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Introduction 

An important  property of certain L-functions is the order to which they 
vanish at their critical points. Let ~N denote the set of all holomorphic 
(cuspidal) newforms of weight 2 for Fo(N) with trivial character. For  f ~ ~-N 
let L:(s)  = Z ,  ~_~a:(n)n -s (where a : ( 1 ) =  1) be the associated automorphic 
L-function. For  any primitive Dirichlet character X mod q with (q, N) = 1 the 
twisted L-function L:(s,  X) = ~ ,  ~_ 1 x(n) a:(n) n -S is entire and satisfies a func- 
tional equation for which s = 1 is in the center of the critical strip. The first 
main result of this paper gives the existence of many f E ~rN with non- 
vanishing L: (  1, X) for X fixed and N a large prime. 

Theorem 1. Sut~pose that X is a f ixed primitive Dirichlet character modulo q. 
Then there is a positive absolute constant C and a constant C~ depending only on 
q such that for prime N > Cq there are at least CN log-  2 N forms f ~ ~.~N for 
which L:(s, Z) 4 = O. 

It is well-known that for N > 3 a prime the exact number of forms in ~'n is 
given by # ~ N  = ~ ( N  + c~(N)), where ~(N) = - 13, - 5, - 7, or 1 accord- 
ing to whether N = 1,5,7, or 11 (mod 12). 

Theorem 1 may be compared with known results giving the non-vanishing 
of various classes of twists of a fixed L-function (see for instance [12, 13]). The 
general method used in the proof of Theorem 1, which is based on a compari- 
son of mean values, comes from I-8] (see also [9] for a different application of 
this technique). Higher orders of vanishing of twists are investigated in I-5] by 
a different method. Mazur has kindly pointed out to me that by arithmetic 
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means one can show that there are at least c logp  forms in ~'u for which 
L/(1) 4: 0, where p is the largest prime divisor of the numerator of (N - 1)/12 
(see [10]). Hence for principal Z we may state the following corollary of 
Theorem 1. 

Corollary 1. There is a positive absolute constant C such that there are at least 
CNlog  -2 N forms f ~ ~Nfor  which L:(1) ~ 0, provided N = 11 or N > 13 is 
prime. 

This corollary has an interesting application to the basis problem for 
weight 3/2 in view of results of Gross and Waldspurger (see [6]) connecting 
the representability of a cusp form by ternary theta series with the non- 
vanishing of an associated L-function) To describe this, let M* denote 
Kohnen's space of those modular  forms of weight 3/2 for Fo(4N) (with trivial 
character) whose nth Fourier  coefficient vanishes unless - n = 0,1 (mod 4) 
and (-~) 4: 1. Also, let ON denote the subspace of M* spanned by ternary 
theta series (see I-6] for a detailed description of these.). Now it is known that 
d imM~ = N/24 + O(Nl/21ogN) for N prime. However, in general ON 4: M*, 
as the example N = 389 where dim M~ = 22 while dim ON = 21 shows, this 
being a reflection of the nontrivial vanishing of an L-function (see [6, p.181 .]). 
On the other hand, Corollary 1 together with [6, Cor.13.6] imply that On is 
not too small. 

Corollary 2. There is a positive absolute constant C such that the dimension of 
On is at least CNlog-2  N for N = 11 or prime N > 13. 

Subject to standard conjectures, Corollary 1 also gives information about 
the Mordel l -Weil  group of certain Abelian varieties. For  example, if A is the 
factor of the Jacobian of Xo(N)  determined by f ~ ~ then L: (1)  is conjec- 
tured not to vanish if and only if the rank of the Mordell-Weil  group of A over 
Q is zero. Thus Corollary 1 gives a lower bound for the frequency of this 
occurrence for a prime level N. Other similar conditional implications of 
Theorem 1 may also be formulated. 

The second main result of this paper is concerned with the order of 
vanishing at s = 1 of the product  

V:(s) = Lf(s, Z1) Lf(s, Zz) 

of two such L-functions when X~ and X2 are both real and distinct. The 
functional equation implies that  ord~= t P:(s) >= 0 or 1 according to whether 
ZlZ2( - N) = 1 or --  1. Here it will be shown that for ;O and X2 fixed and 
N a large prime many P:(s) achieve this lower bound. 

~The paper [1] contains a different proof of this criterion which also gives the theta series 
representation explicitly. 
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Theorem 2. Suppose that Z ~ (mod q 1) and Z2 (mod q2) are fixed distinct primitive 
real Dirichlet characters. Then there are positive constants C~ and C2 depending 
only on q lq2 such that there are at least C2N log-10 N forms f ~ ~N with 

{~ if Z1Z2( - -N)=I  
ord~ = 1 Pf(s) = if ZI Z2( - N) -- - 1, 

provided N > C1 is prime. 

