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1 Introduction

We continue our study of G L, L—functions with the aim of providing upper
bounds for their order of magnitude. As is familiar it suffices to provide
such bounds on the critical line and, both for the sake of applications and
for the ideas involved, we are most interested in breaking the convexity
bound and this with respect to the conductor. In this paper we are interested
primarily in L—functions attached to characters of the class group of the
imaginary quadratic field K = Q(+/—D). We are motivated by our paper
[DFI4]. That work was not included in the current series because the class
group L—functions are treated there directly. They may however be viewed
as L—functions associated to cusp forms of weight 1, level D and character

(the nebentypus)
-D
Xp(n) = (T) ) (1.1)
the Kronecker symbol (we assume throughout that —D is a fundamental
discriminant).

Inthispaper wefocusonthislarger framework and consider L—functions
for cusp forms

k

f(z) = Z A(MN'Z e(n2) (1.2)
1
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of weight k, level D and any primitive character x (mod D). For a tech-
nical reason we assume that k > 3 which helps us to resolve easily the
convergence problems for various series and integrals (see further com-
ments later). The full space of such cusp forms S (Fo( D), XD) has aunique
finite basis, say %, consisting of primitive forms. To f € % given by the
Fourier expansion (1.2) we attach the L—function

Ls f) =) at(mn~s (1.3)
1

and the completed product

A(s, ) = (g) r (s+ k;zl) L(s ). 1.4

Asshown by Hecke [H] thisis an entire function and satisfies the functional
equation (see Sect. 3)

A(s, fy=e;A(1—s, ). (15

The Riemann hypothesis is expected to hold for every such L—function.
Amongst its many consequences is the Lindel 6f type bound

L(s, f) < (k|s|D)* (1.6)

for Res = % where ¢ is any positive number and the implied constant
depends only on ¢. Of course, we are far from proving anything like this
in the near future, however from the Phragmen-Lindel6f principle and the
functional equation one easily obtains the “convexity” bound

L(s f) < (k2|s|2D)%*+E . (1.7)

For many applications it is sufficient to improve this bound in the D aspect
alone. Moreover, athough the exponent % israther weak, itisonly required
to replace it by any smaller number. Thus, our priority in writing this paper
will be for smplification of the arguments rather than attainment of the
sharpest improvement.

A classical example of breaking the convexity bound in the conductor
aspect isdue to Burgess[B]. He showed that for Dirichlet L—functions with
any character x (mod D) one has

L(s x) < [s|* DB+ (18)

while the convexity bound gives only %1 in place of % Burgess found an
ingenious method for transforming short character sums into high moments
of complete sums for which estimates were available and, in particular, the
Riemann hypothesis for curves over afinitefield (Weil's theorem) furnishes
a strong bound.
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In [FI] an adternative method was given for breaking the convexity
barrier. Although it produced a quantitatively weaker result in the Burgess
case, it turned out to be possible to apply this new method more generally, in
particular to G L, automorphic L—functions in various aspects. For example
in [DFI3] we proved that

L(s f) « Dé— w2t (1.9)

for f € Sc(Io(D)), keven,Res = %,s > 0, theimplied constant depending
onk,sande.

In this paper we treat the analogous problem when the cusp form
f e S (Io(D), x) transforms in accordance with a multiplier given by
aprimitive character x of conductor equal to the level D. Our first result is

Theorem 1.1 Let k> 3 and D squarefree. Let (mod D) be a primitive
character withx(—1) = (—1)X. LetF be the Hecke basis of, &5(D), x)
and L(s, f) the L—function associated to & ¥. Letc = (c,) be any
sequence of complex numbers with= O if £ has a prime divisor< z.
Then forRes =  we have

S crr @Il HI* < (el + ez ) s°DY (1.10)

feF <L
for
L=D% with o= 1/13(48)2 = .0000333... (2.11)

where||c|| denotes thé,—norm andj|c||; denotes thé&,—norm, the implied
constant depending anand k.

Remarks.The condition that ¢, are supported on numbers free of small
prime divisors is introduced only for technical simplification; advantage of
this is taken only once, in the derivation of Corollary 5.2 from Proposi-
tion 5.1. This condition does not affect the application we have in mind,
nevertheless, with extra effort one could show that (1.10) holds for any
numbers ¢, and without the second term on the right side.

