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Abstract. This work is motivated by a paper of Davenport and Schmidt, which treats
the question of when Dirichlet’s theorems on the rational approximation of one or of two
irrationals can be improved and if so, by how much. We consider a generalization of this
question in the simplest case of a single irrational but in the context of the geometry of
numbers in R2, with the sup-norm replaced by a more general one. Results include sharp
bounds for how much improvement is possible under various conditions. The proofs use
semi-regular continued fractions that are characterized by a certain best approximation
property determined by the norm.

1. Introduction

In 1842 Dirichlet [13] applied the pigeonhole principle to give good approximations of real
numbers by rationals. One form of his theorem in one dimension is the following.

Dirichlet Approximation Theorem. For α ∈ R and any Q ∈ Z+ there are p, q ∈ Z such
that 1 ≤ q ≤ Q and |p− qα| < 1

Q
.

Davenport and Schmidt [10] considered those α for which an improvement of this result is
possible, at least when we only require that Q be sufficiently large. More precisely, let δ(α)
be the largest number with the property that if c > δ(α) then for every sufficiently large Q
(depending only on α), there are integers p, q ∈ Z with 1 ≤ q ≤ Q and Q|p− αq| < c, while
if c < δ(α) there are arbitrarily large Q for which no such p, q exist. If δ(α) < 1 then we
say that an improvement on Dirichlet’s theorem is possible for this α. Clearly δ(α) = 0 for
rational α so we only consider irrational α.

An easy direct argument proves the fact, perhaps surprising at first, that any irrational
α for which δ(α) < 1 must be badly approximable. For α to be badly approximable means
that for some c > 0 we have |α − p

q
| > c

q2
for all relatively prime integers p, q with q > 0.

Davenport and Schmidt [10] gave another proof of this that also shows that, conversely,
an improvement on Dirichlet’s theorem is possible for every badly approximable number.
They deduced this from a formula for δ(α) given in terms of the regular continued fraction
expansion of α. Recall that an irrational α has a unique infinite regular continued fraction

Date: July 13, 2020.
Supported by NSF grant DMS 1701638. The second author is also supported by the Simons Foundation:

Award Number 554649.
1



2 NICKOLAS ANDERSEN AND WILLIAM DUKE

expansion

(1.1) α = b0 +
1

b1+

1

b2+
· · · def

= b0 +
1

b1 +
1

b2 +
1

. . .

,

where the partial quotients bn satisfy b0 = bαc and bk ∈ Z+ for k ≥ 1. Also define u0 = α−a0,
v0 = 0 while for n ≥ 1 let

(1.2) un =
1

bn+1+

1

bn+2+
· · · and vn =

1

bn+

1

bn−1+

1

bn−2+
· · · 1

b1

.

Theorem. (Davenport-Schmidt [10]) For any irrational α ∈ R we have that

(1.3) δ(α) = lim sup
n→∞

(
1 + unvn

)−1
.

An immediate consequence of (1.3) is that the irrational α ∈ R for which Dirichlet’s
theorem can be improved are precisely those whose continued fraction have bounded partial
quotients. This condition is well-known to be equivalent to α being badly approximable [51,
p. 22]. Real quadratic irrationalities are precisely those whose regular continued fraction
expansions are eventually periodic, so they are badly approximable. On the other hand, they
are the only known examples that are algebraic. A continued fraction discovered by Euler
[15] provides an explicit example of an irrational (in fact transcendental) number that is not
badly approximable, namely

(1.4)
e− 1

e+ 1
=

1

2+

1

6+

1

10+

1

14+
· · · .

By a well-known result of Khintchine [25, Thm 29] badly approximable numbers, although
uncountable, are rare in the sense of measure theory. Thus we have the following.

Corollary. The set of real irrationals for which Dirichlet’s theorem can be improved is un-
countable and has Lebesgue measure zero.

Another consequence of the formula (1.3) is a bound for how much the Dirichlet theorem
can be improved when it can be improved at all.1

Corollary. The smallest value of δ(α) is given by

(1.5) δ(α) = 1
10

(
√

5 + 5) = 0.723607 . . . ,

when α = 1
2
(1 +

√
5).

2. Improving the Minkowski approximation theorem

Davenport and Schmidt used their theorem as a starting point to obtain results that
pertain to the Dirichlet theorems about approximating two numbers simultaneously and
later to simultaneous approximation of n numbers [11] (see also [50]). In this paper we will
consider a different kind of generalization of Dirichlet’s results, one that was conceived of by
Hermite and Minkowski.

1For further results about the set of values of δ(α) see [23] and the references therein. See also our §12.
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Let F : R2 → R be a fixed norm on R2 and B its unit ball. Define the stretched norm Ft
for t > 0 by

(2.1) Ft(x, y) = F (t−1x, ty).

The following generalization of Dirichlet’s theorem follows from the work of Minkowski.
Although it was not stated directly by him, for the purposes of this paper we will refer to it
as the Minkowski approximation theorem (in two dimensions).

Minkowski Approximation Theorem. For a fixed norm F on R2 let ∆ = ∆F be the
minimal area of a parallelogram with one vertex at the origin and the other three on the
boundary of B. Fix α ∈ R. Then for any real t ≥ 1 there exist integers p, q with q > 0 such
that

(2.2) ∆F 2
t (q, p− αq) ≤ 1.

Note that for this result we are not restricting t to be an integer. It is not hard to see that
for the sup-norm the Minkowski approximation theorem implies Dirichlet’s theorem. In this
case ∆ = 1.

The idea of generalizing Dirichlet’s theorem to other norms goes back at least to Hermite

[19]. He applied (2.2) for the Euclidean norm, for which ∆ =
√

3
2

, together with the inequality
between arithmetic and geometric means. The resulting inequality implies that for any
irrational α there are infinitely many integers p, q with q > 0 such that

(2.3) q|p− αq| < 1√
3
,

improving upon the corresponding upper bound 1 given by Dirichlet’s theorem. Later
Minkowski [33, 36] showed that (2.2) with the 1-norm given by F (x, y) = |x| + |y| and
for which ∆ = 1

2
, implies (2.3) with 1√

3
replaced by 1

2
.

Given these results of Hermite and Minkowski, it is natural to study the generalization
for any norm of the quantity δ(α) from the Davenport-Schmidt theorem. We want this
generalization to measure to what extent the Minkowski approximation theorem (2.2) can
be improved for a particular α. Hence for a fixed norm F , let δF (α) be the largest number
with the property that if c > δ(α) then for every sufficiently large t there are p, q ∈ Z with
q > 0 such that

∆F 2
t (q, p− αq) < c,

while for c < δF (α) there are arbitrarily large t for which no such p, q exist. For a given norm
we say that the Minkowski approximation theorem can be improved for irrational α ∈ R if
δF (α) < 1. A straightforward argument shows that when F is the sup-norm, δF = δ for δ in
the Davenport–Schmidt theorem.

We have only been able to obtain satisfactory results about δF if we make the assumption
that for all (x, y) ∈ R2 the norm F satisfies

(2.4) F (x, y) = F (|x|, |y|).

We also require that the norm F satisfies

(2.5) F (0,±1) = F (±1, 0) = 1.

Definition 1. Say that a norm F is strongly symmetric if it satisfies (2.4) and (2.5).
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The most important strongly symmetric norms are the p-norms. For (x, y) ∈ R2 and a
fixed 1 ≤ p <∞ the p-norm is defined by

F 〈p〉(x, y) = (|x|p + |y|p)
1
p ,

while F 〈∞〉(x, y) = sup{|x|, |y|}. Denote the corresponding B by Bp, ∆ by ∆p and δ by δp.
Other interesting examples are the two unique strongly symmetric norms whose unit balls
are regular octagons: Boct1 and Boct2 (see Figure 1).

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

Figure 1. Bp for p = 1, 2, 4,∞ and Boct1 and Boct2 .

Our first result generalizes the first corollary of the theorem of Davenport and Schmidt.
It shows that for a strongly symmetric norm the set of irrationals for which the Minkowski
approximation theorem can be improved, while uncountable, is small in the sense of measure
theory.

Theorem 1. Fix a strongly symmetric norm F . Then the set of all real irrationals for
which Minkowski’s approximation theorem can be improved is uncountable and has Lebesgue
measure zero.

Next we have a uniform lower bound for δF (α) for any strongly symmetric norm and any
irrational α.

Theorem 2. For any strongly symmetric norm F and any irrational α ∈ R we have that

(2.6) δF (α) ≥ 1
2
.

Equality in (2.6) can hold for the 1-norm. This follows from the next result since ∆1 = 1
2
.

For simplicity say that an irrational α ∈ R is well approximable if it is not badly approx-
imable.

Theorem 3. For any strongly symmetric norm F the smallest value of δF (α) for a well
approximable α is ∆.

We will see in the proof of Theorem 3 that δp(α) = ∆ for any α whose regular continued
fraction has partial quotients that are eventually strictly increasing, for example α = e−1

e+1

from (1.4). For the p-norm we can go further and identify the smallest value of δp(α) for any
irrational α.

Theorem 4. For the p-norm the smallest value of δp(α) for an irrational α is ∆p when
1 ≤ p ≤ 2 and is

(2.7) ∆p

10

(√
5 + 5

)((
1
2
(
√

5− 1)
)p

+ 1
)2/p

,

when 2 < p ≤ ∞. The value in (2.7) is attained when α = −1+
√

5
2

.
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The value of ∆p is given below in (4.2). See Figure 2 for graphs of ∆p and the minimum
value of δp. It is not the case that the Minkowski approximation theorem can always be
improved for each badly approximable irrational, not even each real quadratic irrational.
For example, we show at the end of §8 that

(2.8) δ2

(
1
2
(−1 +

√
3)
)

= 1.

Finding the norm or norms with the largest minimum value of δF (α) among all strongly
symmetric norms seems an interesting problem. The 2-norm has the largest minimum value√

3
2

= 0.866025 . . . of δp among all p-norms. It can be shown that the minimum value of

δF (α) for both of the octagonal norms is 1
8

(
3
√

2 + 2
)

= 0.78033 . . . (see the end of §10).
Among all of the examples we have considered, the 2-norm provides the largest minimum
(see Figure 2).
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√
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(3
√

2 + 2) ——

Figure 2. The minimum of δp for p ≥ 1. The dotted line is ∆p, the minimum
of δp(α) for well approximable α.

