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Introduction

An important property of certain L-functions is the order to which they
vanish at their critical points. Let %y denote the set of all holomorphic
(cuspidal) newforms of weight 2 for I'o(N) with trivial character. For f e #y
let L(s)=3,>1a,(n)n"* (where a,(1) = 1) be the associated automorphic
L-function. For any primitive Dirichlet character y mod g with (¢, N) = 1 the
twisted L-function L (s, x) = ¥, » 1 X(n)a,(n)n"* is entire and satisfies a func-
tional equation for which s = 1 is in the center of the critical strip. The first
main result of this paper gives the existence of many f e %y with non-
vanishing L(1, ) for x fixed and N a large prime.

Theorem 1. Suppose that x is a fixed primitive Dirichlet character modulo q.
Then there is a positive absolute constant C and a constant C, depending only on
q such that for prime N > C, there are at least CNlog™2 N forms f € Fy for
which L(s, x) + 0.

It is well-known that for N > 3 a prime the exact number of forms in Fy is
given by # %y = 12(N + a(N)), where «(N) = — 13, —5,— 7, or 1 accord-
ing to whether N = 1, 5,7, or 11 (mod 12).

Theorem 1 may be compared with known results giving the non-vanishing
of various classes of twists of a fixed L-function (see for instance [12, 13]). The
general method used in the proof of Theorem 1, which is based on a compari-
son of mean values, comes from [8] (see also [9] for a different application of
this technique). Higher orders of vanishing of twists are investigated in [5] by
a different method. Mazur has kindly pointed out to me that by arithmetic
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means one can show that there are at least clogp forms in #y for which
L /(1) + O, where p is the largest prime divisor of the numerator of (N — 1)/12
(see [10]1). Hence for principal y we may state the following corollary of
Theorem 1.

Corollary 1. There is a positive absolute constant C such that there are at least
CNlog™* N forms f € Fy for which L(1) + 0, provided N =11 or N > 13 is
prime.

This corollary has an interesting application to the basis problem for
weight 3/2 in view of results of Gross and Waldspurger {see [6]) connecting
the representability of a cusp form by ternary theta series with the non-
vanishing of an associated L-function.! To describe this, let M¥ denote
Kohnen’s space of those modular forms of weight 3/2 for I'4(4N) (with trivial
character) whose nth Fourier coefficient vanishes unless —n = 0,1 (mod4)
and (F#) # 1. Also, let ®y denote the subspace of M¥ spanned by ternary
theta series (see [6] for a detailed description of these.). Now it is known that
dim M¥ = N/24 + O(N'?log N) for N prime. However, in general @y + M{,
as the example N = 389 where dim M = 22 while dim @y = 21 shows, this
being a reflection of the nontrivial vanishing of an L-function (see {6, p.181.1}.
On the other hand, Corollary 1 together with [6,Cor.13.6] imply that Oy is
not too small.

Corollary 2. There is a positive absolute constant C such that the dimension of
®y is at least CNlog™ 2 N for N = 11 or prime N > 13.

Subject to standard conjectures, Corollary 1 also gives information about
the Mordell-Weil group of certain Abelian varieties. For example, if 4 is the
factor of the Jacobian of Xo(N) determined by f € #y then L,(1) is conjec-
tured not to vanish if and only if the rank of the Mordell-Weil group of 4 over
Q is zero. Thus Corollary 1 gives a lower bound for the frequency of this
occurrence for a prime level N. Other similar conditional implications of
Theorem 1 may also be formulated.

The second main result of this paper is concerned with the order of
vanishing at s = 1 of the product

Py(s)=Lg(s,x1) Ly(5,12)

of two such L-functions when y, and yx, are both real and distinct. The
functional equation implies that ords= P,(s) = 0 or 1 according to whether
x1x2{ = N) =1 or — 1. Here it will be shown that for x, and y, fixed and
N a large prime many P,(s) achieve this lower bound.

