The critical order of vanishing of automorphic L-functions with large level

W. Duke

Rutgers University, Department of Mathematics, New Brunswick, NJ 08903 USA
e-mail: duke@math.rutgers.edu
Oblatum 19-IX-1993 \& 2-V-1994

Introduction

An important property of certain L-functions is the order to which they vanish at their critical points. Let \mathscr{F}_{N} denote the set of all holomorphic (cuspidal) newforms of weight 2 for $\Gamma_{0}(N)$ with trivial character. For $f \in \mathscr{F}_{N}$ let $L_{f}(s)=\sum_{n \geq 1} a_{f}(n) n^{-s}$ (where $a_{f}(1)=1$) be the associated automorphic L-function. For any primitive Dirichlet character $\chi \bmod q$ with $(q, N)=1$ the twisted L-function $L_{f}(s, \chi)=\sum_{n \geqq 1} \chi(n) a_{f}(n) n^{-s}$ is entire and satisfies a functional equation for which $s=1$ is in the center of the critical strip. The first main result of this paper gives the existence of many $f \in \mathscr{F}_{N}$ with nonvanishing $L_{f}(1, \chi)$ for χ fixed and N a large prime.

Theorem 1. Suppose that χ is a fixed primitive Dirichlet character modulo q. Then there is a positive absolute constant C and a constant C_{q} depending only on q such that for prime $N>C_{q}$ there are at least $C N \log ^{-2} N$ forms $f \in \mathscr{F}_{N}$ for which $L_{f}(s, \chi) \neq 0$.

It is well-known that for $N>3$ a prime the exact number of forms in \mathscr{F}_{N} is given by $\# \mathscr{F}_{N}=\frac{1}{12}(N+\alpha(N)$), where $\alpha(N)=-13,-5,-7$, or 1 according to whether $N \equiv 1,5,7$, or $11(\bmod 12)$.

Theorem 1 may be compared with known results giving the non-vanishing of various classes of twists of a fixed L-function (see for instance [12,13]). The general method used in the proof of Theorem 1, which is based on a comparison of mean values, comes from [8] (see also [9] for a different application of this technique). Higher orders of vanishing of twists are investigated in [5] by a different method. Mazur has kindly pointed out to me that by arithmetic

[^0]means one can show that there are at least $c \log p$ forms in \mathscr{F}_{N} for which $L_{f}(1) \neq 0$, where p is the largest prime divisor of the numerator of $(N-1) / 12$ (see [10]). Hence for principal χ we may state the following corollary of Theorem 1.

Corollary 1. There is a positive absolute constant C such that there are at least $C N \log ^{-2} N$ forms $f \in \mathscr{F}_{N}$ for which $L_{f}(1) \neq 0$, provided $N=11$ or $N>13$ is prime.

This corollary has an interesting application to the basis problem for weight $3 / 2$ in view of results of Gross and Waldspurger (see [6]) connecting the representability of a cusp form by ternary theta series with the nonvanishing of an associated L-function. ${ }^{1}$ To describe this, let M_{C}^{*} denote Kohnen's space of those modular forms of weight $3 / 2$ for $\Gamma_{0}(4 N)$ (with trivial character) whose nth Fourier coefficient vanishes unless $-n \equiv 0,1(\bmod 4)$ and $\left(\frac{-n}{N}\right) \neq 1$. Also, let Θ_{N} denote the subspace of M_{C}^{*} spanned by ternary theta series (see [6] for a detailed description of these.). Now it is known that $\operatorname{dim} M_{C}^{*}=N / 24+O\left(N^{1 / 2} \log N\right)$ for N prime. However, in general $\Theta_{N} \neq M_{c}^{*}$, as the example $N=389$ where $\operatorname{dim} M_{\mathrm{C}}^{*}=22$ while $\operatorname{dim} \Theta_{N}=21$ shows, this being a reflection of the nontrivial vanishing of an L-function (see [6, p.181.]). On the other hand, Corollary 1 together with [6, Cor.13.6] imply that Θ_{N} is not too small.