Remarks: Results like ours involving continuously varying norms belong to the “parametric
geometry of numbers,” an area that has recently seen a revival of activity stimulated by
Schmidt and Summerer [52, 53]. See also [49] and its references.

The sequence (un, vn) from (1.2) represents a trajectory of the dynamical system on Ω0 =
[0, 1) × [0, 1] determined by the extended continued fraction map T : Ω0 → Ω0 given by
T (0, v) = (0, 0) and for u > 0 by

(2.9) T (u, v) =

(
1

u
−
⌊

1

u

⌋
,

1

v + b 1
u
c

)
.

It has an invariant measure ω with density function

(2.10)
1

log 2

1

(1 + uv)2
.

The ergodicity of this system (see [41, 42]), which is the natural extension of the usual contin-
ued fraction dynamical system, can be used to give a different proof that Dirichlet’s theorem
cannot be improved for almost all real irrationals. An argument of [24], given as Lemma
5.3.11 of [9], allows one to conclude an almost all result for the special trajectories (1.2). Our
proof of Theorem 1 proceeds along similar lines except that the trajectories of our dynamical
system are determined by certain semi-regular continued fractions, which admit ±1 as par-
tial numerators. The continued fractions we need are examples of S-expansions, which have
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a well developed metrical theory again based on the ergodic theorem. For some remarks on
the connection between these dynamical systems and the geodesic flow on SL(2,Z)\SL(2,R)
see §12.

The second corollary of the Theorem of Davenport and Schmidt and our generalization,
Theorem 4, require for their proofs information about all, rather than almost all trajectories.
Other aspects of the continued fractions we use are needed, including a best approximation
property given in terms of the norm, in order to be able to analyze in detail each individual
trajectory.

3. The continued fraction associated to a norm

We want to give a generalization of the formula (1.3) of Davenport and Schmidt and for
that we require, as previously mentioned, certain infinite semi-regular continued fraction
expansions. Such a continued fraction has the form

(3.1) a0 +
ε1

a1+

ε2

a2+

ε3

a3+
· · · , εm = ±1, am ∈ Z

where am > 0 and am + εm+1 ≥ 1 for all m ≥ 1 and am + εm+1 ≥ 2 for infinitely many m.
For any m ≥ 0 the mth convergent of this continued fraction

pm
qm

= a0 +
ε1

a1+

ε2

a2+
· · · εm

am

uniquely defines relatively prime integers pm, qm with qm > 0, where p0 = a0 and q0 = 1.
Tietze ([57], see also [45, p. 135]) showed that there is an irrational α to which such a
continued fraction converges, meaning that α = limm→∞

pm
qm
.

The continued fraction we need is characterized by a best approximation property stated
in terms of the given strongly symmetric norm.

Definition 2. Say that a rational number p
q

where q > 0 is a best approximation to α with

respect to the norm F if there is a t > 1 depending only on p
q

such that

Ft(q, p− αq) < Ft(s, r − αs)
for all rational r

s
6= p

q
.

In the case of the sup-norm Definition 2 is equivalent to the usual one that states that a
rational number p

q
with q > 0 is a best approximation to an irrational α if for all rational

numbers r
s
6= p

q
with 0 < s ≤ q we have

|p− αq| < |r − αs|
(see Lemma 6.1 below).

Theorem 5. Fix a strongly symmetric norm F . Every irrational α ∈ R has a unique semi-
regular continued fraction expansion whose convergents are precisely the best approximations
to α with respect to F .

We will refer to this continued fraction as the F -continued fraction of α and, for the p-
norm, as the p-continued fraction of α. For the sup-norm the∞-continued fraction is closely
related to, but not always equal to, the regular continued fraction. Suppose that

(3.2) α = b0 +
1

b1+

1

b2+

1

b3+
· · ·
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is the regular continued fraction of an irrational α. Recall that Lagrange showed ([28], see
also [45, §15]) that every best approximation in the usual sense is a convergent of the regular
continued fraction of α and that every convergent, except possibly b0, is a best approximation
to α. In view of Theorem 5, (3.2) coincides with the ∞-continued fraction of α if and only
if b1 > 1. If b1 = 1 the ∞-continued fraction of α is

(3.3) α = b0 + 1 +
−1

b2 + 1+

1

b3+
· · · .

This is an example of a singularization, which has the effect of contracting the regular con-
tinued fraction by removing b1 = 1 and the convergent b0, which is not a best approximation
to α in this case. This well-known exceptional case does not occur for the ∞-continued
fraction. With this one possible exception, however, the convergents of the ∞-continued
fraction and those of the regular continued fraction coincide.

For any 1 ≤ p < ∞, the Minkowski Approximation Theorem and the inequality between
arithmetic and geometric means immediately gives that a necessary condition for a regular
convergent rn

sn
of an irrational α to be a convergent of the p-continued fraction is that

(3.4) sn|rn − αsn| ≤ (41/p∆p)
−1.

For p = 1, when the right hand side is 1
2
, Minkowski [34] showed that (3.4) is also sufficient.

Just as the formula (1.3) is given in terms of the sequence un, vn coming from the regular
continued fraction, our generalization will be given in terms of a sequence µm, νm determined
by our continued fraction α = a0+ ε1

a1+
ε2
a2+

ε3
a3+
· · · . Namely, for a fixed norm we define µ0 = α

and ν0 = 0, while for m ≥ 1 we let

(3.5) µm =
εm+1

am+1+

εm+2

am+2+
· · · and νm =

1

am+

εm
am−1+

εm−1

am−2+
· · · ε2

a1

.

For a general strongly symmetric norm we will express δF (α) in terms of these numbers
µm, νm in §7 below. For the p-norm the formula is completely explicit and we give it here.
For p with 1 ≤ p <∞ let

(3.6) Dp(u, v) =
1

1 + uv

(
(1− |u|pvp)2

(1− |u|p)(1− vp)

) 1
p

,

while when p =∞ set D∞(u, v) = limp→∞Dp(u, v) = (1 + uv)−1.

Theorem 6. Fix 1 ≤ p ≤ ∞. For any irrational α whose p-continued fraction is (3.1) we
have that

δp(α) = lim sup
m→∞

∆pDp

(
µm, νm

)
,

where µm, νm are given above in (3.5).

The F -continued fraction of an irrational α for any strongly symmetric norm is an example
of an S-expansion. Their theory has been developed by Kraaikamp [27] and others (see also
[4], [9] and [22]). Recall the definition of T and ω from (2.9) and (2.10). A Borel set S ⊂ Ω0

is called a singularization area if ω(∂S) = 0 and if

(i) S ⊆ [1
2
, 1)× [0, 1] and

(ii) TS ∩ S ⊆ {(β, β)}, where β = 1
2
(−1 +

√
5).
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The S-expansion of an irrational α is obtained from the regular continued fraction (1.1) by
changing

α = · · · 1

bn+

1

1+

1

bn+2+
· · · into α = · · · 1

(bn + 1)+

−1

(bn+2 + 1)+
· · ·

for each n such that (un, vn) ∈ S. Note that (un, vn) ∈ S implies that bn+1 = 1 by (i). Also
(ii) implies that this procedure is unambiguous. The result is a unique semi-regular continued
fraction (see Section 4 of [27] for more details) for α whose convergents are precisely those
regular convergents rn

sn
where n ≥ 0 is such that (un, vn) /∈ S. For example, the∞-continued

fraction discussed above is the S expansion for S = [1
2
, 1)× {0}.

Theorem 7. Fix a strongly symmetric norm F . There exists a singularization area S so
that the F -continued fraction of any irrational α is the S-expansion of α.

As usual, we denote S by Sp in the case of the p-norm (see Figure 3).

1
2

10
0

1
2

1

Figure 3. The Sp regions for p = 1, 2, 3, 4.

Remarks: At the beginning of the paper [33], Minkowski states without proof several of
the main properties of the p-continued fraction for any p, including the best approximation
property. Our proof of Theorem 5, which allows for F to be any strongly symmetric norm,
was strongly influenced by his ideas. As previously mentioned, Minkowski [34] also gave
the remarkable result that for the 1-continued fraction the necessary condition (3.4) is also
sufficient. Unsurprisingly, this also follows from our arguments. In addition, the 2-continued
fraction has actually been studied since the time of Hermite [18], especially by Humbert
[20, 21]. It is also closely connected to the improper modular billiards studied in [1]. It
was shown in [26] that the 1-continued fraction (known as Minkowski’s diagonal continued
fraction) is an S-expansion. For related work on the 1-continued fraction see [40]. That the
p-continued fraction for p 6= 1,∞ is also an S-expansion seems to be new.

In the next section we will review some basic facts from the geometry of numbers in the
case we need, namely in two dimensions. Seven sections, each with the proof of one of our
theorems, follow afterward. The theorems will be proven in the following order:

2→ 5→ 6→ 7→ 3→ 4→ 1.

Some concluding remarks are then given. Finally, an appendix contains a number of technical
lemmas and their proofs that we will refer to as needed in the main body of the paper.
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4. Geometry of numbers

As above let F be a fixed norm on R2. This means that for P, P ′ ∈ R2 we have

(i) F (P ) ≥ 0 and F (P ) = 0 if and only if P = (0, 0)
(ii) F (tP ) = |t|F (P ) for t ∈ R

(iii) F (P + P ′) ≤ F (P ) + F (P ′).

The unit ball of the norm is
B = {P ∈ R2;F (P ) < 1}.

This B is open, bounded, convex and symmetric around 0 and every such body arises as the
unit ball of some norm (see e.g. [54]). Denote by area(B) the Lebesgue measure of B on R2.
It is convenient to define the stretched ball for t > 0

Bt = {(x, y) ∈ R2;Ft(x, y) < 1}.
Let L ⊂ R2 be a (full) lattice. By the determinant of L, denoted detL, we mean | det g|

for any g ∈ GL(2,R) whose rows give a Z-basis for L. The lattice L is admissible for B if B
contains no other points of L than (0, 0). The following result is fundamental [36]:

Minkowski’s First Convex Body Theorem. If L is admissible for B then

areaB ≤ 4 detL.

The critical determinant of B, denoted ∆(B) or simply ∆, is the infimum of all deter-
minants of lattices admissible for B. Building on work of Minkowski [35, 37], Mahler [29]
proved that lattices with determinant ∆ actually exist, and these are called critical lattices.
Minkowski’s first convex body theorem implies that

(4.1) ∆ ≥ 1
4
(areaB).