A theorem of this type is an essential ingredient in our method, the
amplification method, for bounding an L—function; seethesurvey article[F].
Specifically we have by positivity

A LPIL(s DI* < (el + licl?z7Y) [s1°DY (112

where A ¢ (L) isthe “amplifier”

Ar(L) =) chi(0). (1.13)

<L
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Taking the trivial amplifier of length L = 1, we just recover the convexity
bound for L(s, f). Theideato improve on this goes by choosing the coef-
ficients ¢, so asto amplify the contribution to the left side of (1.12) coming
fromtheindividual f whose L—function we are seeking to bound. A natural
choice for thiswould be ¢, = A (¢), expecting that

ArL) =Y 1@ > L (1.14)
<L
whereas
lel2=>"|r o < L. (115)
<L

Choosing L = D% would then yield (ignore ||c[|3z~* for the sake of illus-

tration) the bound L (s, f) « D7+ This scheme works in the case of
Dirichlet L—functions and would work here as well if we could prove the
lower bound (1.14). Unfortunately this escapes us, at least for the above
“maximal” choice of ¢,. The trouble is that A (¢) could be very small
very often. Fortunately we are able to derive weaker, but non-trivial, lower
bounds for other choices of c,. We do know that for prime p the Hecke
eigenvalues satisfy the relation

23(p) =21 (PD) = x(p) . (1.16)

Thisfor p + D shows that at least one of the two terms has absolute value
> % hence both cannot be small. To take advantage of this we choose

_ . _ 1
o {/\f(p)x(p), if¢=p 3vL<p<VL (1.17)

-x(p, ife=pL iVL<p<VL

and zero otherwise. This choice give
ArL =z {p prD, VL < p< L} = VEdogL)? (118)

whereas ||c|| <« ~/LlogL)~t and ||c|l; <« ~/L(logL)~! by the Deligne
bound ’Af(p)| < 2. The numbers ¢, are supported on integers having no
prime divisors < z = $+/L. Hence we obtain by (1.12) and (1.18) (with the
aid of the estimate o > 2-1)

Theorem 1.2 Letk > 3, D squarefree angt (mod D) a primitive charac-
ter with x(—1) = (—1)X. Then, for any Hecke cusp formef S, (I'h(D), x),
andRes = 3, we have

L(s, f) < |s?Di™ (1.19)

with @ = 1/2'8 and the implied constant depends only on k.
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Of speC|aI interest to us is the case of the Kronecker symbol x = x,
Notethat since D > 0, k must beodd, soweareonly missing thecasek = 1
Thecusp formsof weight onearespecial in many respects (algebraically and
analytically) and we intend to cover this case in a separate work. For k > 3
the space S (FO(D) X )containsasasmall but prominent subspace O(D)
spanned by theta series formed from Hecke characters for the imaginary
quadratic field K = Q(+/—D). The Hecke characters in question are those
multiplicative functions v, defined on the ideals, which satisfy

k-1
v((B) = (ﬁ;) forevery B O, B#0 (1.20)

(we assume that D > 3 so the ring of integers O has two units £1 and
(1.20) iswell defined because k — 1 is even). Given any such character the
others are obtained on multiplying it by the characters of the class group
Cl(K). Therefore we have h(—D) = #€CI(K) such characters, where the
class number h satisfies

D2 « h(—D) < DZlogD. (1.21)

We denote the set of these characters by # (D). For any ¢ € F#(D) we
have the corresponding theta series

6,(2) =Y ¥(@)(Na) ? ezNo)

acO
= Z kw(n)nTle(nz) (1.22)
where
(=) (@) (1.29)
Na=n

These are linearly independent Hecke cusp formsin S (Io(D), x,,) so that
dim &y (D) = h(—D) whereas

dim S (Io(D). xp) =< [ [(P+ D) (1.24)

pID

is much larger. Here we have abused notation a little by writing 1,,(n) in
place of At (n) with f = 6,,. Weshall alsowrite L(s, ) inplaceof L(s, f)
for f = 6,. In particular Theorem 1.2 gives

Theorem 1.3 Let y be a Hecke character for k= Q(+/—D) as above.
Then forRes = 3

L(s ¥) < [s?Di~® (1.25)

with @ = 1/2'8 and where the implied constant depends only on k.
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In the proof of Theorem 1.1 essential use is made of the spectral com-
pleteness of the family & = F (D). The family # = #(D), athough
much smaller, till enjoys a different completeness due to the orthogonality
of characters of the finite abelian group CI(K). Therefore one should be
able to prove the analogous result