Corollary 2. There is a positive absolute constant C such that the dimension of Θ_{N} is at least $C N \log ^{-2} N$ for $N=11$ or prime $N>13$.

Subject to standard conjectures, Corollary 1 also gives information about the Mordell-Weil group of certain Abelian varieties. For example, if A is the factor of the Jacobian of $X_{0}(N)$ determined by $f \in \mathscr{F}_{N}$ then $L_{f}(1)$ is conjectured not to vanish if and only if the rank of the Mordell-Weil group of A over \mathbf{Q} is zero. Thus Corollary 1 gives a lower bound for the frequency of this occurrence for a prime level N. Other similar conditional implications of Theorem 1 may also be formulated.

The second main result of this paper is concerned with the order of vanishing at $s=1$ of the product

$$
P_{f}(s)=L_{f}\left(s, \chi_{1}\right) L_{f}\left(s, \chi_{2}\right)
$$

of two such L-functions when χ_{1} and χ_{2} are both real and distinct. The functional equation implies that $\operatorname{ord}_{s=1} P_{f}(s) \geqq 0$ or 1 according to whether $\chi_{1} \chi_{2}(-N)=1$ or -1 . Here it will be shown that for χ_{1} and χ_{2} fixed and N a large prime many $P_{f}(s)$ achieve this lower bound.

[^1]Theorem 2. Suppose that $\chi_{1}\left(\bmod q_{1}\right)$ and $\chi_{2}\left(\bmod q_{2}\right)$ are fixed distinct primitive real Dirichlet characters. Then there are positive constants C_{1} and C_{2} depending only on $q_{1} q_{2}$ such that there are at least $C_{2} N \log ^{-10} N$ forms $f \in \mathscr{F}_{N}$ with

$$
\operatorname{ord}_{s=1} P_{f}(s)= \begin{cases}0 & \text { if } \chi_{1} \chi_{2}(-N)=1 \\ 1 & \text { if } \chi_{1} \chi_{2}(-N)=-1,\end{cases}
$$

provided $N>C_{1}$ is prime.
All constants in these results are effective. With more work it may be possible to improve slightly the lower bounds in Theorems 1 and 2, but as the presence of a factor $\log ^{-1} N$ from Proposition 4 below seems unavoidable, it appears hopeless to use the methods here to remove the $\log N$ factors completely and achieve a positive proportion.

Critical values on average

For the proof of Theorems 1 and 2 different averages of critical values are compared, the averaging being done over \mathscr{F}_{N}, the set of all holomorphic newforms of weight 2 for $\Gamma_{0}(N)$. For $f \in \mathscr{F}_{N}$ with $N \geqq 1$ let $(f, f)=\int_{\Gamma_{0}(N) \backslash H}|f(z)|^{2} d x d y$ be the Petersson norm and set

$$
\begin{equation*}
\omega_{f}=\frac{1}{4 \pi(f, f)} . \tag{1}
\end{equation*}
$$

If $f(z)=\sum_{n \geqq 1} a_{f}(n) e(n z)$ is the Fourier expansion at ∞ then $a_{f}(n)$ are known to generate a totally real number field and to be algebraic integers which satisfy the multiplicativity relation for positive integers m and n

$$
\begin{equation*}
a_{f}(m) a_{f}(n)=\sum_{\substack{d,(m, n) \\(d, N)=1}} d a_{f}\left(m n / d^{2}\right) \tag{2}
\end{equation*}
$$

and the Ramanujan bound

$$
\begin{equation*}
\left|a_{f}(n)\right| \leqq d(n) n^{1 / 2} \tag{3}
\end{equation*}
$$

where $d(n)$ is the divisor function. The numbers $a_{f}(n) / \sqrt{n}$ are also approximately orthogonal in the following sense.