This is sharp for the 1-norm and the sup-norm.
Apparently, if we wish to evaluate δF (α) exactly we must also know ∆ exactly. Finding

the critical determinant of a given B is the main problem of the geometry of numbers in
R2. Although the n-dimensional version of this problem is apparently intractable in general,
here it is approachable. For a given critical lattice L for B the boundary of B must contain
a Z-basis {P, P ′} for L as well as their sum P + P ′. Furthermore, the lattice generated by
any pair of points P, P ′ with P, P ′, P + P ′ on the boundary of B is admissible for B (see [7,
Thm XI p. 160]). Therefore, as Minkowski already knew, computing ∆ amounts to solving
the (generally quite difficult) calculus problem of minimizing the area of a parallelogram
with one vertex at the origin and the three others on the boundary of B. This justifies our
definition of ∆ in the statement of the Minkowski approximation theorem.

Next we review what is known about the value of ∆p for all p. Let

∆(0)
p = (1− 2−p)

1
p and ∆(1)

p = 2−
2
p

1+τp
1−τp ,

where 0 < τp <
1
2

satisfies τ pp + 1 = 2(1− τp)p. A modification of a conjecture of Minkowski
[37, p. 51–58] made by Davis [12] states that

(4.2) ∆p = min{∆(0)
p ,∆(1)

p }.

Furthermore, there is a unique value 2.57 < ρ < 2.58 so that ∆p = ∆
(0)
p when 2 ≤ p ≤ ρ,

while otherwise ∆p = ∆
(1)
p . Many mathematicians obtained partial results, among them

Mordell [39], Davis [12], Cohn [8], Watson [58, 59] and Malyshev [31]. Building on their
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work, the proof of the full conjecture was finally completed by Glazunov, Golovanov and
Malyshev [16].

0 1 2 ρ 3 4 5

0.2

0.4

0.6

0.8

1

Figure 4. ∆p for 1 ≤ p ≤ 5

In the case of the p-norm parallelograms that minimize the area may be given explicitly.
For 2 ≤ p ≤ ρ we may take the parallelogram with vertices at 0, P, P ′, P + P ′ where

(4.3) P = (1, 0) and P ′ =
(

1
2
, 1

2
(2p − 1)

1
p
)
.

For 1 ≤ p ≤ 2 or ρ ≤ p ≤ ∞ we may take

(4.4) P =
(
2−

1
p (1− τp)−1,−2−

1
p τp(1− τp)−1

)
and P ′ =

(
2−

1
p , 2−

1
p
)

where again 0 < τp <
1
2

solves τ pp + 1 = 2(1 − τp)
p. Except when p = 1, 2 or ∞ these

parallelograms are unique up to obvious symmetries. When p = 1, 2 or∞ there are infinitely
many essentially different minimizing parallelograms. They are easily parameterized. For
example, when p = 2 all are obtained by rotating the standard hexagonal lattice coming
from (4.3).

Minkowski’s method can be restated as saying that 3∆(B) is the minimal area of an
affinely regular symmetric hexagon inscribed in B. A useful alternative due to Reinhardt
[48] is that 4∆(B) is the minimum area of a symmetric convex circumscribed hexagon (see
also [7, p. 239] or [17, Thm 2 p. 243]). Using this fact, that he also found independently,
Mahler [30] computed ∆(Boct1) =

√
2 − 1

2
for the regular octagon from Figure 2. Thus we

also have ∆(Boct2) = 1
8

(
3
√

2 + 2
)
, obtained by scaling.

5. A Minkowski-type algorithm

In this section we will prove Theorem 2. First we give a needed definition. A minimal
basis for a lattice L ⊂ R2 with respect to a norm F is a Z-basis {P, P ′} for L with the
property that

F (P ) = F (P ′) = min
P0∈L\{0}

F (P0).

For α ∈ R let

(5.1) Lα = (1,−α)Z + (0, 1)Z.
Obviously Lα has determinant one.

To prove Theorems 2 and 5 we require an algorithm that constructs a sequence of points
Pn ∈ Lα and positive numbers tm such that {Pm−1, Pm} gives a minimal basis for Lα with
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respect to Ftm . We also want Pm−1 to have the smallest norm ‖Pm−1‖t among non-zero
points in Lα for any t ∈ (tm−1, tm). We will start with P−1 = (0, 1) and t−1 = 1. Roughly
speaking, given Pm−1, to find the new point Pm and the associated tm, we simultaneously
expand B in the x-direction while shrinking in the y-direction in a such a way that Pm−1

remains on its boundary until we encounter Pm. We then repeat this procedure starting with
Pm (see Figure 5). Our algorithm will produce pairs of lattice points in Lα that are linearly
independent over R and on a ball for which Lα is admissible. First we need to know that
they give a basis for Lα.

Lemma 5.1. Let α ∈ R be irrational and F be a fixed strongly symmetric norm. Suppose
that P, P ′ ∈ Lα lie on the boundary of Bt for some t > 0 and are linearly independent over
R. If Lα is admissible for Bt then {P, P ′} gives a Z-basis for Lα.

Proof. Consider the sublattice PZ + P ′Z of Lα generated by these lattice points. By
Minkowski’s first convex body theorem its index in Lα can only be 1 or 2. In the latter
case suppose that P = aQ+ bQ′ and P ′ = cQ+ dQ′ where Lα = QZ+Q′Z, so |ad− bc| = 2.
If a were even and c odd we would have that b is even and so 1

2
P = (a

2
)Q+ ( b

2
)Q′ would be

a non-zero point in Bt ∩ Lα. A similar argument disallows c being even and a odd. Thus a
and c are either both even or both odd. Similarly b and d are either both even or both odd.
In any case

1
2
(P + P ′) = (a+c

2
)Q+ ( b+d

2
)Q′ and 1

2
(P − P ′) = (a−c

2
)Q+ ( b−d

2
)Q′

are distinct points of Lα. As Bt is convex they must lie on the boundary of Bt. It follows
that Bt must be a parallelogram and strong symmetry implies it is a stretched ball for either
the 1-norm or the sup norm. As the corners and midpoints of the sides are lattice points we
would have to have that Lα contains points of the x-axis, i.e. α would be rational. �

In the next lemma we make the whole process precise. Clearly to represent any Lα we
may assume that α ∈ (−1

2
, 1

2
].

5 10 15 200

0.2

0.4

−0.2

−0.4

P0

P1

P2

Figure 5. The lattice Lα for α = 1
1+

1
2+

1
1+

1
3+

1
1+

1
4+
· · · . Dark lattice points

correspond to the regular convergents of α. The points P0 = (1,−α), P1 =
(4, 1− 4α), and P2 = (19, 5− 19α) give best approximations for the 2-norm.
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Lemma 5.2. Fix a strongly symmetric norm F and an irrational α ∈ (−1
2
, 1

2
). There is a

sequence 1 = t−1 ≤ t0 < t1 < t2 < . . . tending to ∞ and for each m = −1, 0, 1, . . . there is a
Pm = (xm, ym) ∈ Lα with the following properties. For each m ≥ 0

(i) xm > xm−1 and |ym| < |ym−1|,
(ii) {Pm−1, Pm} gives a minimal basis for Lα with respect to Ftm,

(iii) for any t ∈ (tm−1, tm) there is no P ′ = (x′, y′) ∈ Lα different from Pm−1 with x′ > 0
and

Ft(P
′) ≤ Ft(Pm−1).

Proof. Consider for P = (x, y) ∈ Lα the ball

(5.2) B(P, t)
def
= {P ′ ∈ R2;Ft(P

′) < Ft(P )},
for which areaB(P, t) = F 2

t (P ) areaB. Suppose that Lα is admissible for B(P, t). Now by
Lemma A.2

Ft(P ) = F (t−1x, ty) ≥ F (0, ty) = t|y|.
Thus, as long as y 6= 0, by Minkowski’s first convex body theorem there will be a maximal
t′ ≥ t for which Lα is admissible for B(P, t′). For any of the resulting P ′ 6= −P with
Ft′(P

′) = Ft′(P ), we have by Lemma 5.1 that {P, P ′} gives a minimal basis for Lα with
respect to Ft′ .

Let P−1 = (0, 1). Then Lα is admissible for B(P−1, 1). Let t0 ≥ 1 be maximal for which
Lα is admissible for B(P−1, t0). Our assumption that α ∈ (−1

2
, 1

2
) implies that we can take

P0 = (1,−α) as a solution to Ft0(P0) = Ft0(P−1).
Now Lα is admissible for B(P0, t0) and so we find t1 > t0 maximal so that Lα is admissible

for B(P0, t1). That t1 > t0 with strict inequality is assured by our choice of P0. Among
the finitely many P ′ = (x′, y′) ∈ Lα with Ft1(P

′) = Ft1(P0) there will be unique one with
maximal x′ since α is irrational. We let P1 = (x1, y1) be this point. Clearly x1 > x0 and
|y1| < |y0|.

We continue this process to construct tm and Pm. That we have tm > tm−1 is guaranteed
by choosing among the new points on the boundary the one with maximal x-coordinate.
From the form of Lα, where α is irrational, it follows that xm > xm−1 and |ym−1| > |ym| > 0
for each m ≥ 0 and that this process never terminates.

We will have all the stated properties of tm and Pm once we show that tm →∞. We have
by Lemma A.2 and Minkowski’s first convex body theorem again that for each m ≥ 0

xmt
−1
m = F (xmt

−1
m , 0) ≤ F (xmt

−1
m , ymtm) = Ftm(Pm) ≤ 2(areaB)−

1
2 .

Thus tm � xm →∞ as xm > xm−1 are integers. �

Proof of Theorem 2. Observe that B(Pm, tm) as defined by (5.2), with Pm and tm from
Lemma 5.2, contains a parallelogram of area 2 since {Pm−1, Pm} is a minimal basis for Lα
with respect to Ftm . Therefore

∆F 2
tm(Pm) ≥ 2∆(areaB)−1 ≥ 1

2
,

where to get the second inequality we have applied Minkowski’s bound (4.1). Since tm →∞
as n→∞ we have that

(5.3) δF (α) ≥ ∆ lim sup
m→∞

F 2
tm(Pm) ≥ 1

2
,

thus proving Theorem 2. �
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6. The continued fraction

Next we relate to each other the two definitions of best approximation given in and below
Definition 2.