The paper {1] contains a different proof of this criterion which also gives the theta serics
representation explicitly.
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Theorem 2. Suppose that y; (mod q,) and y, (mod q,) are fixed distinct primitive
real Dirichlet characters. Then there are positive constants C, and C, depending
only on q,q, such that there are at least C,Nlog™'° N forms f € #y with

0 if ;a2 =N)=1

0rds=le(s)={1 leIXZ(_N)= _1,

provided N > C, is prime.

All constants in these results are effective. With more work it may be
possible to improve slightly the lower bounds in Theorems 1 and 2, but as the
presence of a factor log™ ! N from Proposition 4 below seems unavoidable, it
appears hopeless to use the methods here to remove the log N factors com-
pletely and achieve a positive proportion.

Critical values on average

For the proof of Theorems 1 and 2 different averages of critical values are
compared, the averaging being done over Fy, the set of all holomorphic
newforms of weight 2 for Io(N). For fe%y with Nz1 let
() = froamna | f(2)1? dx dy be the Petersson norm and set

1
Wy=———.
T an(ff)
If f(z) = Y.z1as(n)e(nz) is the Fourier expansion at oo then a,(n) are

known to generate a totally real number field and to be algebraic integers
which satisfy the multiplicativity relation for positive integers m and n

ajmyas(n)= Y da(mn/d®) )
@my

(1)

and the Ramanujan bound
lag(n)| < d(n)n'’2, 3

where d(n) is the divisor function. The numbers g f(n)/\/; are also approxim-
ately orthogonal in the following sense.

Lemma 1. For m and n positive integers and N prime we have the inequality

Y w af(m)a_f(n_)_am‘" < 539 N7 32(m,n)'2  /mn.

s m

Proof. We employ the absolutely convergent “Petersson formula”

4
T o ag(m)ay(n) —6pa—21 Y c"S(m,n;c)Jl( v mn) @
feFn ﬁ ﬁ ¢ = 0{modN) 4
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where S(m,n;c¢) = Y4 moac €(24E2%) is the Kloosterman sum and J,(z) is the

a,c)=1
J-Bessel function, wh(lch follows from [2, p. 2497 together with the fact that for
N prime the newforms of weight 2 form an orthogonal basis for the space of all
cusp forms. The stated remainder estimate follows easily from Weil’s bound

|S(m,n;c)| < (m,n,c)"?d(c)c'/? (5
and the standard bound for z = 0
jJ1(2)) £ 2/2 6

applied in (4). [

Let y be a primitive Dirichlet character modulo ¢ with (g, N) = 1. The
L-function L (s, x) is known to be entire and to satisfy the functional equation

(a/N/2nfT()Ly(s,x) = e(a/N/2m2 T (2 = $)L,(2 =5, 7)  (7)

where & = &,x(N)t(x)*q~" with &; = + 1 depending only on f and where
1(y) is the Gauss sum, see [14]. This gives rise to the following standard
representation of L {1,) as a rapidly convergent series {see [12,p. 411.7).

Lemma 2. Forany x > 0let A(x) = Yo x(n)ay(n)n~"e™ 2™ Then we have
L,(1,x) = A(x) + ¢A(Ng’*/x).

When combined with Lemma 1, Lemma 2 yields the following asymptotic
formula.

Proposition 1. Let x be a fixed primitive character modulo q. Then we have

Y w;LAlLyx)=1+0(N""logN)
JeFy

for N prime, the implied constant depending only on q.

Proof. Choosing x = ¢> Nlog N in Lemma 2 gives
Lyl =Y x(nay(nyn='e =NV + G(N~°)

nz1

and applying Lemma 1 with m = 1 easily yields the result. []

It may be worth remarking that the apparently inefficient choice of
x = g* Nlog N in Lemma 2 (the smaller choice x = qﬁ equalizes the two
terms there) is made above to avoid the variation of ¢, as fruns over #y. Since
the sign in the functional equation for P,(s) does not so vary we are still able
to obtain corresponding results for P (1) and P’(1) even though these require
approximations which are, in effect, twice as long.