Lemma 1. For m and n positive integers and N prime we have the inequality

$$
\left|\sum_{f \in \mathcal{F}_{F}} \omega_{f} \frac{a_{f}(m)}{\sqrt{m}} \frac{a_{f}(n)}{\sqrt{n}}-\delta_{m, n}\right| \leqq 539 \mathrm{~N}^{-3 / 2}(m, n)^{1 / 2} \sqrt{m n} .
$$

Proof. We employ the absolutely convergent "Petersson formula"

$$
\begin{equation*}
\sum_{f \in \mathscr{F}_{N}} \omega_{f} \frac{a_{f}(m)}{\sqrt{m}} \frac{a_{f}(n)}{\sqrt{n}}=\delta_{m, n}-2 \pi \sum_{c=0(\bmod N)} c^{-1} S(m, n ; c) J_{1}\left(\frac{4 \pi \sqrt{m n}}{c}\right) \tag{4}
\end{equation*}
$$

where $S(m, n ; c)=\sum_{\substack{a \text { mod } c \\(a, c)=1}} e\left(\frac{m a+n a}{c}\right)$ is the Kloosterman sum and $J_{1}(z)$ is the J-Bessel function, which follows from [2, p. 249] together with the fact that for N prime the newforms of weight 2 form an orthogonal basis for the space of all cusp forms. The stated remainder estimate follows easily from Weil's bound

$$
\begin{equation*}
|S(m, n ; c)| \leqq(m, n, c)^{1 / 2} d(c) c^{1 / 2} \tag{5}
\end{equation*}
$$

and the standard bound for $z \geqq 0$

$$
\begin{equation*}
\left|J_{1}(z)\right| \leqq z / 2 \tag{6}
\end{equation*}
$$

applied in (4).
Let χ be a primitive Dirichlet character modulo q with $(q, N)=1$. The L-function $L_{f}(s, \chi)$ is known to be entire and to satisfy the functional equation

$$
\begin{equation*}
(q \sqrt{N} / 2 \pi)^{s} \Gamma(s) L_{f}(s, \chi)=\varepsilon(q \sqrt{N} / 2 \pi)^{2-s} \Gamma(2-s) L_{f}(2-s, \bar{\chi}) \tag{7}
\end{equation*}
$$

where $\varepsilon=\varepsilon_{f} \chi(N) \tau(\chi)^{2} q^{-1}$ with $\varepsilon_{f}= \pm 1$ depending only on f and where $\tau(\chi)$ is the Gauss sum, see [14]. This gives rise to the following standard representation of $L_{f}(1, \chi)$ as a rapidly convergent series (see [12, p. 411.]).

Lemma 2. For any $x>0$ let $A(x)=\sum_{n \geqq 1} \chi(n) a_{f}(n) n^{-1} e^{-2 \pi n / x}$. Then we have

$$
L_{f}(1, \chi)=A(x)+\varepsilon \bar{A}\left(N q^{2} / x\right)
$$

When combined with Lemma 1, Lemma 2 yields the following asymptotic formula.

Proposition 1. Let χ be a fixed primitive character modulo q. Then we have

$$
\sum_{f \in \mathscr{F}_{N}} \omega_{f} L_{f}(1, \chi)=1+O\left(N^{-1 / 2} \log N\right)
$$

for N prime, the implied constant depending only on q.
Proof. Choosing $x=q^{2} N \log N$ in Lemma 2 gives

$$
L_{f}(1, \chi)=\sum_{n \geqq 1} \chi(n) a_{f}(n) n^{-1} e^{-2 \pi n / a^{2} N \log N}+O\left(N^{-6}\right)
$$

and applying Lemma 1 with $m=1$ easily yields the result. \square
It may be worth remarking that the apparently inefficient choice of $x=q^{2} N \log N$ in Lemma 2 (the smaller choice $x=q \sqrt{N}$ equalizes the two terms there) is made above to avoid the variation of ε_{f} as fruns over \mathscr{F}_{N}. Since the sign in the functional equation for $P_{f}(s)$ does not so vary we are still able to obtain corresponding results for $P_{f}(1)$ and $P_{f}^{\prime}(1)$ even though these require approximations which are, in effect, twice as long.

