartic form F modulo a prime p. These are applied to count
elements in BF (p) and hence determine the class invariant #RF . It is crucial that, under our
assumptions, #RF is actually independent of the class of F and non-zero.

Proposition 5. Suppose that 4|I, 4|J and that p2|∆ implies that p = 2. Then

#RF = q2
∏
p|∆

(1− p−1).

For short we write x ≡ y for x ≡ y (mod p). Recall the definition of BF (p) from (7.1):

BF (p) = {m ∈ (Z/pZ)2;F (m) ≡ 0 and H(m) ≡ 0}.
By the Chinese remainder theorem we have

(8.1) #RF =
∏
p|∆

(
p2 −#BF (p)

)
.

To prove Proposition 5 we must show that #BF (p) = p for all p | ∆ with p2 - ∆ or p = 2.

Case p = 2. Here we will show that F = (a, b, c, d, e) and H always share two zeros in

(Z/2Z)2. When p = 2 we must allow the possibility that F̂ ≡ 0. Since 4|I it follows from
this that we must have 2|c. But then

H(x, y) ≡ (x+ y)4 or H(x, y) ≡ x4; or H(x, y) ≡ y4

and our claim holds.
Suppose that F̂ 6≡ 0. There are three possibilities. If F (x, y) ≡ x4 + y4 then since 4|I and

4|J we have that c ≡ 1 and b+ d ≡ 0. Thus H(1, 1) ≡ 0 and again F and H share two zeros.
If F (x, y) ≡ y4 then c ≡ 0 and b ≡ 0 so now H(1, 0) ≡ 0 and again the claim holds. The case
F (x, y) ≡ x4 is similar.

Therefore #BF (2) = 2.

Case p 6= 2. Since ∆ = I3 − 27J2, if 3|∆ we must have that 33|∆ so we may also assume
that p 6= 3. By a well-known property of discriminants, if ∆ ≡ 0 then either

F (x, y) ≡ (rx+ sy)2Q(x, y) or(8.2)

F (x, y) ≡ tQ′′(x, y)2,(8.3)

where Q and Q′′ are quadratic forms over Z/pZ and Q is either irreducible modulo p or has
two distinct roots.

The proof of Proposition 5 is thus reduced to the proof of the following lemma.



12 W. DUKE

Lemma 5. Suppose that ∆ ≡ 0 but p2 - ∆. Then (8.2) holds and

(8.4) H(x, y) ≡ (rx+ sy)2Q′(x, y),

where the only possible (x, y) with Q(x, y) ≡ 0 and Q′(x, y) ≡ 0 satisfy rx+ sy ≡ 0.

To prove Lemma 5 we need the following result about the Hessian and sextic covariants
modulo p.

Lemma 6. Let F = (a, b, c, d, e) be a primitive quartic form. Suppose that p 6= 2, 3.

i) Then ĤF ≡ 0 if and only if

F (x, y) ≡ t(rx+ sy)4.

ii) If H(x, y) ≡ cF (x, y) for some c then T̂ ≡ 0.

iii) If F (x, y) ≡ Q(x, y)2 then T̂ ≡ 0.

Proof. The “if” part of the first statement always holds and follows by a direct calculation.
For the converse we use (5.2). If a ≡ 0 then b, c, d ≡ 0 and F (x, y) ≡ ey4. If c ≡ 0 then b ≡ 0
and either a ≡ 0 or d ≡ 0. If a ≡ 0 we are done from before. If a 6≡ 0 and d ≡ 0 we have that
e ≡ 0 and so F (x, y) ≡ ax4. If b ≡ 0 then either a ≡ 0 or c ≡ 0 and we are done. Thus we
may assume that a 6≡ 0, b 6≡ 0 and c 6≡ 0. Then we have

F (x, y) ≡ a−3(ax+ by)4,

upon using that ac ≡ b2, ec ≡ d2 and bd ≡ c2, which follow from (5.2).
The second statement is an immediate consequence of the definition of the sextic T (x, y)

and always holds, while the third statement follows by direct calculation of T (x, y), using
that p 6= 2, 3.