All constants in these results are effective. With more work it may be 
possible to improve slightly the lower bounds in Theorems 1 and 2, but as the 
presence of a factor log-  ~ N from Proposition 4 below seems unavoidable, it 
appears hopeless to use the methods here to remove the log N factors com- 
pletely and achieve a positive proportion. 

Critical values on average 

For  the proof of Theorems 1 and 2 different averages of critical values are 
compared, the averaging being done over ~ the set of all holomorphic 
newforms of weight 2 for Fo(N). For  f ~ N  with N > I  let 
( f , f )  = Sro(N)\n If(z) l  2 dx dy be the Petersson norm and set 

1 (1) 
COS = 4 n ( f f )  " 

If f ( z ) =  ~.~las(n)e(nz)  is the Fourier expansion at oo then as(n ) are 
known to generate a totally real number field and to be algebraic integers 
which satisfy the multiplicativity relation for positive integers m and n 

as(re)as(n)= ~, das(mn/d 2) (2) 
all(re,n) 

( d , N )  = 1 

and the Ramanujan bound 

la:(n)l <= d(n)n in, (3) 

where d(n) is the divisor function. The numbers a:(n)/x/~ are also approxim- 
ately orthogonal in the following sense. 

Lemma 1. For m and n positive integers and N prime we have the inequality 

I as(m)as(n) < 539N-3/2(m,n)X/2~c-~. 

Proof. We employ the absolutely convergent "Petersson formula" 

COs as(m)ay(n) ( ~ _ _ _ n )  
s~-~ x /~  V/~ = 6.,.. -- 2n c_= o,moan)E c- iS(  m'n;c)Jx (4) 
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where S(m, n; c) = ~_~ mode e(ma+~ "a) is the Kloosterman sum and 31(z) is the 
(a,c)= 1 

J-Bessel function, which follows from [2, p. 249] together with the fact that for 
N prime the newforms of weight 2 form an orthogonal basis for the space of all 
cusp forms. The stated remainder estimate follows easily from Weil's bound 

IS(m,n; c)l < (m,n,c)l/2 d(c)c  1/2 (5) 

and the standard bound for z > 0 

[Jl(z)l  < z/2 (6) 

applied in (4). []  

Let Z be a primitive Dirichlet character modulo q with (q, N) = 1. The 
L-function Ly(s, Z) is known to be entire and to satisfy the functional equation 

(qx /N /2n )~F(s )Ly ( s , z )  = ~(qx /~ /21 t )Z- 'F(2  - s)Ly(2 - s,~) (7) 

where e = eyz (N)z ( z )Zq  -1 with ~y = ___ 1 depending only on f and where 
z(X) is the Gauss sum, see [14]. This gives rise to the following standard 
representation of Ly( 1, Z) as a rapidly convergent series (see [12, p. 411.]). 

Lemma 2. For any x > O let A ( x )  = Y~,>= 1 x(n)ay(n) n -  l e -  2~"/~. Then we have 

Lf(1, Z) = A ( x )  + eXt(Nq2/x). 

When combined with Lemma 1, Lemma 2 yields the following asymptotic 
formula. 

Proposition 1. Let Z be a f ixed primitive character modulo q. Then we have 

corLr(1,Z ) = l + O(N- l / 21ogN)  
f e r n  

for N prime, the implied constant dependino only on q. 

Proof  Choosing x = qZ N l o g N  in Lemma 2 gives 

LI(1,Z ) = ~ x(n)ay(n)n  -1 e -2~/q~'ql~ --I- O(N -6) 
n > l  

and applying Lemma 1 with m -- 1 easily yields the result. [ ]  

I t  may be worth remarking that the apparently inefficient choice of 
x = q 2 N l o g N  in Lemma 2 (the smaller choice x = qx/-N equalizes the two 
terms there) is made above to avoid the variation ofey as f runs  over ~ N. Since 
the sign in the functional equation for Pi(s )  does not so vary we are still able 
to obtain corresponding results for Py(1) and P~(1) even though these require 
approximations which are, in effect, twice as long. 