Turning to these let, for $x>0$,

$$
\begin{equation*}
g_{0}(x)=4 \pi \sqrt{x} K_{1}(4 \pi \sqrt{x}) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{1}(x)=2 K_{0}(4 \pi \sqrt{x}) \tag{9}
\end{equation*}
$$

where K_{v} is the K-Bessel function. For any primitive characters $\chi_{1}\left(\bmod q_{1}\right)$ and $\chi_{2}\left(\bmod q_{2}\right)$ let $P_{f}(s)=L_{f}\left(s, \chi_{1}\right) L_{f}\left(s, \chi_{2}\right)=\sum_{\ell \geqq 1} \mathrm{~b}_{f}(\ell) \ell^{-s}$ so that

$$
\begin{equation*}
b_{f}(\ell)=\sum_{m n=\ell} \chi_{1}(m) \chi_{2}(n) a_{f}(m) a_{f}(n) \tag{10}
\end{equation*}
$$

Define the sums for $x>0$ and $i=0,1$

$$
\begin{equation*}
B_{i}(x)=\sum_{\ell \geqq 1} \mathrm{~b}_{f}(\ell) \ell^{-1} g_{i}(\ell / x) . \tag{11}
\end{equation*}
$$

These are absolutely convergent since from (3) and (10)

$$
\begin{equation*}
b_{f}(\ell) \ll{ }_{\varepsilon} \ell^{1 / 2+\varepsilon} \tag{12}
\end{equation*}
$$

while we also have the standard estimates

$$
g_{0}(x) \ll\left\{\begin{array}{cc}
1 & \text { for } x \leqq 1 \tag{13}\\
x^{1 / 4} e^{-4 \pi \sqrt{x}} & \text { for } x>1
\end{array}\right.
$$

and

$$
g_{1}(x) \ll\left\{\begin{array}{cc}
\log (2 / x) & \text { for } x \leqq 1 \tag{14}\\
x^{-1 / 4} e^{-4 \pi \sqrt{x}} & \text { for } x>1
\end{array}\right.
$$

Lemma 3. Let $f \in \mathscr{F}_{N}$ for $N \geqq 1$ and suppose that χ_{1} and χ_{2} are primitive with $\left(q_{1} q_{2}, N\right)=1$. For any $x>0$ we have

$$
P_{f}(1)=B_{0}(x)+\hat{\varepsilon} \bar{B}_{0}\left(\left(N q_{1} q_{2}\right)^{2} / x\right)
$$

while if $P_{f}(1)=0$ then for any $x>0$ we have

$$
P_{f}^{\prime}(1)=B_{1}(x)-\hat{\varepsilon} \bar{B}_{1}\left(\left(N q_{1} q_{2}\right)^{2} / x\right)
$$

where

$$
\hat{\varepsilon}=\chi_{1} \chi_{2}(N)\left(\tau\left(\chi_{1}\right) \tau\left(\chi_{2}\right)\right)^{2}\left(q_{1} q_{2}\right)^{-1}
$$

Proof. We have the integral representations for $i=0,1$

$$
\begin{equation*}
g_{i}(x)=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=3 / 4}(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-i+1) x^{-s} d s \tag{15}
\end{equation*}
$$

To prove the first statement in Lemma 3, consider that by (15) and (11)

$$
B_{0}(x)=\frac{1}{2 \pi i} \int_{(3 / 4)} x^{s}(2 \pi)^{-2 s} \cdot \Gamma(s+1)^{2} P_{f}(s+1) s^{-1} d s
$$

and this is

$$
=P_{f}(1)+\frac{\hat{\varepsilon}}{2 \pi i} \int_{(-3 / 4)}\left(\left(N q_{1} q_{2}\right)^{2} / x\right)^{-s}(2 \pi)^{2 s} \Gamma(-s+1)^{2} \bar{P}_{f}(-\bar{s}+1) s^{-1} d s
$$

upon moving the contour and using the functional equation for $P_{f}(s)$ which follows from (7). Changing variables $s \mapsto-s$ yields the first statement. Similarly,

$$
B_{1}(x)=\frac{1}{2 \pi i} \int_{(3 / 4)} x^{s}(2 \pi)^{-2 s} \Gamma(s+1)^{2} P_{f}(s+1) s^{-1} d s
$$

which, if $P_{f}(1)=0$, is

$$
=P_{f}^{\prime}(1)+\hat{\varepsilon} \bar{B}_{1}\left(\left(N q_{1} q_{2}\right)^{2} / x\right)
$$

giving the second statement.
We come now to the main result of this section.