�

Proof of Lemma 5. By assumption we have that p 6= 2, 3. An immediate consequence of
Lemma 2 is that p2 - ∆ implies that T̂ 6≡ 0, for p 6= 2.

If T̂ 6≡ 0 then by iii) of Lemma 6 it is not possible for (8.3) to hold so (8.2) must hold.

We now prove that (8.4) is true when T̂ 6≡ 0. Our assumption that p2 - ∆ implies that

I 6≡ 0 and J 6≡ 0. By ii) of Lemma 6 we know that K̂F 6≡ 0, where KF was defined in (5.6).
Since ∆ ≡ 0 and p 6= 3 we see that the second formula of (5.7) together with i) of Lemma 6
imply that

2I H(x, y)− 3JF (x, y) ≡ t(rx+ sy)4

for some t 6≡ 0. Therefore (8.4) holds with

2I Q′(x, y)− 3JQ(x, y) ≡ t(rx+ sy)2,

from which it is clear that the only possible (x, y) with Q(x, y) ≡ 0 and Q′(x, y) ≡ 0 satisfy
rx+ sy ≡ 0. �

This completes the proof of Proposition 5.

Remark. It is possible to determine the number of common roots of F and H modulo p
without assuming that p2 - ∆. The answer entails a refinement of Lemma 5 that takes into
account the possibility that F factors as the square of a quadratic. This brings into play a
kind of quadratic “genus” character whose modulus is a prime divisor of T̂ . This character
would likely play a role in extensions of Theorem 2 covering more general discriminants.
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9. Analytic properties of ZE(s)

In this final section we prove Theorem 2. This requires that we establish some analytic
properties of ZE(s). Recall that

q =
∏
p|∆

p.

For m = (m1,m2) and r = (r1, r2) ∈ (Z/qZ)2 let

Ψ∗(s; r) =
∑′

m≡r (mod q)
gcd(m1,m2)=1

F (m)−s for Re(s) > 2

where F ∈ FE and, as usual, a prime in a sum means that a term where division by zero
occurs is omitted. The following result is an immediate consequence of Proposition 4.

Proposition 6. For Re(s) > 2∑
n≥1

νE(n)n−s =
∑

F∈FE/Γ

1
#AutF

∑
r∈RF

Ψ∗(s; r).

Next define

Ψ(s; r) =
∑′

m≡r (mod q)

F (m)−s.

Proposition 7. Ψ(s; r) has analytic continuation in s to an entire function except for a
simple pole at s = 1

2
. The residue there is given by

Ress= 1
2
Ψ(s; r) = 1

4
q−2

∫ 2π

0

F (cos θ, sin θ)−
1
2dθ.

Proof. We will prove this rather standard result using Poisson summation and the function

Θ(t) =
∑
m∈Z2

m≡rmod q

e−tF (m),

defined and convergent for t > 0. Recall that F ∈ FE is positive definite so that for some
constant c > 0 we have

|F (u)| ≥ c|u|4

for all u ∈ R2. Let Φ(v) be the Fourier transform of e−tF (u), defined for v = (v1, v2) ∈ R2 by

Φ(v) =

∫
R2

e−tF (u)e(−u · v) du1 du2, e(x) = e2πix.

As is well-known, Φ(v) is of rapid decay. The Poisson summation formula (see e.g. [32])
yields the following for t > 0:

(9.1) Θ(t−1) = q−2t
1
2

∑
m∈Z2

Φ(q−1t
1
4 m)e(m·r

q
).