Lemma 6.1. If the fraction p
q

with q > 0 is a best approximation of an irrational α with

respect to a strongly symmetric norm F then it is a best approximation in the usual sense.
Conversely, if p

q
with q > 0 is a best approximation of an irrational α in the usual sense it

is a best approximation with respect to the sup-norm.

Proof. Suppose that there is a t > 1 such that r
s
6= p

q
with s > 0 implies

Ft(q, p− αq) < Ft(s, r − αs).
If s ≤ q then |r − αs| > |p− αq| by Lemma A.2.

Conversely, suppose that r
s
6= p

q
and 0 < s ≤ q implies that |p− αq| < |r − αs|. Choose t

such that t−1q = t|p− αq| and note that such a t > 1.
If 0 < s ≤ q and r

s
6= p

q
then

sup(qt−1, |p− αq|t) = t|p− αq| < t|r − αs| ≤ sup(st−1, |r − αs|t).
If s > q then

sup(qt−1, |p− αq|t) = t−1q < t−1s ≤ sup(st−1, |r − αs|t).
This finishes the proof. �

Proof of Theorem 5. For any α ∈ R write α = α′ + a0, where a0 ∈ Z and α′ ∈ (−1
2
, 1

2
].

Suppose that α is irrational. In the notation of Lemma 5.2 (taking there α = α′) for m ≥ −1
write Pm = (xm, ym). For m ≥ 0 define

gm =

(
xm ym
xm−1 ym−1

)
and set g−1 = ( 0 1

1 −α ). We know by Lemma 5.2 that for each m ≥ 1 there is a positive integer
am and εn = ±1 so that

(6.1) gm =

(
am εm
1 0

)
gm−1.

This also holds for m = 0 if we set ε0 = 1. Clearly for m ≥ 0

(6.2) γm
def
= det gm = (−1)mε1 · · · εm.

The numerator pm and denominator qm of the convergents
pm
qm

= a0 +
ε1

a1+

ε2

a2+
· · · εm

am

of our continued fraction are determined recursively for m ≥ 0 through

pm = ampm−1 + εmpm−2, p−1 = 1, p−2 = 0,(6.3)

qm = amqm−1 + εmqm−2, q−1 = 0, q−2 = 1.(6.4)

It is easy to see that for m ≥ 0

(6.5)

(
pm qm
pm−1 qm−1

)
=

(
am εm
1 0

)(
am−1 εm−1

1 0

)
· · ·
(
a0 1
1 0

)
.
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By (6.1) and (6.5) for each m ≥ 0 we get that

gm =

(
xm ym
xm−1 ym−1

)
=

(
qm pm − αqm
qm−1 pm−1 − αqm−1

)
.(6.6)

By Lemma 5.2 the basis of rows of gm is minimal for the norm Ftm . Choose any t ∈
(tm, tm+1). By (iii) of Lemma 5.2 for any r

s
6= pm

qm
we have

(6.7) Ft(qm, pm − αqm) < Ft(s, r − αs).
Conversely, suppose that r

s
is a best approximation to α with respect to F , and write

Q = (s, r−αs). Then for some t > 1, we have Ft(Q) ≤ Ft(Pm) for all m ≥ 0. By Lemma 5.2
it cannot happen that t ∈ (1, t0) since in that case we would have to have Q = (0, 1) and
so s = 0. Also we cannot have that t = tm for any m ≥ 0. On the other hand, if m is such
that t ∈ (tm, tm+1), then by Lemma 5.2 we have Q = Pm. It follows that the convergents are
precisely the best approximations to α with respect to F .

That the continued fraction converges to α now follows from the first statement of Lemma 6.1
and Lagrange’s theorem mentioned below Theorem 5, since they imply that each convergent
of our continued fraction is a convergent of the regular continued fraction. It remains to
show that it is semi-regular. The condition εm+1 + am ≥ 1 for all m ≥ 1 will follow once we
relate the µm, νm from (3.5) to the points Pm = (xm, ym), which is also needed to prove our
generalization of (1.3).

Lemma 6.2. For xm, ym from (6.6) and µm, νm from (3.5) we have for m ≥ 0 that

(6.8) µm = − ym
ym−1

and νm =
xm−1

xm
.

Proof. The proof is an adaptation to more general continued fractions of standard arguments
used for regular continued fractions (see [51]).

To start with, by (6.6)

(6.9) − ym
ym−1

=
−pm + αqm
pm−1 − αqm−1

.

By (6.5) and (6.2) we have

(6.10) qm+1pm − pm+1qm = γm+1.

Together with (6.3) and (6.4), this yields the following formal identity between rational
functions with variables a1, . . . , am+1:

(6.11) pm − qm
pm+1

qm+1

=
γm+1

am+1qm + εm+1qm−1

where
pm+1

qm+1

= a0 +
ε1

a1+

ε2

a2+
· · · εm+1

am+1

.

The mth complete quotient αm of the expansion α = ε1
a1+

ε2
a2+
· · · is defined recursively by

α0 = α and for m ≥ 0 through

αm+1 =
εm+1

αm − am
.

It follows that for m ≥ 0 we have

(6.12) α = a0 +
ε1

a1+

ε2

a2+
· · · εm+1

αm+1

.

By (6.11) upon setting the variable am+1 = αm+1 and using (6.12) we derive that

pm − qmα =
γm+1

αm+1qm + εm+1qm−1

.
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Next solve this equation for αm+1 and use (6.10) with m in place of m+ 1 to get

(6.13) αm+1 =
εm+1(−pm−1 + qm−1α)

pm − qmα
.

From (6.12) we have

(6.14) αm+1 = am+1 +
εm+2

am+2+

εm+3

am+3+
· · · .

so by (3.5)

(6.15) µm =
εm+1

αm+1

.

The first formula of (6.8) now follows from (6.9) and (6.13).
To prove the second formula of (6.8) start with qm−1

qm
= xm−1

xm
from (6.6). By (3.5) we have

that v0 = 0 while for m ≥ 0

νm+1 =
1

am+1 + εm+1νm
.

Using (6.4) we see that qm−1

qm
satisfies the same recurrence. �

We now finish the proof of Theorem 5 by showing that our expansion of the irrational α
is semi-regular. By (6.15) and (6.8) we have |αm| > 1 for all m ≥ 1. Thus

αm = am +
εm+1

αm+1

≥ 1 +
εm+1

αm+1

> 0.

Now suppose that we had εm+1 = −1 and am = 1 for some m ≥ 1. We would then have
from (6.14) that αm < 1 which is impossible. It follows that εm+1 + am ≥ 1 for all m ≥ 1.
Now suppose that εm+1 + am = 1 for all but finitely many m. Then for all sufficiently large
m we have am = 2 and εm+1 = −1. But 2 + −1

2+
−1
2+
−1
2+
· · · = 1 which contradicts that α is

irrational. This completes the proof of Theorem 5. �

7. A formula for δF (α)

We will deduce Theorem 6 from a formula for δF (α) for any strongly symmetric norm F
given in terms of the quantities µm, νm. As usual, we may identify the space of all lattices
of determinant one with Γ\G where G = SL(2,R) and Γ = SL(2,Z) by means of

(7.1) g =
( x y
x′ y′

)
7→ L(g)

def
= (x, y)Z + (x′, y′)Z.

Let D be the set of g =
( x y
x′ y′

)
∈ G such that

F (x, y) = F (x′, y′) and(7.2)

0 ≤ x′ < x and |y| < y′.(7.3)

For g ∈ D let F (g) = F (x, y).

Lemma 7.1. The map Φ : D → (−1, 1)× [0, 1) given by

Φ
( x y
x′ y′

)
= (− y

y′
, x
′

x
)

is a continuous bijection.
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Proof. The inverse of Φ is given by

(7.4) (u, v) 7→ 1√
1+uv

(
t−1 −ut
t−1v t

)
.

By Lemma A.4 we see that t = t(u, v) > 0 exists and is uniquely determined by the condition
Ft(1,−u) = Ft(v, 1). �

The function

(7.5) DF (u, v)
def
= F 2(Φ−1(u, v))

is easily seen to be continuous on (−1, 1)× [0, 1).
The following is our generalization of the formula (1.3).

Lemma 7.2. Fix a strongly symmetric norm F . For any irrational α whose continued
fraction associated to the norm is (3.1) we have that

δF (α) = lim sup
m→∞

∆DF

(
µm, νm

)
,

where µm, νm are given above in (3.5).

Proof. Fix an m and write as before Pm = (xm, ym). Let

Φ−1(µm, νm) =
( x y
x′ y′

)
where 0 ≤ x′ < x and |y| < y′. Recall that by (i) of Lemma 5.2 we know that

0 ≤ xm−1 < xm and |ym| < |ym−1|.

Equation (7.4) and Lemmas 5.2 and 6.2 now imply that

x = t−1
m xm, x′ = t−1

m xm−1, y = γmtmym, y′ = γmtmym−1,

where γm = ±1 was defined in (6.2). Note that in this case γm = sgn ym−1. By strong
symmetry of the norm we have Ftm(x, y) = Ftm(x′, y′) = Ftm(Pm). Hence

F 2
tm(Pm) = F 2(Φ−1(µm, νm)) = DF (µm, νm).

Now we need to show that

(7.6) δF (α) = ∆ lim sup
m→∞

F 2
tm(Pm).

For t ≥ 1 let m(t) be such that tm(t) ≤ t ≤ tm(t)+1. By Lemma 5.2 we have that

δF (α) ≤ ∆ lim sup
t→∞

F 2
tm(t)

(Pm),

and by Lemma A.6 we have that

Ft(Pm) ≤ max
(
Ftm(Pm), Ftm+1(Pm)

)
if tm ≤ t ≤ tm+1.

Now apply the first inequality in (5.3) to establish (7.6) and therefore finish the proof of
Lemma 7.2. �
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Proof of Theorem 6. To conclude formula (3.6) from Lemma 7.2, first observe that for
the p-norm with 1 ≤ p <∞ we have from (7.4) that for (u, v) ∈ (−1, 1)× [0, 1) the value of
t that makes the rows of Φ−1(u, v) have the same norm Ft is given by

t =
( 1− vp

1− |u|p
) 1

2p
.