Proposition 2. Let $\chi_{1}\left(\bmod q_{1}\right)$ and $\chi_{2}\left(\bmod q_{2}\right)$ be primitive Dirichlet characters such that either $\chi_{1}=\bar{\chi}_{2}$ or χ_{1} and χ_{2} are real and distinct. In the first case we have

$$
\sum_{f \in \mathscr{F}_{N}} \omega_{f} P_{f}(1)=\prod_{p \mid q_{1}}\left(1-p^{-1}\right) \log N+c_{1}+O\left(N^{-1 / 2} \log N\right)
$$

for N prime with $\left(q_{1}, N\right)=1$, where c_{1} and the implied constant depend only on q_{1}. Otherwise

$$
\sum_{f \in \mathscr{F}_{N}} \omega_{f} P_{f}(1)=2 L\left(1, \chi_{1} \chi_{2}\right)+O\left(N^{-1 / 2} \log N\right)
$$

for N prime with $\chi_{1} \chi_{2}(-N)=1$ while

$$
\sum_{f \in \mathscr{F}_{N}} \omega_{f} P_{f}^{\prime}(1)=2 L\left(1, \chi_{1} \chi_{2}\right) \log N+c_{2}+O\left(N^{-1 / 2} \log N\right)
$$

for N prime with $\chi_{1} \chi_{2}(-N)=-1$, where c_{2} and the implied constants depend only on $q_{1} q_{2}$.

Proof. Under our assumptions $B_{i}=\bar{B}_{i}$ and $\chi_{1} \chi_{2}(N)\left(\tau\left(\chi_{1}\right) \tau\left(\chi_{2}\right)\right)^{2}\left(q_{1} q_{2}\right)^{-1}$ $=\chi_{1} \chi_{2}(-N)$. Thus by Lemma 3 with $x=N q_{1} q_{2}$ and (11) we have for prime N with $\chi_{1} \chi_{2}(-N)=1$

$$
\sum_{f \in \mathcal{F}_{n}} \omega_{f} P_{f}(1)=2 \sum_{f} \omega_{f} \sum_{f \geqq 1} b_{f}(\ell) \ell^{-1} g_{0}\left(l / N q_{1} q_{2}\right)
$$

and by (10) this is

$$
=2 \sum_{m, n \geqq 1} \chi_{1}(m) \chi_{2}(n) g_{0}\left(m n / N q_{1} q_{2}\right) \sum_{f} \omega_{f} \frac{a_{f}(m)}{m} \frac{a_{f}(n)}{n} .
$$

By Lemma 1 we get

$$
\begin{equation*}
\sum_{f \in \mathscr{F}_{N}} \omega_{f} P_{f}(1)=2 \sum_{n \geqq 1} \chi_{1} \chi_{2}(n) g_{0}\left(n^{2} / N q_{1} q_{2}\right) n^{-1}+R \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
R \ll N^{-3 / 2} \sum_{m, n \geqq 1} g_{0}\left(\frac{m n}{N q_{1} q_{2}}\right)(m, n)^{1 / 2} . \tag{17}
\end{equation*}
$$

Now the first term on the right hand side of (16) is evaluated using (15) as

$$
\frac{1}{\pi i} \int_{(3 / 4)} L\left(2 s+1, \chi_{1} \chi_{2}\right)(2 \pi)^{-2 s} \Gamma(s) \Gamma(s+1)\left(N q_{1} q_{2}\right)^{s} d s
$$

In case $\chi_{1}=\bar{\chi}_{2}$ this is

$$
\begin{equation*}
\prod_{p \mid q_{1}}\left(1-p^{-1}\right) \log N+\dot{c}_{1}+O\left(N^{-1 / 2}\right) \tag{18}
\end{equation*}
$$

Otherwise it is

$$
\begin{equation*}
2 L\left(1, \chi_{1} \chi_{2}\right)+O\left(N^{-1 / 2}\right) \tag{19}
\end{equation*}
$$

for N prime with $\chi_{1} \chi_{2}(-N)=1$. The remainder term R in (16) is estimated by the following standard lemma in case $i=0$.