As in Riemann’s second proof of the analytic continuation and functional equation for ζ(s),
start with

Γ(s)Ψ(s; r) =

∫ ∞
0

(Θ(t)− 1)ts dt
t

=

∫ 1

0

+

∫ ∞
1

= I + II,
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say. Now II is clearly an entire function. On the other hand, changing variable t 7→ 1
t

and
using (9.1) we have

I = q−2

∫ ∞
1

t
1
2
−s
∑′

m∈Z2

Φ(q−1t
1
4m)e(m·r

q
)dt
t
− 1

s
+ q−2Φ(0) 1

s− 1
2

.

Again the integral here is entire. The proof is completed by computing

Φ(0) =

∫
R2

e−tF (u)du =

∫ 2π

0

∫ ∞
0

ρ e−F (ρ cos θ,ρ sin θ)dρdθ

= 1
4

∫ 2π

0

∫ ∞
0

t
1
2 e−ρF (cos θ,sin θ) dρ

ρ
dθ

=
√
π

4

∫ 2π

0

F (cos θ, sin θ)−
1
2dθ.

�

Proposition 8. The function Ψ∗(s; r) has a meromorphic continuation to C and it is holo-
morphic for Re(s) > 1

4
except for a simple pole at s = 1

2
with

Ress= 1
2
Ψ∗(s; r) = 1

4
q−2
∏
p-q

(1− p−2)ΩE.

Proof. In order to represent Ψ∗(s; r) we will use the Möbius function µ, which satisfies the
identity ∑

d|n

µ(d) =

{
1 if n = 1

0 if n 6= 1.

Thus

Ψ∗(s; r) =
∑′

m∈Z2

m≡r (mod q)

∑
d| gcd(m1,m2)

µ(d)F (m)−s

=
∑
d≥1

∑′

m∈Z2

dm≡r (mod q)

µ(d)F (dm)−s

=
∑

` (mod q)
gcd(`,q)=1

∑
d≡` (mod q)

µ(d)d−4s
∑′

m∈Z2

m≡`−1r (mod q)

F (m)−s

=
∑

` (mod q)
gcd(`,q)=1

∑
d≡` (mod q)

µ(d)d−4sΨ(s; `−1r).

Note that we have ∑
d≡` (mod q)

µ(d)d−4s =
1

φ(q)

∑
χ

χ(`)L(4s, χ)−1,

where L(4s, χ) is the Dirichlet L-function, and the sum on the right hand side is over all
Dirichlet characters modulo q. It is now easy to see using Proposition 7 and standard prop-
erties of Dirichlet L functions that Ψ∗(s; r) has a meromorphic continuation to C and that
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it is holomorphic for Re(s) > 1
4
, except for a simple pole at s = 1

2
with

Ress= 1
2
Ψ∗(s; r) =

∑
` (mod q)

gcd(`,q)=1

∑
d≡` (mod q)

µ(d)d−4sRess= 1
2
Ψ(s; `−1r)

= 1
4
q−2

∏
p-q

(1− p−2)

∫ 2π

0

F (cos θ, sin θ)−
1
2dθ.

To finish the proof we apply the following standard evaluation:∫ 2π

0

F (cos θ, sin θ)−
1
2dθ = ΩE.

�

We are now ready to complete the proof of Theorem 2. First note that by (2.5) and
Proposition 6

ZE(s) = ζ(4s)
∏
p|q

(1 + p−2s)
∑
n≥1

νE(n)n−s(9.2)

= ζ(4s)
∏
p|q

(1 + p−2s)
∑

F∈FE/Γ

1
#AutF

∑
r∈RF

Ψ∗(s; r).

Therefore Proposition 8 implies the first statement of Theorem 2. From the residue evaluation
of Proposition 8 we have

Ress= 1
2
ZE(s) = 1

4
ΩE q

−2
∏
p-q

(1− p−2)
∏
p|q

(1 + p−1)ζ(2)
∑

F∈FE/Γ

#RF

#AutF
.