Y| Y av@| 1L P < e?sPDi . (.2)

yed Na<l

Here c, are any complex numbers supported on ideals composed of primes
of degree one. In the case of k = 1 the bound (1.26) was completely
established in [DFI4] (apart from the factor |s|?), and that method clearly
works for any odd k > 1. Note that here it is the square rather than the
fourth power of the L—function. Nevertheless, taking the trivial amplifier
one would recover the convexity bound for each L (s, v). However when
attempting the use of (1.26) to break convexity we are again faced with
the problem of choosing c, so that the amplifier is relatively large. In this
case, due to the above restriction on the support of ¢,, one needs to produce
many prime ideals of first degree and small norm. Thisis an important and
difficult problem. For special discriminants, but not for all, this problem
was resolved in [DFI4]. For example one finds there the bound

L(s ) <« Di~*¥ (1.27)

for those D with no prime divisors > D, wherea = 1/1156.

The fact that the results of [DFI4] do not cover every D was the moti-
vation for this work. To explain the reason why the new method succeeds
in avoiding the problem described above (of finding small splitting primes)
we begin by observing that (1.26) is deduced in [DFI4] from a non-trivial
bound for the sum

> @ILs WP (1.28)

vedH

For simplicity of thisdiscussion only wetake ¢ prime (and k = 1). Recalling
(1.23) for Ay (£) we seethat if ¢ does not split then A, (¢) = O for every ¢
so there is no possibility of cancellation in (1.28) for such £. On the other
hand, if we knew there were relatively small primes ¢ which do split in K

then for these there would be considerable cancellation, saving afactor e,
In similar fashion Theorem 1.1 could be deduced from a bound for the sum

> a@ILs H* (1.29)

feF

(actually for technical reasons we shall replace the L—functions by partial
sums). Here there will always be cancellation. Even if £ does not split, and
hence A, (¢) = Ofor al ¢ € #, these f = 6, now make up only a part of
the total and do not inhibit cancellation in the full sumover f € .
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In many respects the arguments of this paper follow the path established
in the previous members of this series [DFI1] and [DFI3]. An obstinate
obstruction to the adoption of those however lies in the presence of the
non-trivial nebentypus x. Asin the earlier papers, amost at the outset we
encounter Kloosterman sumswhich after Poisson summation degenerate to
the simpler Ramanujan sums S(h, 0; ¢) with h of the type

m; m
h = det ( nll n22> = min, — myn;y . (1.30)

We need to count the solutions of this equation with considerable precision
when, inthecritical range, thevariables areall about thesize /D (or slightly
different by factors coming from the amplifier). In [DFI3] this led to the
quadratic divisor problem, which aready had some history and we treated
in[DFI2] producing an asymptotic formulauniform for hinawiderange. In
the current work this problem is much more difficult because the variables
in the lower row are now weighted by the character values x(ni),x(ny).
Since the size of the ranges for ny, ny is relatively small (in terms of the
conductor) we are not able to exploit the fact that these are characters
and have to find results which hold for general complex coefficients. This
genera determinant problem was solved in [DFI6] but the main work for
this is the paper [DFI5]. Both of these papers were completely motivated
by the current work. Certainly they have other applications. For example,
the main result of [DFI5] gave new bounds for sums of Salié sums and
thereby amore direct proof of asubconvexity bound for Fourier coefficients
of half-integral weight cusp forms; see [I1] for the original proof. We are
hopeful that these ideas will find still other applications el sawhere.

Aninteresting aspect (to the authorsin any case) occurred when themain
idea for the solution of the general determinant equation [DFI6] turned out
to be a completely different application of the amplification method in an
unexpected setting. This occursin the proof of Theorem 2 of [DFI5] where,
briefly speaking, weintroduced acomplete set of multiplicative charactersas
companions to the invisible trivial character and amplified the contribution
of thelatter. We are hopeful that the amplification method hasabright future
more generally.

Indeed, the amplification method has now begun to also be exploited in
anumber of other works; see [KMV] for avery nice recent example of such
a work. Meanwhile, Burgess's ideas have now aso entered into the ring
of GL, theory. Specifically these have been applied in [Folw] to break the
convexity bound for the Hecke L—functions of K = Q(+/— D) which come
from cusp forms of level D? and non-trivial nebentypus.