Lemma 4. For $i=0,1$ we have

$$
\sum_{m, n \geqq 1}(m, n)^{1 / 2} g_{i}(m n / x) \sim \kappa_{i} x \log x
$$

as $x \rightarrow \infty$ for some positive constant κ_{i}.
Proof. This follows easily from the identity

$$
\sum_{m, n \geqq 1}(m, n)^{1 / 2}(m n)^{-s}=\frac{\zeta(2 s-1 / 2) \zeta(s)^{2}}{\zeta(2 s)}
$$

and (15).
Thus $R \ll N^{-1 / 2} \log N$ by (17) and Lemma 4 so by (16), (18) and (19) we deduce the first two asymptotic formulas in Proposition 2. The last one is proved similarly using the second part of Lemma 3 and Lemma 4 with $i=1$.

Non-vanishing critical values

The object of this section is to establish the next Proposition.

Proposition 3. Let χ be a primitive Dirichlet character modulo q. Then there is a constant C_{q} depending only on q such that for prime $N>C_{q}$

$$
\sum_{f \in \mathscr{F}_{*}: L_{f}(1, x) \neq 0} \omega_{f} \gg \log ^{-1} N,
$$

the implied constant being absolute. Let χ_{1} and χ_{2} be distinct real primitive Dirichlet characters modulo q_{1} and q_{2}, respectively. Then, for $i=0$ or 1 ,

$$
\sum_{f \in \mathscr{F}_{x}: P_{f}^{\prime \prime \prime}(1)>0} \omega_{f} \gg \log ^{-9} N
$$

for N a sufficiently large prime with $\chi_{1} \chi_{2}(-N)=(-1)^{i}$, the implied constants depending only on $q_{1} q_{2}$.

Proof. By Cauchy's inequality we have

$$
\begin{equation*}
\left|\sum_{f \in \mathcal{F}_{f}} \omega_{f} L_{f}(1, \chi)\right|^{2} \leqq\left(\sum_{f: L,(1, x) \neq 0} \omega_{f}\right)\left(\sum_{f \in \mathcal{F}_{x}} \omega_{f}\left|L_{f}(1, \chi)\right|^{2}\right) . \tag{20}
\end{equation*}
$$

Thus the first statement of Proposition 3 follows from Proposition 1 and the first statement of Proposition 2 since here $P_{f}(1)=\left|L_{f}(1, \chi)\right|^{2}$.

For the second statement we need the next Lemma.
Lemma 5. Under the assumptions of Proposition 2 we have the estimates

$$
\sum_{f \in \mathscr{F}_{x}} \omega_{f}\left|P_{1}(1)\right|^{2} \ll \log ^{9} N
$$

for N prime with $\chi_{1} \chi_{2}(-N)=1$ and

$$
\sum_{f \in \mathcal{F}_{x}} \omega_{f}\left|P_{f}^{\prime}(1)\right|^{2} \ll \log ^{11} N
$$

for N prime with $\chi_{1} \chi_{2}(-N)=-1$. The implied constants depend only on $q_{1} q_{2}$.

Proof. By Lemma 3, (12) and (13) we have for $\chi_{1} \chi_{2}(-N)=1$ that

$$
\begin{equation*}
P_{f}(1)=2 \sum_{\ell \leqq X} b_{f}(\ell) \ell^{-1} g_{0}\left(\ell / N q_{1} q_{2}\right)+O\left(N^{-12}\right) \tag{21}
\end{equation*}
$$

where $X=N q_{1} q_{2} \log ^{2} N$. By using (2), (10) and (13) we can write (21) as

$$
\begin{equation*}
P_{f}(1)=\sum_{\ell \leqq X} c_{f} \mathrm{a}_{f}(\ell)+O\left(N^{-12}\right) \tag{22}
\end{equation*}
$$

where $c_{\ell} \ll d(\ell) \ell^{-1} \log N$. We now employ the following mean value result, which is an immediate consequence of [3, Theorem 1].