Note that, in general, #RF depends on the class of F . To finish the proof of Theorem 2 we
apply Proposition 5, which was proven under the condition that 2 is the only prime whose
square divides ∆. It gives

Ress= 1
2
ZE(s) =ΩE

2

∏
p-q

(1− p−2)
∏
p|q

(1− p−2)ζ(2)
∑

F∈FE/Γ

1
#AutF

=ΩE

4

∑
F∈FE/Γ

1
#AutF

,

as desired. �

Remarks. This part of the proof of Theorem 2 comes down to counting certain integers
represented by binary quartic forms, which is a well-studied problem (see [17], [22], [33]).

The family of twisted elliptic curves we study may be considered as a single elliptic surface
and it is natural to seek asymptotic formulas for the count of integral points on more general
elliptic surfaces. The methods of this paper may also be applied to estimate the number of
rational points of bounded height on some elliptic surfaces, such as those treated in [21], [27].

For certain potential generalizations, the spectral technique for counting integer points on
varieties introduced in [12] should be applicable.

Acknowledgements. I thank Özlem Imamoḡlu, Ze’ev Rudnick and Peter Sarnak for their
many comments and valuable suggestions that helped me improve an earlier version of this
paper. I am also grateful to the referee for some insightful suggestions.
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Appendix A. Reduction of positive quartic forms

This appendix shows how to determine a complete set of representatives

F = (a, b, c, d, e)

for FE/Γ with FE defined in (3.4). The proofs of Propositions 2 and 3, when combined with
an estimate for the minimum of a form, provide the method.

First list all possible values of a ≤M where M depends only on E and is large enough to
bound the minimum of any form F ∈ FE. Next find by inspection all (x, y) ∈ Ea(Z) where
ae1 ≤ x ≤ ae2 and then all solutions b of b2 ≡ x (mod a). Note that we are not assuming
that gcd(x, a) = 1. For each such b we can check to see if c, d and e as determined in (6.3)
are integers. When they are integers we get a form with the needed invariants. In view of
the proofs of Propositions 2 and 3, we are assured that every class will be represented. Now
remove from the set any form whose a-value in not its minimum, which is possible since the
forms are positive definite.

Different forms F, F ′ produced in this way must be inequivalent. First they must have
the same minimum to be equivalent. But two equivalent forms with the same minimum
a are equivalent with respect to Γ∞. Also, if (x, y) belongs to F and (x′, y′) to F ′ then
x = −HF (1, 0), x′ = −HF ′(1, 0), y = 1

2
TF (1, 0) and y′ = 1

2
TF ′(1, 0). But HF (1, 0) and TF (1, 0)

are both semi-invariants (invariant under Γ∞) so x = x′ and y = y′. Finally, b is fixed modulo
a so all coefficients are determined.

A simple and useful value for M can be derived from [7, Prop. 11 (i)]:

(A.1) M = 4
3
(e2 − e1).

To find the optimal M for the set of all positive (not necessarily integral) quartic forms with
given invariants is a problem in the geometry of numbers. By using results from [8], one can
reduce the value of M in (A.1) in some cases.
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grosser Zahlen durch binäre Formen. Acta Math. 62 (1933), no. 1, 91–166.

23. Mordell, L.J. Indeterminate equations of the third and fourth degrees, Q. J. Pure appl. Math. 45 (1914),
170–186.

24. Mordell, L. J. On the rational solutions of the indeterminate equations of the third and fourth degrees.
Proc. Cambridge Phil. Soc. 21 (1922), 179–192.

25. Mordell, L. J. Note on the Integer Solutions of the Equation y2 = Ax3 + Bx2 + Cx + D. Messenger of
Mathematics 51 (1922), pp. 169–171.

26. Mordell, L. J. Diophantine equations. Pure and Applied Mathematics, Vol. 30 Academic Press, London-
New York 1969 xi+312 pp.

27. Munshi, Ritabrata. Density of rational points on elliptic fibrations. II. Acta Arith. 134 (2008), no. 2,
133–140.
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