The corresponding value of DF 〈p〉(u, v) from (7.5) is

DF 〈p〉(u, v) = (1 + uv)−1
((

1−vp
1−|u|p

)− 1
2 + |u|p

(
1−vp

1−|u|p
) 1

2

) 2
p

= (1 + uv)−1
(

(1−|u|pvp)2

(1−|u|p)(1−vp)

) 1
p

= Dp(u, v),

giving (3.6). The case p =∞ is immediate. This completes the proof of Theorem 6. �

8. S-expansions

To prove Theorem 7 we want to characterize in terms of the norm those convergents of
the regular continued fraction of an irrational α that are also convergents of the continued
fraction of α associated to a strongly symmetric norm F . We will use the notation and
results of Lemma 5.2. Write Pm = (qm, pm − αqm) for points coming from this norm with
corresponding tm and let Qn = (sn, rn − αsn) be the points coming from the convergents of
the regular continued fraction of α. Furthermore, the partial quotient bn is associated to Qn

while am is associated to Pm.

Lemma 8.1. For a fixed n ≥ 0 there are integers c` and d` with c` > 0 and d` ≥ 0 so that
for each ` ≥ 0

Qn+` = c`Qn + d`Qn−1

where c` ≥ d` for all ` ≥ 0, while for ` ≥ 2 we have

c` ≥ d` + 1.

Proof. The integers rn, sn are determined recursively for n ≥ 0 by

rn = bnrn−1 + rn−2, r−2 = 0, r−1 = 1,(8.1)

sn = bnsn−1 + sn−2, s−2 = 1, s−1 = 0.(8.2)

It is easy to check using (8.1) and (8.2) that c` and d` satisfy for fixed n and ` ≥ 1 the
recurrence relations

c`+1 = bn+`+1c` + c`−1, c1 = bn+1, c0 = 1,(8.3)

d`+1 = bn+`+1d` + d`−1, d1 = 1, d0 = 0.(8.4)

The claim of the lemma follows from a straightforward inductive argument. �

The following result will be used to characterize those convergents of the regular continued
fraction that occur as convergents in the continued fraction associated to the norm.

Lemma 8.2. For m ≥ 1 let n and ` be such that Pm−1 = Qn−1 and Pm = Qn+`. Then

(i) ` ∈ {0, 1}.
(ii) There is a unique t ≥ 1 such that Ft(Qn) = Ft(Qn−1), and ` = 1 if and only if

Ft(Qn +Qn−1) ≤ Ft(Qn).

If this holds we have that bn+1 = 1.
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(iii) Q0 = P0 if and only if a0 = b0.

Proof. We have P−1 = Q−1 and by Lemma 6.1 we know that for each m ≥ 1 we have
Pm−1 = Qn−1 for some n and Pm = Qn+` for some ` ≥ 0. We can check directly that Q0 = P0

if and only if a0 = b0.
By Lemma 8.1 for ` ≥ 0 we have

(8.5) c`Qn = Pm − d`Pm−1.

By Lemma 5.2 we have Ftm(Qn) ≥ Ftm(Pm) = Ftm(Pm−1) and hence

(8.6) c`Ftm(Pm) ≤ Ftm(Pm − d`Pm−1) < Ftm(Pm) + d`Ftm(Pm−1)

by Lemma A.5. Thus we have

(8.7) c` < d` + 1.

so by Lemma 8.1 we have that either ` = 0 or ` = 1.
Now by Lemma A.4 applied to the norm Ftm and using that

Ftm(Qn) ≥ Ftm(Qn−1),

there is a t ≥ 1 (indeed t ≥ tm) so that

Ft(Qn) = Ft(Qn−1).

In case ` = 1 we have bn+1 = 1 by (8.7) and (8.3)–(8.4). By (8.5) we have that

Qn +Qn−1 = Pm = Qn+1,

so we must have
Ft(Qn +Qn−1) = Ft(Qn+1) = Ft(Pm) ≤ Ft(Qn),

where the inequality follows from Lemma 5.2(iii).
If ` = 0 we have Qn−1 = Pm−1 and Qn = Pm so that t = tm and

Ft(Qn +Qn−1) = Ftm(Pm + Pm−1) > Ftm(Pm) = Ft(Qn),

at least when m > 0, since then the x-coordinate of Pm + Pm−1 is strictly larger than that
of Pm and so by Lemma 5.2(iii) strict inequality must hold. �

Proof of Theorem 7. Lemma 8.2 gives instructions for obtaining the sequence of conver-
gents pm/qm of α associated to the norm F from the sequence of regular convergents rn/sn
of α, namely

(8.8) omit the regular convergent
rn
sn

(n ≥ 1) ⇐⇒ Ft(Qn +Qn−1) ≤ Ft(Qn),

where t ≥ 1 is such that Ft(Qn) = Ft(Qn−1), and

(8.9) omit
r0
s0
⇐⇒ bαc is not the nearest integer to α ⇐⇒ α ∈ [1

2
, 1) + Z.

We must define a singularization area that encodes both of these instructions. Let D and Φ
be as in Section 7. For each g =

( x y
x′ y′

)
∈ D we write

P = (x, y) and P ′ = (x′, y′),

and we define

(8.10) S = Φ({g ∈ D; F (P + P ′) ≤ F (P )}) ∪
([

1
2
, 1
)
× {0}

)
.

Note that S is a closed set in the induced topology on [1
2
, 1)× [0, 1]. The portion of S that

lies on the u-axis encodes the rule (8.9). Suppose that n ≥ 1 and let
( x y
x′ y′

)
= Φ−1(un, vn),
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where un and vn are defined in (1.2). Then Lemmas 7.1 and 6.2 imply that Qn = (tx, t−1y)
and Qn−1 = (tx′, t−1y′), with t defined by Ft(Qn) = Ft(Qn−1). So the condition on the
right-hand side of (8.8) is equivalent to F (P + P ′) ≤ F (P ). It follows that (8.8)–(8.9) are
encoded by the rule

(8.11) omit the regular convergent
rn
sn
⇐⇒ (un, vn) ∈ S.

It is helpful to have some more concrete information about the set S. For a generic norm
it is difficult to describe S explicitly, so we will relate S to the set S1, which is easy to
describe. As usual, we denote S by Sp when F is the p-norm. By (8.10) we have

S1 = Φ
(
{
( x y
x′ y′

)
∈ D; |x+ x′|+ |y + y′| ≤ |x|+ |y|}

)
∪
([

1
2
, 1
)
× {0}

)
.

Using (7.4) we can rewrite this as

(8.12) S1 =
{

(u, v) ∈ (−1, 1)× [0, 1); t−1(1 + v) + t(1− u) ≤ t−1 + t|u|
}
∪
([

1
2
, 1
)
× {0}

)
,

where t2 = 1−v
1−|u| . Some algebraic manipulation reduces the inequality in (8.12) to

1 + uv ≤ u+ |u|.
This, together with |uv| < 1, implies that u ≥ 1

2
, so we find that

(8.13) S1 =
{

(u, v) ∈ [1
2
, 1)× [0, 1); v ≤ 2− 1

u

}
.

The interior of the set (8.13) agrees with the S-region given in [27] for Minkowski’s diagonal
continued fraction.

Lemma 8.3. For any strongly symmetric norm F we have S ⊆ S1.

Proof. Since S and S1 are closed sets in the induced topology on [1
2
, 1)× [0, 1], it suffices to

show that a dense subset of S is contained in S1. Suppose that (u, v) ∈ S with u /∈ Q and
v ∈ Q, and write

(8.14) u =
1

bn+1+

1

bn+2+
· · · and v =

1

bn+

1

bn−1+

1

bn−2+
· · · 1

b1

for the regular continued fractions of u and v. If we define

α =
1

b1+

1

b2+

1

b3+
· · ·

then (u, v) = (un, vn) for α. Since (u, v) ∈ S we have Qn+1 = Qn−1 + Qn in the notation of
Section 8, and for some m we have Pm−1 = Qn−1 and Pm = Qn+1. Thus

Ftm(Qn−1) = Ftm(Qn+1) ≤ Ftm(Qn).

Since the regular convergents of α alternate between lying to the left of α and lying to
the right of α, the points Qn−1 and Qn+1 are in the same quadrant. Let t be such that

F
〈1〉
t (Pm−1) = F

〈1〉
t (Pm), where F 〈1〉 denotes the 1-norm. By convexity of F , the closed

stretched ball B(Pm, tm) contains the line segment connecting the points Pm−1 and Pm. This
line segment comprises all of the points P in the same quadrant as Qn−1, Qn+1 with x-

coordinate between xm−1 and xm, and with F
〈1〉
t (P ) = F

〈1〉
t (Pm). Since the x-coordinate of

Qn is between xm−1 and xm and Qn is outside the ball B(Pm, tm), we have

F
〈1〉
t (Qn) ≥ F

〈1〉
t (Pm) = F

〈1〉
t (Qn +Qn−1).

By (8.8) and (8.11) it follows that (u, v) ∈ S1. �
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Lemma 8.3, together with the explicit description (8.13), shows that S ⊆ [1
2
, 1) × [0, 1].

We also have that TS ∩ S = ∅, where T is given in (2.9), since S ⊆ S1 and

(8.15) TS1 =
{

(u, v) ∈ [0, 1)× [1
2
, 1);u ≤ 2− 1

v

}
.

It follows that S is a singularization area as defined above Theorem 7. This fact and (8.11)
together prove Theorem 7. �

We also immediately obtain the following lemma, which we will use several times in the
coming sections.

Lemma 8.4. For every strongly symmetric norm F , there is a neighborhood U of the line
segment u = v with u, v ∈ (0, 1) such that U ∩ ((−1, 1)× [0, 1)) does not intersect S.

We finish this section with a quick proof of our claim (2.8) that

δ2

(
1
2
(−1 +

√
3)
)

= 1.

The regular continued fraction expansion of α = 1
2
(−1 +

√
3) is

(8.16) α =
1

2+

1

1+

1

2+

1

1+
· · · ,

from which it follows that

un =

{
α if n is even,

2α if n is odd,

while v2n → 2α from below and v2n+1 → α from above. By an argument similar to the
one used to establish (8.13), we find that the region S2 comprises those points (u, v) for
which u(2 + v) > 1 + 2v. The points (un, vn) are all outside S2, so the 2-continued fraction
expansion of α is the same as the regular continued fraction and thus (µn, νn) = (un, vn).
Since D2(u, v) = D2(v, u), we have

δ2(α) = ∆2 max
k∈{0,1}

lim
n→∞

D2(µ2n+k, ν2n+k) = ∆2D2(α, 2α) = 1,

where the last equality uses (3.6) and the fact that ∆2 =
√

3
2

.