Turning to these let, for x > 0, 

9o(X) = 4r~x//-XKl(anx//-~) (8) 
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and 

gl(x)  = 2Ko(anx/ /x) ,  (9) 

where Kv is the K-Bessel function. F o r  any primitive characters  )h (mod ql)  
and X2 (modq2)  let Pf(s)  = Lf(s, xI)Lz(s,  z2) = ~t_~ 1 bz(d)d  -s  so that  

b f ( d ) =  ~ zl(m)z2(n)ar (10) 
ran=g, 

Define the sums for x > 0 and i = 0, 1 

Bi(x) = ~, b y ( d ) d - '  gi(d/x). (11) 
E > I  

These are absolutely convergent  since from (3) and (10) 

by(f) ,~ f l / 2 + ~  (12) 

while we also have the s tandard  est imates 

1 for x <  1 
go(x) ,~ = (13) 

xl/4e-4~./~ for x > 1 

and 

log(2/x)  for x < 1 (14) 
g l ( x ) ' ~  [x_l /4e_4, , / -  ~ for x > 1. 

Lemma 3. Let f ~ ~Nfor N > 1 and suppose that Z1 and ~2 are primitive with 
(qlq2,N) = 1. For any x > 0 we have 

PI (1 )  -- Bo(x) + s qE)2/x) 

while if Pf(1) = 0  then for any x > 0 we have 

P) (1 )  = B,(x )  - ~B,(( Nq,q2)2/x) 

where 

= Z,z2(N)(z(Z,)z(Z2))2(q,q2) - ' .  

Proof We have the integral  representat ions for i = 0, 1 

1 
= - -  ~ (2n)-2sr(s)r(s-i+ 1)x-Sds. (15) 

gi(X) 27.tiRe(s)=3/4 

To prove the first s ta tement  in Lemma 3, consider tha t  by (15) and (I1) 

Bo (x)  = ~ /  S xS(2n) - 2~. F(s + 1)2 py (s + 1)s- 1 ds 
(3/4) 
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and this is 

= Py (1) + ~n/c_!/4) ((Nqlqz)z/x)-s(2n)asF( - s + 1) 2/~y( - g + 1)s -1 ds 

upon  moving  the contour  and using the functional equat ion for Pf(s) which 
follows from (7). Changing variables s ~ -  s yields the first statement. 
Similarly, 

1 
BI (x) =~n/~3!4)x~(2n)-2s F(s + 1) 2 Pf(s  + 1)s-l ds 

which, if Py(1) = 0, is 

= P~r(1) + ~Bl((Nq~qz)=/x), 

giving the second statement. [ ]  

We come now to the main  result of this section. 

Proposition 2. Let gl (mod ql)  and Z= (mod q2) be primitive Dirichlet charac- 
ters such that either ~ = ~2 or gl and Z2 are real and distinct. In the first case 
we have 

~, 09yPf(1) = l-I (1 - p - 1 ) l o g N  + cl + O(N-l /210gN)  
f ~q~ Plql 

for N prime with (ql, N)  = 1, where cl and the implied constant depend only on 
ql. Otherwise 

ogfPy(1) = 2L(1,Z1Z2 ) + O(N-1/21ogN) 
f ~ 

for N prime with ~IX2( -- N) = 1 while 

o~fP~(1) = 2L(1,Z~Z2)IogN + c2 + O(N-~/210gN) 
f eo.av N 

for N prime with Z1Z2( -- N)  = - 1, where cz and the implied constants depend 
only on qlq2. 

Proof. U nde r  our  assumptions  Bi =/3i  and  ZIzz(N)(z(zt)r(ZE))2(qlq2) - t  
= ZtZ2( - N). Thus  by Lemma 3 with x = Nqlq2 and (11) we have for prime 

N with Z1Z2( - N) = 1 

coyPf(1) = 2~,cof ~, b f ( : ) : - l  go(I/Nqlq2) 

and  by (10) this is 

= 2 ~, z l (m)z2(n)go(mn/Nqlqz)  ~ (-of af(m) af(n). 
ra, n ~  1 f m n 
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By Lemma 1 we get 

~, co:P:(1)  = 2 ~, X lz2(n)#o(n2/Nqlq2)n  -1 + R, (16) 
f e~.a~s n >= 1 

where 

R '~. N-3 /2  E 9 O ( N ~ q 2 ) ( m , n ) I / 2 .  (17) 
ra ,n> l 

Now the first term on the right hand side of (16) is evaluated using (15) as 

1.  ~ L(2s  + 1,z~z2)(2n)-2~r(s)r(s + 1)(Nqlq2)~ds. 
7~1 (3/4) 

In case Zl = ;C2 this is 

I-[ (1 - p -  1)log N + "cl + O(N-  1/2). (18/ 
Plql 

Otherwise it is 

2L(1,;(12(2) + O ( N  -~/2) (19) 

for N prime with ;(1X2( - N) = 1. The remainder term R in (16) is estimated by 
the following standard lemma in case i = 0. 