The resolution of the problems treated in [DFI5-6] still left behind
anumber of thorny issuesand, asmight already be guessed from the previous
paragraphs, the present work has evolved over aperiod of years. During this
time we benefited from the hospitality of both of our home universities and
from frequent visits to MSRI Berkeley and to IAS Princeton. Who can tell
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the extent to which our work was enhanced by the scenery at the former and
the cuisine at the latter?

2 A brief account of S, (I5(D), %)

In this section we collect basic results about classical automorphic forms
which are needed in this paper. They al are standard and can be found with
proofs in [12]. Throughout k > 3, D > 3, I' = (D) is the group of
matrices y = (29) € SLx(Z) withc = 0 (mod D), so

1
w(D) = [IoD) : [(D)] =DJ ] (1+ —p) : (2.1)

p/D
and x (mod D) isaprimitive character such that
x(=1) = (=D (2.2)

L et H denote the upper-half plane consisting of complex numbersz = x+iy
with y > 0 acted on by the linear fractional transformations

_az+b
T cz+d’

Let Ax(I, x) bethelinear space of functions f : H — C which satisfy
f(yz2) = x(d)(cz+ d)*f(2) .

Let S«(I, x) be the subspace of cusp forms. This is a finite dimensional
Hilbert space with respect to the Petersson inner product

Yz

(o= [ 0@y dxdy. 23)
NH
Let £ be an orthonormal basis of S(T, x). Every f € ¥ has a Fourier
series expansion
k

f(z) = Zaf NNz e(n2) (2.4)
1

with complex coefficientsas (n). The celebrated formulaof Petersson asserts
that foranym,n > 1

@m k=1 ) asmar(n) = (25)

feF

4
Smn + 2mi 7K Z ¢S, (m,n;c) k1 (%«/mn>

c=0(D)
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where §n is the Kronecker diagonal symbol, ¢ runs over positive integral
multiples of D, S,(m, n; ¢) is the Kloosterman sum given by

am+ dn
S(mno= Y x(a)e< ) (2.6)
ad=1(modc)
and J._1(x) isthe Bessel function. Since J_1(X) < x for k > 3 and
S, (m, n; )| < (M, n, c)3cie(c) 2.7)

the series on the right-hand side of (2.5) converges absolutely.

From now on we assume that # is the Hecke basis. Since the character
x (mod D) isprimitive every f € & isaprimitive cusp form. This means
f isan eigenfunction of all the Hecke operators

1 a\ az+b
(Tnf)(z)=ﬁwzznx<a)(a) > f( . ) (28)

b(modd)

Thus for any n (not necessarily primeto the level D) we have
Tof =A¢(n) f (2.9)

for some complex numbers 4 ¢ (n). Note that we have normalized T, so that
the Ramanujan conjecture (proved by P. Deligne) is the bound

At ()] < (n) (2.10)

where t(n) denotes the divisor function. The eigenvalues X ¢ (n) enjoy the
multiplicativity property

Mgy = Y x(@dirg(mnd?). (2.11)

d|(m,n)

They are not dways real numbers, even if x (mod D) is area character.
Precisely we have

rt(n) = x(Mas(n) if(n,D)=1. (2.12)

If nisnot primeto D then therelation (2.12) does not hold. For every p | D
we have 1 (pY) = A (p)¢ with

(Pl =1. (2.13)

Every primitive form is automatically an eigenfunction of the involution
operator W : S(TI, x) — S(I, x) which isdefined by W = KW, where

(W) (@2 = (zv/D) ™ f(-1/zD)
(KH@ = f(-2).
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Notethat W : S(I", x) — S«(I, %) and K : S(I', %) — S(TI, x). The
operator K acts on the Fourier series (2.4) by conjugating its coefficients,
thus K isnot linear over C, nor is W. Aswe have said and as follows from
the multiplicity-one property of Hecke operators

Wf=nf if fef (2.14)
for a complex number n¢ with |n¢| = 1 (which follows from W = 1 and
W(nf) =7W fforn e C). Theeigenvalue 5 is given by

ni = Af(D)r, D2 (2.15)
where 7, isthe Gauss sum
X
= ) X(x)e<5) . (2.16)
x(mod D)

The Fourier coefficients as (n) of aprimitive form f are proportional to the
Hecke eigenvalues A ¢ (n),

ar(n) =as(Hrr(n). (217)
Hence putting
wi = (4m) ¥k — Dlar (D)|? (2.18)
we can write the Petersson formula (2.5) as