9. Values of δF (α) for well approximable numbers

We now prove Theorem 3, which gives the smallest value of δF (α) for F any strongly
symmetric norm and α well approximable.

Lemma 9.1. Suppose that α is well approximable. Then δF (α) ≥ ∆.

Proof. By definition, for any ε > 0 there are arbitrarily large q > 0 so that for some p ∈ Z
|p
q
− α| < ε

q2
.

For such a q let t = q and note that for any r, s ∈ Z with s > 0

Ft(s, r − αs) = F (t−1s, t(sα− r)) = F ( s
q
, q(sα− r))

= F ( s
q
, q(sp

q
− r + σs

q2
)) = F ( s

q
, sp− rq + σs

q
)

for some σ with |σ| ≤ ε. By Lemma A.2 if s ≥ q we have

F ( s
q
, sp− rq + σs

q
) ≥ F (1, 0) = 1,



ON A THEOREM OF DAVENPORT AND SCHMIDT 21

while for 0 < s < q we have F ( s
q
, sp− rq + σs

q
) ≥ F (0, 1− ε), since q - s. By the continuity

of F , for any ε′ > 0 there is an ε > 0 so that F (0, 1 − ε) ≥ 1 − ε′. It follows that
lim supt→∞ Ft(s, r − αs) ≥ 1 and hence that δF (α) ≥ ∆. �

To finish the proof of Theorem 3, we need to find well approximable α for which δF (α) = ∆.

Lemma 9.2. Suppose that the partial quotients bn of the regular continued fraction expansion
of α are eventually strictly increasing with n. Then

δF (α) = ∆.

Proof. If the regular partial quotients bn of α are eventually strictly increasing, then for any
ε > 0 the points (un, vn) all eventually lie within ε of the point (0, 0). So by Lemma 8.4, the
points (un, vn) are outside S for sufficiently large n. Thus

lim
n→∞

(µn, νn) = lim
n→∞

(un, vn) = (0, 0).

Finally, DF (0, 0) = F 2(( 1 0
0 1 )) = 1, therefore δF (α) = ∆. �

10. Values of δp(α) for any irrational α

Proof of Theorem 4. Fix p ∈ [1,∞]. Throughout the proof let

(10.1) α =
ε1

a1+

ε2

a2+

ε3

a3+
. . .

denote the p-continued fraction expansion of α ∈ (0, 1) and define µm and νm as in (3.5). By
Theorem 6 it suffices to show that for every α we have

(10.2) lim sup
m→∞

Dp(µm, νm) ≥

1 if 1 ≤ p ≤ 2,

1
10

(√
5 + 5

)((
1
2
(
√

5− 1)
)p

+ 1
)2/p

if p > 2,

and that there is at least one α for which equality holds. In both cases the number on the
right-hand side of (10.2) is ≤ 1. Since (1− |u|pvp)2 ≥ (1− |u|p)(1− vp), we have

(10.3) Dp(u, v) ≥ 1

1 + uv
.

It follows that Dp(u, v) ≥ 1 for nonpositive u, so if µm ≤ 0 for infinitely many m, the
inequality (10.2) holds trivially. Thus we may assume that the p-continued fraction expansion
of α has µm ≥ 0 for all sufficiently large m.

Lemma 10.1. If 0 ≤ u, v < 1 then

Dp(u, v) ≥ Dp

(
u+ v

2
,
u+ v

2

)
,

with equality only when u = v.

Proof. The inequalities

1− (uv)p ≥ 1−
(
u+ v

2

)2p

and 1 + uv ≤ 1 +
(
u+ v

2

)2

(10.4)

both reduce to (u− v)2 ≥ 0. It remains to show that

(1− up)(1− vp) ≤
(

1−
(
u+ v

2

)p)2

.
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This inequality is implied by the first inequality of (10.4) and

up + vp ≥ 2
(
u+ v

2

)p
,

which follows immediately from Hölder’s inequality. �

It is convenient to define

dp(x) = Dp(x, x) =
(1 + xp)2/p

1 + x2
.

Then
∂

∂x
[dp(x)]p =

2p(1 + xp)(xp − x2)

x(x2 + 1)p+1
.

If 1 ≤ p < 2 then dp(x) is strictly increasing, so by Lemma 10.1 we have

(10.5) min
u,v∈[0,1]

Dp(u, v) = min
x∈[0,1]

dp(x) = dp(0) = 1.

If p = 2 then dp(x) = 1 for all x. In either case, we can use Lemma 9.2 to find examples of
α for which δp(α) = ∆p.

Suppose that p > 2, and let β = 1
2
(
√

5 − 1). The sequence (un, vn) associated to the
regular continued fraction

β =
1

1+

1

1+

1

1+
. . .

approaches (β, β) as n→∞. By Lemma 8.4 it follows that the sequence (µm, νm) associated
to the p-continued fraction of β also converges to (β, β). Thus, for p > 2 we have δp(β) =
∆pDp(β, β), which is the number in (2.7).

It remains to show that for every α with µm ≥ 0 for sufficiently large m, we have
Dp(µm, νm) ≥ Dp(β, β) for infinitely many m. Since p > 2, the function dp(x) is strictly
decreasing, so by Lemma 10.1 it suffices to show that

µm + νm ≤
√

5− 1 = 1.23606 . . .

for infinitely many m.
If there are infinitely many m such that am+1 ≥ 5 then for such m we have µm ≤ 1

5
and

therefore µm + νm ≤ 1.2. So we may suppose that am ≤ 4 for all sufficiently large m. The
following lemma covers the remaining cases.

Lemma 10.2. Let ` ∈ {2, 3, 4} and suppose that εm = 1 and am ≤ ` for sufficiently large
m. If am = ` for infinitely many m, then

(10.6) µm + νm < 1.18

for infinitely many m.

Proof. Suppose that εm = 1 and am ≤ ` for m ≥M . Recall that increasing (resp. decreasing)
the partial quotients of a continued fraction in even (resp. odd) indices increases the resulting
number. Thus for any m ≥M + 3 with am+1 = ` we have

µm ≤
1

`+

1

`+

1

1+

1

`+

1

1+

1

`+
· · · ,

νm ≤
1

1+

1

`+ 1
.

The lemma now follows from an easy computation. �
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This completes the proof of Theorem 4. �

We remark that it is sometimes possible to compute the minimum value of δF (α) for other
norms as well. The composition of strongly symmetric norms is, up to scaling, also strongly
symmetric (see Lemma A.3). For instance, the norms F oct1 and F oct2 with regular octagonal
unit balls mentioned in §2 can be given in terms of compositions of the 1-norm and the
sup-norm. Explicitly,

(10.7) F oct1(P ) = F 〈∞〉(Q) and F oct2(P ) = (2−
√

2)F 〈1〉(Q)

where Q = ( 1√
2
F 〈1〉(P ), F 〈∞〉(P )). Some effort involving Mahler’s computation of the critical

determinant of the regular octagon recalled at the end of §4 and Lemma 8.4, leads to the
following results. The minimum of δF (α) for F = F oct1 is 1

8

(
3
√

2 + 2
)
, which is attained

when

α =
√

2− 1 =
1

2+

1

2+

1

2+
. . . .

For F = F oct2 the minimal value is also 1
8

(
3
√

2 + 2
)
, but now this is the value of ∆ and is

attained when α = e−1
e+1

, for instance.

11. The dynamical system

The goal of this section is to prove Theorem 1. We employ the notation of Section 8. Say
that g =

( x y
x′ y′

)
∈ G is reduced with respect to the norm F if g ∈ D and

(11.1)
(
F (P )B

)
∩ L(g) = {0,±P,±P ′},

where B is the open unit ball for F , the overline denotes the closure, and L(g) was defined
in (7.1). Let R be the set of all g that are reduced with respect to F and define Ω ⊂
(−1, 1)× [0, 1] as

(11.2) Ω
def
= Φ(R) ∪ A,

where

A = Φ(R) ∩
(
(−1

2
, 1

2
)× {0}

)
.

We will show that (µn, νn) ∈ Ω for all n ≥ 0.
We want to apply the ergodic theory of S-expansions as developed in [26]. For that we

need to show that Ω defined by (11.2) coincides with the set

ΩS = ([0, 1)× [0, 1] \ (S ∪ TS)) ∪ (M ◦ T )S

defined in Section 5 of [26], where

M(u, v) =
( −u

1 + u
, 1− v

)
, (u, v) ∈ TS.

The following equivalent description of reduced matrices is helpful.

Lemma 11.1. A matrix g ∈ D is reduced if and only if

(11.3) min
(
F (P + P ′), F (P − P ′)

)
> F (P ).
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Proof. Clearly a matrix g satisfying (11.1) also satisfies (11.3). Suppose g ∈ D satisfies
(11.3). We will show that F (aP + bP ′) > F (P ) for all (a, b) ∈ Z2 \ {(0, 0), (0,±1), (±1, 0)}.
If |a| = |b| then

F (aP + bP ′) = |a|F (P ± P ′) > F (P ).

Otherwise, if |a| > |b|, say, then by the reverse triangle inequality

F (aP + bP ′) ≥ |a|F (P )− |b|F (P ′) = (|a| − |b|)F (P ).

This is strictly greater than F (P ) if |a| − |b| ≥ 2. If |a| = |b|+ 1 then

F (aP + bP ′) = F (a(P ± P ′)± P ′) ≥ |a|F (P + P ′)− F (P ′) > (|a| − 1)F (P ).

This completes the proof since |b| ≥ 1 so |a| ≥ 2. �

It follows that the set (−1, 1)× [0, 1] decomposes as Ω t S t S ′ t S ′′, where

S ′ = Φ({g ∈ D : F (P − P ′) ≤ F (P ) and y < 0}),
S ′′ = Φ({g ∈ D : F (P − P ′) ≤ F (P ) and y ≥ 0}) ∪

(
((−1, 1

2
)× {0}) \ A

)
.

See Figure 6 for the case p = 2.

Ω S

S ′

S ′′

−1 − 1
2

0 1
2

1
0

1
2

1

Figure 6. The sets Ω, S, S ′, and S ′′ for p = 2.