Turning to these let, for x > 0,

go(x) = 4n/x K (4n/x) ®)
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and

g1(x) = 2Ko(4n/%), )

where K, is the K-Bessel function. For any primitive characters y; (mod g,)
and y, (modq;) let Py(s) = Ly(s, x1)Ls(s,x2) = Yr>1bs(£)¢7° so that

bi¢)= 3 x:1(m)xa(n)ag(mya,(n). (10)

mn=/¢,

Define the sums for x >0 and i =0,1

Bi{x)= Y, b(¢)¢™ " gil¢/x). (11

rz1

These are absolutely convergent since from (3) and (10)
by(£) < £127° (12)

while we also have the standard estimates

1 for x <1
= 1
go(x) < {x”“e"“ﬁ for x> 1 3
and
log(2/x)  for x=1
14
gi(x) < {x‘”“e*“‘/; for x > 1. (19

Lemma 3. Let f € %y for N = 1 and suppose that y and y, are primitive with
{q1q92,N) = 1. For any x > 0 we have

Py(1) = Bo(x) + £Bo((Nq1 q2)*/x)
while if P (1) =0 then for any x > 0 we have

Py(1) = By(x) — éB1((Nq142)*/x)
where

&= 112Nt () t(x2))* (d1q2) ™.

Proof. We have the integral representations for i = 0,1

1
g(x)==— | Q@n)"=I(s)I(s—i+1)x ds. (15)
2mi Re(s)=3/4
To prove the first statement in Lemma 3, consider that by (15) and (i1}

B, (x) =—1—, [ x*Qnr)"2-T(s+1)*Py(s+ 1)s™'ds
2mi 30y



170 W. Duke

and this is

~

=Pt | ((Nqug2l2/0) Q) [(— s+ 12 Pp(— 5+ s~ ds
2ni (3

upon moving the contour and using the functional equation for P,(s) which
follows from (7). Changing variables s+ — s yields the first statement.
Similarly,

Bi(x)=x— [ x*(2m) I (s+ 1> Ps(s + 1)s~ ' ds
2ni (3/4)

which, if P,(1) =0, is
= P;(1) + 8B{((Nq14,)*/x),

giving the second statement. [J
We come now to the main result of this section.

Proposition 2. Let y, (modq,) and x, (mod q,) be primitive Dirichlet charac-
ters such that either x, = ¥, or x, and y, are real and distinct. In the first case
we have

Y w,P(1)=[]Q—p ")ogN +¢; + O(N~*?logN)
JeFu rid
for N prime with (q,, N) = 1, where ¢ and the implied constant depend only on
q4. Otherwise
Y, @sPs(1)=2L(1,7172) + O(N~'?logN)

JeFn
for N prime with y;x2( — N) = 1 while
Y @y Py(1)=2L(1,2:1x2)10g N + ¢, + O(N~"*log N)
feFy
for N prime with x,32( — N) = — 1, where c; and the implied constants depend
only on q.q,.

Proof. Under our assumptions B; = B; and xx2(N)(t(x1)t(x2))*(9192) ™"
= y1x2{ — N). Thus by Lemma 3 with x = Nq,4, and (11) we have for prime
N with x10,(— N) =1

> waf(l)*szf Y by(£)¢ " go(I/Ng142)

feF, tz1

and by (10) this is

osmastr)

=12 Z X1(m)X2(")go(m"/N(11‘Iz)Z Wp——— n

mnzx1
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By Lemma 1 we get

Y 0;PA(1)=2 3 xix2(n)go(n*/Nqig2)n™' + R, (16)
S eFy nz1
where
R« N732 ( mn )m,n 172, 17
m,nzglgo Nqiq; ( ) {an

Now the first term on the right hand side of (16) is evaluated using (15) as
1 “2s s
— § L2s+ Lyux2}2r) B (s) (s + 1)(Ngyg,) ds.
T aja

In case x; = ¥, this 15

[T —p~")logN +¢; + O(N~3). (18)

rla

Otherwise it is
2L(1,x1%2) + O(N™'7?) (19)

for N prime with y;7,( — N) = 1. The remainder term R in (16) is estimated by
the following standard lemma in case i = 0.