Lemma?2.1 Let¥ be the Hecke basis of@", x). Then forany mn > 1

Y o mign) = (2.19)
feF
4
Smn + 2i K ¢ 1S, (m, n; c) J (—M) .
cﬂ%) S, -1

Assuming || f|| = 1 we have (cf. Proposition 13.1 of [I12])
las (1)|~2 = (47) (k) vol (I" \ H) relsL(s, fef) (2.20)
S=

where L(s, f ® f) isthe Rankin-Selberg L—function
Ls f@f)= Z IL¢(n)2n~s. (2.21)
1
This has the Euler product L(s, f ® f) =] Lp(s, f ® f) with
p

Lo f@H=(@1-p°)" 2.22)
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if p|] Dand
Lo(s f® f)= (1+ p‘s) (2.23)
(L—lar(PIPPS) " (1-p°) " (1—1Br(PPp )
if pt D. Moreover, for asitable factor L. (s, f ® f), the product may be
completed t0 A(s, f ® ) = Loo(s, f ® f)L(s, f ® f) (cf. Theorem 2.2

of [L]) which is holomorphic on C except for smple polesat s = 1, 0, and
satisfies the functional equation

A ff)=Al—-s fef). (2.24)

In general the local factor at p = oo isquiteinvolved, but if D issguarefree
then

Loo(s f® ) = @) 99 Ns+ k-] [(PP+ 1. (225
pID

Define the symmetric square L—function by means of the Euler product
L(s, sym? f) =[] L p(s, sym? f) with the local factors given by
p
Lp(s, sym? f) = (1— p‘s)_1 (2.26)

if p| Dand

Lp(s sym? f) = (2.27)

(1=l (PPp™) " (1—p %) (1—1Bpl?p )

if p t D. Thiscan be aso written in terms of the Hecke eigenvalues

Lp(s sym? f) = (2.28)
(L= X (P (PP S+ TP (P p 2 — p )

(note that ¥ (p)A ¢ (p?) isrea). At the infinite place we define
Loo(s, sym? ) = (D/27%%)° () s+ k — 1) (2.29)
andwe put A(s, sym? f) = Lo (s, sym? f)L(s, sym? f). Note that

s+l

A f@ f)=3n"72T(3) (A sym? f) (2.30)
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by the duplication formula I" ($) I" (%) = /w2'5I(s). Therefore the

functional equationsfor L(s, f ® f) and ¢(s) yield the functional equation
for L(s, sym? f), namely

A(s, sym? f) = A(1—s, sym? f) . (2.31)

Moreover it is known that A(s, sym? f) is entire (essentially due to
G. Shimura, cf. [§]). From (2.30) we obtain

D L(1,sym?f)

2.32
v(D) 2182 (232

resL(s, f® f) =
s=1

Moreover we have vol(I" \ H) = 3 [Io(1) : Io(D)] = 3 v(D). Inserting
these valuesinto (2.20) we get

las (1)~ = 772(47) “I(K)DL (L, sym? f) . (2.33)
Finally we get by (2.33) and (2.18)

1= k= 1)2[;133,2;/# f) - (234)
Using (2.10) one can show that
L(1, sym? f) <« (logkD)3. (2.35)
Hence
wt > (kD) (logkD)~3 (2.36)

where the implied constant is absolute. This bound is quite precise because
the average value of w; isasymptotically 1/ dim S(I, x). Indeed it follows
from the Petersson formula (2.19) that

Y wr=1+0D". (2.37)

feF
We shall require the following extension of (2.37).
Lemma 2.2 For any complex numbers, ave have
2
3 wf‘ 3 anxf(n)) — {1+ oD} Y jan?.  (239)
feF n<N n<N

Proof. Follows verbatim the proof of Theorem 5.7 of [12] which gave the
result for y = 1.
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3 The L—functions

Toeach f € F we associate the Hecke L function
L(s f)=) At(mn~s. (3.2)
1

By (2.11) this has the Euler product

Ls O =TT @= 2P+ xpp™)"
P

=[[@-er@p®) " (1-81PP )" (32
p

withat(p) + B¢ (p) = A (p) and a¢(P)B+(P) = x(p). Hecke showed that
L(s, f) isentire and satisfies the functiona eguation

A, fy=¢esA(l—s, ) (3.3

where f = K f and A(s, f) isthe completed product

A(s, ) = (g) r (s+ %) L(s ). (3.9

This follows by applying the Méllin transform to (2.14) for z = iy. One
gets (3.3) with
er =% (D), D2 . (3.5)
However, all we need to know about ¢+ in this paper is that
leg] = 1. (3.6)