Since the critical lattices for F (see §4) are among those for which two basis vectors and
their sum all have equal norm, we will refer to the set

(11.4)
{
g ∈ D; min

(
F (P + P ′), F (P − P ′)

)
= F (P )

}
as the potentially critical matrices. The next lemma describes the boundary of Ω in terms
of the distinguished subset

P = {g ∈ D : F (P ) = F (P + P ′)}
of the potentially critical matrices. The following shows that P is a subset of the potentially
critical matrices.

Lemma 11.2. If F (P ) = F (P ′) = F (P + P ′) then F (P − P ′) ≥ F (P ).

Proof. Without loss of generality assume that P , P ′, and P + P ′ all lie on the boundary of
B. Let L,L′ denote the parallel lines

L = γP, L′ = γP − P ′,
where γ ∈ R. Note that −P, 0, P are points in B on L, while −P ′ − P and −P ′ are points
on the boundary of B on L′. We argue by contradiction. Suppose that F (P − P ′) < F (P )
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so that Q = P − P ′ is in the interior of B. Then we can move Q slightly so that it remains
inside B but the midpoint of the line segment between −P − P ′ and Q is outside B. This
contradicts the convexity of B. �

Lemma 11.3. The part of the boundary of Ω that lies in (−1, 1)× [0, 1] is ∂ ∪ ∂′ ∪ ∂′′ ∪A,
where

∂ = Φ(P),

∂′ =
{

Φ
((

x+x′ y+y′

x y

))
; g ∈ P

}
,

∂′′ =
{

Φ
((

x+x′ y+y′

x′ y′

))
; g ∈ P

}
.

Proof. The boundary of Ω is A ∪ C, where

C = Φ
({
g ∈ D; x′ > 0 and min

(
F (P + P ′), F (P − P ′)

)
= F (P )

})
.

Lemma 11.2 implies that ∂ is the part of C adjacent to S. The remaining set, C \ ∂, is the
image of the set of g′ ∈ D satisfying

F (Q) = F (Q−Q′) < F (Q+Q′), where g′ =
(
Q
Q′

)
.

If the y-coordinate of Q is negative, then (P, P ′) = (Q′, Q−Q′) gives an element of P , and

Φ(g′) = Φ
(
x+x′ y+y′

x y

)
.

Otherwise (P, P ′) = (Q−Q′, Q′) yields an element of P ; in this case

Φ(g′) = Φ
(
x+x′ y+y′

x′ y′

)
.

This completes the proof. �

Figure 7. The functions Dp(u, v) over Ωp for p = 1, 2,∞.

Lemma 11.4. The function D(u, v) is continuous on Ω\{(1, 1)} and assumes its maximum
value 1/∆ on that set.
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Proof. The continuity statement is clear from the definition of D(u, v).
For (u, v) ∈ Ω\{(1, 1)}, let the points P = (x, y) and P ′ = (x′, y′) be such that Φ−1(u, v) =( x y
x′ y′

)
. Then

D(u, v) = F
(
Φ−1(u, v)

)2
= F (P )2 = (detL)−1 ≤ 1

∆
,

where L is the lattice generated by the unit vectors 1
F (P )

P and 1
F (P ′)

P ′. Say that a point

(u, v) in Ω \ {(1, 1)} is a critical point if D(u, v) = 1/∆ so that (u, v) maximizes D(u, v).
Then (u, v) is a critical point if and only if L is a critical lattice that does not correspond
to (1, 1), so by Lemma 11.3 all critical points lie on the boundary of Ω. If critical points in
Ω \ {(1, 1)} exist, then we are done.

Suppose that a critical lattice L corresponds to the point (1, 1) in the uv-plane. Then
there exists a t such that

Ft(P ) = Ft(P
′) = Ft(P + P ′), where P = 1√

2
(1,−1), P ′ = 1√

2
(1, 1).

Then the matrix g = 1√
2

(
2t−1 0
t−1 −t

)
∈ R is critical and satisfies Φ(g) = (0, 1

2
). So if (1, 1)

corresponds to a critical lattice L, then the point (0, 1
2
) ∈ Ω is a critical point. �

That Ω = ΩS follows from the next lemma.

Lemma 11.5. We have

S ′ = TS,
S ′′ = ((−1, 0]× [0, 1]) \MS ′.

Proof. We begin by showing that S ′ = TS. For (u, v) ∈ S we have 1
2
< u < 1 or (u, v) =

(1
2
, 0), so (2.9) simplifies to T (u, v) =

(
1−u
u
, 1
v+1

)
and T (1

2
, 0) = (0, 1

2
). We show that the

boundary of S maps to the boundary of S ′ under T ; the lemma then follows by the continuity
of T on S \ {(1

2
, 0)}. Since T ([1

2
, 1] × {0}) = ([0, 1]× {1}) ∪ {(0, 1

2
)} and T ({1} × [0, 1)) =

{0}×(1
2
, 1], it suffices to show that T (∂) = ∂′. Suppose that (u, v) ∈ ∂ and that Φ(g) = (u, v).

Then

T ◦ Φ
(( x y

x′ y′
))

=
(

1−u
u
, 1
v+1

)
=
(
−(y+y′)

y
, x
x′+x

)
= Φ

((
x+x′ y+y′
x y

))
.

Since this is clearly invertible, we conclude that T (∂) = ∂′.
We prove S ′′ = ((−1, 0]× [0, 1]) \MS ′ similarly. We have M([0, 1]× {1}) = [−1

2
, 0]× {0}

and M({0} × [1
2
, 1]) = {0} × [0, 1

2
] for the straight line segments, so it suffices to show that

M(∂′) = ∂′′. We will show that (M ◦ T )∂ = ∂′′, using that

(M ◦ T )(u, v) =
(
u− 1, v

v+1

)
.

Suppose that (u, v) ∈ ∂ and that Φ(g) = (u, v). Then

M ◦ T ◦ Φ
(( x y

x′ y′
))

=
(
u− 1, v

v+1

)
=
(
− (y+y′)

y′
, x′

x+x′

)
= Φ

((
x+x′ y+y′

x′ y′

))
,

which completes the proof. �

Let ωS = (1 − ω(S))−1ω, where ω was defined in (2.10), and the scaling makes ωS a
probability measure on Ω.

Lemma 11.6. Define S and Ω by (8.10) and (11.2). Then for almost all irrational α the
sequence (µm, νm) is uniformly distributed over Ω with respect to the measure ωS .
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Proof. Since Ω = ΩS , Lemma 11.6 follows from Theorem 5.4.23 of [9] (see also [26]) and
Theorem 7. �

Proof of Theorem 1. By Lemma 11.4, the function ∆D(u, v) assumes the value 1 at some
point in Ω \ {(1, 1)}. By Lemma 7.2 it follows that δF (α) = 1 if and only if the sequence
(µn, νn) is infinitely often arbitrarily close to such a critical point. It follows from Lemma 11.6
that δF (α) = 1 for almost all α.

To finish the proof it suffices to show that there are uncountably many α for which
Minkowski’s Approximation Theorem can be improved. Since we already know Theorem 1
is true in the case of the sup-norm, suppose that F is not the sup-norm. Then the lattice
generated by (1, 0) and (0, 1) is not potentially critical, so we have ∆D(0, 0) < 1. Thus any
α for which (µn, νn) converges to (0, 0) has δF (α) < 1, and there are uncountably many such
α (for example, the set of α with strictly increasing partial quotients). �

12. Concluding remarks

In addition to the proof of Theorem 1, there are other applications of the metric theory
of S-expansions and ergodic theory to quantities related to δp(α). For instance we may treat
the distribution of the values of

δp(α;m)
def
= ∆pDp(µm, νm)

from Theorem 6. For almost all α the distribution function

lim
M→∞

1
M

#{1 ≤ m ≤M ; δp(α;m) ≤ z}

exists for all z ∈ [0, 1]. For p = 1, 2,∞ it can be evaluated explicitly, as was done for p =∞
in Theorem 4 of [5]. In particular, for almost all α

lim
M→∞

1

M

∑
1≤m≤M

δp(α;m) = cp

exists where

c1 = 1
2
(3− log 4) = 0.806853 . . . , c2 = 1

log 3
= 0.910239 . . . , c∞ = 1+log 4

log 16
= 0.860674 . . . .

It is well known that a close connection exists between dynamical systems associated to
various kinds of continued fractions and the geodesic flow on SL(2,Z)\SL(2,R). See [14] and
a discussion in [2] for more on this connection and for references to the literature. Roughly
speaking, the natural extension of a continued fraction transformation can be identified with
a cross section for the geodesic flow. For example, the transformation T from (2.9) of the
regular continued fraction’s natural extension gives a planar representation of the first return
map and ω corresponds to the Liouville measure. Geodesics can be identified with (proper
classes of) indefinite binary quadratic forms and a cross section with a reduction domain.
The trajectories we study in this paper correspond to cuspidal geodesics or, equivalently,
forms with one rational root.

Of course there is great interest in similar Diophantine problems about general indefinite
forms and hence general geodesic trajectories. A prime example is the Markov problem
[32] about the minima of such forms and their possible values; these values determine the
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Markov spectrum (see [3] and its references). The Lagrange spectrum is similarly defined
using cuspidal trajectories; it is determined by the values of

λ(α) = lim inf
t≥1

ρt(α), where ρt(α) = t min
p∈Z

1≤q≤t

|p− αq| for t ≥ 1.

The Dirichlet spectrum is determined by the values of δ(α) = lim supt≥1 ρt(α); in [23] it is

defined to be the set of values of δ(α)
1−δ(α)

. There is a spectrum that is related to the Dirichlet

spectrum in the same way that the Markov spectrum is related to the Lagrange spectrum.
Like the Markov problem, its study involves general geodesic trajectories and their associated
continued fractions. Again speaking roughly, we replace lim sup over cuspidal geodesics in the
definition of δ(α) by the supremum over all geodesics. Mordell [38] introduced this problem
(actually an n-dimensional version), which he posed as a kind of converse to Minkowski’s
linear forms theorem. The case of two dimensions was treated in more detail by Szekeres
[56], Oppenheim [43] and Burger [6]. This problem in higher dimensions has also attracted
a lot of attention (see e.g. [46, 47, 55]).