Lemma 6. For N prime and any complex numbers c_{n} we have

$$
\sum_{f \in \mathcal{F}_{n}} \omega_{f}\left|\sum_{l \leqq X} c_{l} a_{f}(l)\right|^{2}=\left.\left(1+O\left(N^{-1} X \log X\right)\right) \sum_{l \leqq X}| | c_{l}\right|^{2}
$$

with an absolute implied constant.

Thus by (22), Lemma 6 and the bound $\sum_{\ell \leq x} d^{2}(\ell) \ell^{-1} \ll \log ^{4} N$ we get the first estimate of Lemma 5. The second one is similar using (14) in place of (13).

The second part of Proposition 3 now follows as did the first from Cauchy's inequality, Lemma 5 and the last two statements of Proposition 2 together with the nonvanishing of $L\left(1, \chi_{1} \chi_{2}\right)$ when $\chi_{1} \neq \chi_{2}$.

The function ω_{f}

In order to derive Theorems 1 and 2 it is necessary to estimate ω_{f} defined in (1) from above. Now ω_{f} is approximately a density function on \mathscr{F}_{N} as is shown by the asymptotic formula from Lemma 1 when $m=n=1$:

$$
\sum_{f \in \mathscr{F}_{\mathfrak{F}}} \omega_{f}=1+O\left(N^{-3 / 2}\right)
$$

for N prime. In fact, ω_{f} is not far from being uniform. We apply a recent important result from $[7,4]$ which, together with Proposition 3, proves Theorems 1 and 2.

Proposition 4. For N prime we have the estimate

$$
\omega_{f} \ll N^{-1} \cdot \log N
$$

with an absolute implied constant.
Proof. This follows the extension of the Main Theorem of [4] to holomorphic cusp forms, together with the fact that for prime N no $f \in \mathscr{F}_{N}$ is a lift from $G L(1)$, see [4, Remark and paragraph following the Main Theorem].

References

1. S. Böcherer, R. Schulze-Pillot: The Dirichlet series of Koecher and Maass and modular forms of weight 3/2. Math. Z. 209 (1992) 273-287
2. J.-M. Deshouillers, H. Iwaniec: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70 (1982) 219-288
3. W. Duke, J. Friedlander, H. Iwaniec: Bounds for automorphic L-functions. II. Invent. Math. 115 (1994) 219-239
4. D. Goldfeld, J. Hoffstein, D. Lieman: An effective zero free region, Appendix to: Coefficeints of Maass forms and the Siegel zero Ann. Math. (to appear)
5. F. Gouvêa, B. Mazur: The square-free sieve and the rank of elliptic curves. J. AMS 4 (1991) 1-23
6. B.H. Gross: Heights and the special values of L-series. In: Number Theory, Proceedings of the 1985 Montreal Conference held June 17-29, 1985, CMS Conference Proceedings, Vol. 7, 1987, 115-187
7. J. Hoffstein, P. Lockhart: Coefficients of Maass forms and the Siegel zero. Ann. Math. (to appear)
8. H. Iwaniec: On the order of vanishing of modular L-functions at the critical point. In: Sém. Th. des Nombres, Bordeaux 2 (1990) 365-376
9. W. Luo: On the nonvanishing of Rankin Selberg L-functions. Duke Math. J 69 (1993) 411-427
10. B. Mazur: Modular curves and the Eisenstein ideal. IHES Publ. Math. 47 (1977) 33-186
11. B. Mazur: On the arithmetic of special values of L-functions. Invent. Math. 55 (1979) 207-240
12. D.E. Rohrlich: On L-functions of elliptic curves and cyclotomic towers. Invent. Math. 75 (1984) 409-423
13. D.E. Rohrlich: L-functions and division towers. Math. Ann. 281 (1988) 611-632
14. G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan, Vol. 11. Tokyo-Princeton, 1971

[^0]: Research supported in part by NSF Grant DMS-9202022.

[^1]: ${ }^{1}$ The paper [1] contains a different proof of this criterion which also gives the theta series representation explicitly.