Lemma 4. For i = O, 1 we have 

(m,n)l/2 oi(mn/x) ~ x l x l o g x  
m,n ~ 1 

as x ~ 0o for  some positive constant ~ci. 

Proof This follows easily from the identity 

( ( 2 s -  1/2)~(s)" 
(m, n) 1/2 (mn) -s = 

,~,~ ~ ~ ~(2s)  

and (15). []  

Thus R ,~ N-1/21ogN by (17) and Lemma 4 so by (16), (18) and (19) we 
deduce the first two asymptotic formulas in Proposition 2. The last one is 
proved similarly using the second part of Lemma 3 and Lemma 4 with 
i = 1 .  [ ]  

Non-vanishing critical values 

The object of this section is to establish the next Proposition. 
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Proposit ion 3. Let X be a primitive Dirichlet character modulo q. Then there is 
a constant Cq depending only on q such that  for prime N > Cq 

co: >> l o g -  ~ N, 
f ~ .~s:L:( l ,x)* 0 

the implied constant being absolute. Let X1 and •2 be distinct real primitive 
Dirichlet characters modulo ql and q2, respectively. Then, for i = 0 or 1, 

~. toy >> l o g -  9 N 
f E:~:/~)~(1)> o 

for N a sufficiently large prime with X1Z2( - N)  = ( - 1) i, the implied constants 
depending only on qlq2. 

Proof. By Cauchy 's  inequali ty we have 

:~#Nto:L:(1, z , z < ( y : L : ( , . ~ ) , o t o : ) ( : ~ , N t o : l L : ( 1 , X ) 1 2 ) .  (20, 

Thus the first s ta tement  of Propos i t ion  3 follows from Propos i t ion  1 and the 
first s ta tement  of Propos i t ion  2 since here P:(1)  = IL:(1, Z)I 2. 

F o r  the second s ta tement  we need the next Lemma.  

L e m m a  5. Under the assumptions of Proposition 2 we have the estimates 

to/I P,(1)I 2 ~ l og9N 

for N prime with Z1X2( - N )  = 1 and 

to/I P~r(1)l 2 ,~ l o g l l N  
fern 

for N prime with Z,Z2( - N)  = --  1. The implied constants depend only on 
qlqz- 

Proof. By L e m m a  3, (12) and (13) we have for ZIX2( - N) = 1 that  

P:(1)  = 2 ~ b r(:):- lgo(E/Nq~q2) + O(N- t2)  (21) 
, t6X 

where X = Nqlqz log 2 N. By using (2), (10) and  (13) we can write (21) as 

P : (1)  = ~ cta:(g) + 0 ( N  -12) (22) 
,t_~X 

where ce ~. d (d )d- t  l o g N .  We now employ the following mean value result, 
which is an immedia te  consequence of [3, Theorem 1]. 

L e m m a  6. For N prime and any complex numbers cn we have 
2 

~ to: ~_xC, a:(1) =(I +O(N-'XlogX)) E lle,[ ~ 
f I I ~ X  

with an absolute implied constant. 
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Thus by (22), Lemma  6 and the bound Y~.r _~ x d2 (E)~'- 1 ,~ 1og*N we get the 
first est imate of Lemma 5. The second one is similar using (14) in place of 
(13). []  

The  second part  of Proposi t ion  3 now follows as did the first from 
Cauchy's  inequality, Lemma  5 and the last two statements of Proposi t ion 
2 together with the nonvanishing of L(1,XlX2) when X, * X2. [ ]  

The function (/)f 

In order  to derive Theorems 1 and 2 it is necessary to estimate co I defined in (1) 
from above. N o w  09/is approximately  a density function on ~ s  as is shown by 
the asymptot ic  formula from Lemma  1 when m = n = 1: 

~, coy = 1 + O(N -3/2) 
fern 

for N prime. In  fact, co I is not  far from being uniform. We apply a recent 
impor tant  result f rom [7,4]  which, together with Proposi t ion 3, proves 

Theorems 1 and 2. 

Proposition 4. For N prime we have the estimate 

cot ,~ N - ' - l o g N  

with an absolute implied constant. 

Proof. This follows the extension of the Main  Theorem of I-4] to holomorphic  
cusp forms, together  with the fact that  for pr ime N no f ~ ~N is a lift from 
GL(1), see I-4, Remark  and paragraph  following the Main  Theorem] .  []  
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