It should be apparent that a general spectrum of this type can be defined for any strongly
symmetric norm F , not just the sup-norm, and that an associated reduction theory for
indefinite binary quadratic forms can be developed that uses F -continued fractions. For the
2-norm the problem was introduced by Oppenheim [44] and the relevant reduction theory
was already found by Hermite. Minkowski developed the reduction theory for the 1-norm
with Hermite’s theory in mind and certainly knew that a version could be based on the
p-norm for a general p [36, footnote on p. 166]. However, outside of the sup-norm, only
isolated aspects of the spectrum and reduction theory have been considered and only for the
p-norm for p = 1, 2.

Appendix A. Lemmas about norms

Here we state and prove a number of technical lemmas that are referred to in the body of
the paper. We begin with a lemma about decreasing concave down functions that we will
use later in the appendix.

Lemma A.1. Fix s > 0 and t > 1 and let S ⊆ R. Suppose that f : S → R is nonnegative,
concave down, and strictly decreasing. Then the function g(x) = stf(tx/s) − f(x) has at
most one zero.

Proof. If t ≤ s then since f is decreasing we have g(x) ≥ (t2 − 1)f(x) ≥ 0, with equality if
and only if t = s and x = supS ∈ S. So we may assume that t > s.

Let a, b ∈ S and pick any θ ∈ [0, 1] such that θa+ (1− θ)b ∈ S. Since f is concave down
we have

f(θa+ (1− θ)b) ≥ θf(a) + (1− θ)f(b).

Suppose that c, d ∈ S and that a < b < c < d. Taking θ = c−b
c−a we find that

f(b) ≥
[
c− b
c− a

]
f(a) +

[
b− a
c− a

]
f(c),

from which it follows that
f(b)− f(a)

b− a
≥ f(c)− f(a)

c− a
.
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Similarly, we have

(A.1)
f(c)− f(a)

c− a
≥ f(d)− f(c)

d− c
.

The last two inequalities together imply that

(A.2)
f(b)− f(a)

b− a
≥ f(d)− f(c)

d− c
.

By a similar argument we also have

(A.3)
f(c)− f(a)

c− a
≥ f(d)− f(b)

d− b
.

Suppose that there exist x1 < x2 such that g(x1) = g(x2), i.e.

(A.4) st
[
f(tx2/s)− f(tx1/s)

]
= f(x2)− f(x1).

There are three cases, depending on the ordering of x2 and tx1/s. In each case we will prove
the inequality

(A.5) st

[
f(tx2/s)− f(tx1/s)

x2 − x1

]
=
f(x2)− f(x1)

x2 − x1

≥ f(tx2/s)− f(tx1/s)

tx2/s− tx1/s
,

which implies that t2 ≤ 1 because f is strictly decreasing. This is a contradiction.

Case 1: If x1 < x2 < tx1/s < tx2/s then (A.5) follows from (A.4) and (A.2).

Case 2: If x1 < tx1/s < x2 < tx2/s, we use (A.3) instead of (A.2).

Case 3: Lastly, if x1 < x2 = tx1/s < tx2/s then we use (A.1). �

In the remainder of the appendix F is a norm on R2 with unit ball B and P = (x, y), P ′ =
(x′, y′) ∈ R2. For t > 0 we define as above Ft(x, y) = F (t−1x, ty). The following lemmas give
various properties of norms that satisfy the first condition (2.4) of strong symmetry. Note
that if F satisfies (2.4) then so does Ft for any t > 0. The first result is crucial and is used
repeatedly in this paper.

Lemma A.2. Suppose that F satisfies (2.4). If |x′| ≤ |x| and |y′| ≤ |y| then we have that

F (P ′) ≤ F (P ).

Proof. Observe that if F (P ) = s then F (±x,±y) = s hence F (x′, y′) ≤ s by convexity. �

Lemma A.3. If F,G,H satisfy (2.4) then so does K defined by

K(P ) = H(F (P ), G(P )).

Proof. This follows easily using Lemma A.2. �

Lemma A.4. Suppose that F satisfies (2.4). The following properties hold.

(i) If F (P ′) ≥ F (P ) with |x| 6= |x′| and |y′| < |y| then for some unique t ≥ 1 we have

Ft(P
′) = Ft(P ).

(ii) If F (P ′) ≥ F (P ) with |y| 6= |y′| and |x′| < |x| then for some unique t ≤ 1 we have

Ft(P
′) = Ft(P ).
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Proof. We only prove (i) as (ii) is a consequence of (i) applied to the norm G(x, y) = F (y, x).
Existence: If F (P ′) = F (P ) take t = 1. Otherwise for any P ∈ R2 define the continuous
function fP : [1,∞)→ R+ by fP (t) = t−1Ft(P ). Now by Lemma A.2

fP (t) = F (t−2x, y) ≥ F (0, y) = |y|F (0, 1).

On the other hand, fP ′(t) = F (t−2x′, y′) → F (0, y′) = |y′|F (0, 1) < |y|F (0, 1) as t → ∞.
Because fP (1) < fP ′(1) the existence of desired t follows by the intermediate value theorem.

Uniqueness: Suppose that for t2 > t1 ≥ 1 we have

Ft1(P ) = Ft1(P
′) = s1 and Ft2(P ) = Ft2(P

′) = s2.

By (2.4) we may assume that P and P ′ both lie in the first quadrant. Letting Q =
(t−1

2 x/s2, t2y/s2) and Q′ = (t−1
2 x′/s2, t2y

′/s2) we find that

F1(Q) = F1(Q′) = 1 and Ft(sQ) = Ft(sQ
′) = 1, where t = t1/t2 < 1 and s = s2/s1.

We first assume that the boundary of B has no horizontal or vertical segments. Then
the portion of the graph of the boundary of B in the first quadrant defines a nonnegative
function f(X) which is strictly decreasing and concave down. Furthermore, the points Q
and Q′ both lie on the curves Y = f(X) and tY/s = f(t−1X/s). It follows that the function
g(X) = st−1f(t−1X/s)− f(X) has at least two zeros which contradicts Lemma A.1.

If the boundary of B contains a horizontal segment then the points Q,Q′ cannot both lie
on that segment because y 6= y′. Similarly, the points Q,Q′ cannot both lie on a vertical
segment since x 6= x′. Any horizontal segment must be of the form [0, a] × {d} and any
vertical segment must be of the form {b} × [0, c]. The portion of the graph of the boundary
of B ∩ ([a, b]× [c, d]) defines a nonnegative function f1(X) which is decreasing and concave
down. There are several cases to consider. If neither Q nor Q′ lies on a horizontal or vertical
segment, we can apply the argument in the previous paragraph to the function f1(X) on the
interval [a, b]. If, say, Q = (u, v) lies on the horizontal segment and Q′ is not on the vertical
segment, instead use the function

f2(X) =

{
v if X = u ≤ a,

f1(X) if X ∈ (a, b],

which is also strictly decreasing and concave down (but not necessarily continuous). If
Q′ = (u′, v′) lies on the vertical segment and Q is not on the horizontal segment, use the
function

f3(X) =

{
f1(X) if X ∈ [a, b),

v′ if X = u′ = b.

If Q lies on the horizontal segment and Q′ lies on the vertical segment, a suitable function
f4 can be defined similarly. �

The following result is trivial in case the norm is strictly convex.

Lemma A.5. Suppose that that F satisfies (2.4), that we have F (P ) = F (P ′) and that
0 < x′ < x and 0 < |y| < y′. Then for any d ≥ 1

(A.6) F (P − dP ′) < F (P ) + dF (P ′).
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Proof. To see this note first that in order for equality to hold in (A.6) we must have that

F (P ) + dF (P ′) = F (P − P ′ − (d− 1)P ′) ≤ F (P − P ′) + (d− 1)F (P ′),

which implies that

F (P − P ′) ≥ F (P ) + F (P ′) so that F (P − P ′) = F (P ) + F (P ′)

hence
F (1

2
(P − P ′)) = 1

2
(F (P ) + F (P ′)) = F (P ) = F (−P ′).

That this is impossible follows by a simple convexity argument using the locations of

P = (x, y) and − P ′ = (−x′,−y′),
together with (2.4). �

Lemma A.6. Suppose that F satisfies (2.4). For σ, σ′ ∈ [0, 1] with σ+σ′ = 1 and 1 ≤ t1 ≤ t2
we have

Fσt1+σ′t2(P ) ≤ σFt1(P ) + σ′Ft2(P ).

Proof. Using the fact that the function t 7→ t−1 is concave up and applying Lemma A.2 we
get that

Fσt1+σ′t2(x, y) ≤ F
(
x( σ

t1
+ σ′

t2
), y(σt1 + σ′t2)

)
.

By the defining properties of a norm we finish the proof. �
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[20] Humbert, G., Sur la méthode d’approximation d’Hermite. J Math Pures Appl. (7th Ser) 2: (1916)
70–103.

[21] Humbert, G., Sur les fractiones continues ordinaires et les formes quadatique binaires indéfinies. J Math
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[35] Minkowski, H., Dichteste gitterförmige Lagerung kongruenter Körper, Nachr. K. Ges. Wiss. Göttingen,
(1904) 311-355, in Gesammelte Abhandlungen. Vol. II, Teubner, Berlin, (1911) pp. 3–42.

[36] Minkowski, H., Geometrie der Zahlen, Teubner (1910)
[37] Minkowski, H., Diophantische Approximationen, 2d ed., Teubner, Leipzig, 1927, pp. 51–58.
[38] Mordell, L. J., Note on an arithmetical problem on linear forms. London Mathematical Society 12 (1937):

34–6.
[39] Mordell, L. J., Lattice points in the region |Ax4 +By4| ≤ 1. J. London Math. Soc. 16, (1941) 152–156.
[40] Moshchevitin, N., On Minkowski diagonal continued fraction. Analytic and probabilistic methods in

number theory, 197–206, TEV, Vilnius, (2012).



ON A THEOREM OF DAVENPORT AND SCHMIDT 33

[41] Nakada, H., Metrical theory for a class of continued fraction transformations and their natural exten-
sions. Tokyo J. Math. 4, (1981), 399–426.

[42] Nakada, H.; Ito, S.; Tanaka, S., On the invariant measure for the transformations associated with some
real continued-fractions. Keio Engrg. Rep. 30 (1977), no. 13, 159–175.

[43] Oppenheim, A., The continued fractions associated with chains of quadratic forms. Proc. London Math.
Soc. (2) 44 (1938), no. 5, 323–335.

[44] Oppenheim, A., Two lattice-point problems. Quart. J. Math., Oxford Ser. 18, (1947) 17–24.
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