Lemma 4. For i = 0,1 we have

Y (m,n)"2 g(mn/x) ~ K;xlog x

mnz1

as x — oo for some positive constant x;.
Proof. This follows easily from the identity

—o_ L2s = 172){(s)?
mn)'?(mn)" ¢ = —o——
MEgl( )!/% (mn) )
and (15). O
Thus R <« N~ "2log N by (17) and Lemma 4 so by (16), {(18) and (19) we
deduce the first two asymptotic formulas in Proposition 2. The last one is

proved similarly using the second part of Lemma 3 and Lemma 4 with

i=1. O

Non-vanishing critical values

The object of this section is to establish the next Proposition.
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Proposition 3. Let y be a primitive Dirichlet character modulo q. Then there is
a constant C, depending only on q such that for prime N > C,

;> log™'N,
feFyL, (1,00 %0
the implied constant being absolute. Let x, and y, be distinct real primitive
Dirichlet characters modulo q, and q,, respectively. Then, for i =0 or 1,
w;>log™°N
fe.?’N:P‘}*(l)>0

for N a sufficiently large prime with y,1x,( — N) = ( — 1), the implied constants
depending only on q,q,.

Proof. By Cauchy’s inequality we have

é( > wf)(wa|Lf(1,x)|2). (20)

J:L(1,0)+0 JeFn

Z waf(l’X)

feFy

Thus the first statement of Proposition 3 follows from Proposition 1 and the
first statement of Proposition 2 since here P,(1) = {L,(1,x)|*
For the second statement we need the next Lemma.

Lemma 5. Under the assumptions of Proposition 2 we have the estimates

Y o Pi(1)* <1log’ N

feF

for N prime with y1y2( — N) =1 and
Y w;| Py(1)* <log'' N

SeFy
for N prime with x,x:( — N) = — 1. The implied constants depend only on
q9192-

Proof. By Lemma 3, (12) and (13) we have for y;x,( — N) = 1 that

P(1)=2 Y bi(£)¢™ "' go(¢/Ng1qz) + O(N™"?) @1
rsX
where X = Ng,q;log? N. By using (2), (10) and (13) we can write (21) as
Py(l)= Y chap(f)+ O(N™12) 22)
rsX

where ¢, € d(£)¢ ' log N. We now employ the following mean value result,
which is an immediate consequence of [3, Theorem 1].

Lemma 6. For N prime and any complex numbers c, we have

Yoo Y aaid)

feFy IsX

: =1+ ON"'XlogX)) ¥ Hel?

=X

with an absolute implied constant.
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Thus by (22), Lemma 6 and the bound ¥, < x d*(¢)¢ " < log* N we get the
first estimate of Lemma 5. The second one is similar using (14) in place of
(13, O

The second part of Proposition 3 now follows as did the first from
Cauchy’s inequality, Lemma 5 and the last two statements of Proposition
2 together with the nonvanishing of L(1,x,3,) when x, + x,. O

The function @,

In order to derive Theorems 1 and 2 it is necessary to estimate w defined in (1)
from above. Now w/ is approximately a density function on #y asis shown by
the asymptotic formula from Lemma 1 when m=n=1:

Y o;=1+0(N7>?)
feFy

for N prime. In fact, @, is not far from being uniform. We apply a recent
important result from [7,4] which, together with Proposition 3, proves
Theorems 1 and 2.

Proposition 4. For N prime we have the estimate
w; <N '.JogN

with an absolute implied constant.

Proof. This follows the extension of the Main Theorem of [4] to holomorphic
cusp forms, together with the fact that for prime N no f € #y is a lift from
GL(1), see [4, Remark and paragraph following the Main Theorem]. [J
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