Using the functional equation (3.3) we shall represent L(s, f) on the

critical line Res = % in terms of rapidly converging series, essentially

equivalent to partial sums of length |s|+/D. To thisend we choose afunction
G(u) which isholomorphic in | Reu| < 1 such that
G(u) = G(—u)
GO =1 (3.7)
G(u) < (1+ u]) ezl

Consider the integral

1
I(s, f) = o A(s+u, ) Guutdu.
1
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Moving the integration to the line Reu = —1 and applying (3.3) we get
As, fy=1(s f)+esl(l—s ). (3.8

On the other hand, introducing the Dirichlet series (3.1) and integrating
termwise we obtain

\/B S+u
(s, f)_Zkf(n)Zm/ <%> r(s+u+5)Guutdu.
(€]

Inserting thisinto (3.8) and dividing by (+v'D/27)I" (s + %5t) wearrive at
the desired representation:

Lemma3.1 For s withRes = % we have
L(s )= (3.9)

;mn)n—svs(%) +ef<s)2xf<n>ns v (3”5”)

where

1-2s
D -
e ( o ) (r<s:>/{)’ (310

%, and \4(y) is given by the Mellin integral

1 I's+u+x) G _,
2m/1) sto u Y

K

Vs(y) = (3.11)
Remark. For Res = % we have |g¢ ()] = 1.

Moving the integration to the line Res = —« we deduce that

Ve(y) = 1+ o((|y|)K) (3.12)

where the implied constant depends on «, that is on k. In applications of
Lemma 3.1 we need to control the growth of Vs(y) and its derivatives for
large y. To this end we choose
U\ —A
G() = (cos X) (3.13)

where Aisalargeinteger, A > 3.
Lemma 3.2 For any integer a> 0 we have

VE(y) « ('y') (14 |Z|>_A (3.14)

the implied constant depending only onfaand k.
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Proof. Move the integration to the line Reu = A and differentiate a times

getting

I(s+u+«) ( © n_U)—A (E)a %
I'(s+«) y/ u

A
By Stirling's formula we derive that U2 (s + u + «)/I(S+ «) is bounded
by

V(Y « /

(A

S/ Is+ Ul AUt e Z (1 Ims| — [ Im(s+w)]) < [s*Aexp (Zul) -
Hence we deduce that V@ (y) is bounded by

(5 [y o) 2 (5)

Thisyields (3.14) if y > |s|. If y < |s] and a > 0, then we move the
integration to the line Reu = 0 and estimate as above getting (3.14). If
y < |s| and a = 0 then (3.12) is more precise than (3.14).

4 Preliminary estimates of L (s, f)

Applying asmooth partition of unity we derive by (3.9) and (3.14) that

—A
L(s, f) < ) |G (N)|N—2 (1+ —) 4.1
2 NG @
where G; (N) are sums of type
Gr(N) = A¢(n)g(n) (42)

with g(x) a smooth function supported on [N, 2N] for N = 2/2, v > —1,
such that

S|
@
09X « < N) (4.3

for al a > 0, the implied constant depending only on a, A and k. By
Holder's mequallty

|s|v/D
Here, and in (4.1), the implied constant depends only on A and k.

—4A
L(s £)* < D IG(N)[*N7? <1+ L) log2N .  (4.4)
N
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Fix the complex numbers c,. Put
Ar(L) =) chr(O). (4.5)
<L

By (2.10) and the Cauchy inequality we get

Af(L) < [lcf[L2(log2L)? (4.6)

where ||c|| denotes the £,—norm. This trivial estimate, of course, cannot be
improved for agiven genera f (apart from the logarithmic factor). Our goal
isto establish non-trivial estimates for the averages

DLN) =Y o |ADF[Gr(N)[* a7

feF

Using the multiplicativity of Hecke eigenvalues one easily derives by
Lemma 2.2 the following general result

D(L,N) < [cf* (14 D 'L N?) N*** (4.8)

where ¢ is any positive number, the implied constant depending on & and k.

Thiswould besufficient if LN? < D, but not sointhecrucial range N < D2
inwhich casethefactor | As (L)|2 hasonly atrivial effect on the bound (4.8).
Exploiting the smooth sum of Hecke eigenvalues G; (N) we shall improve
on (4.8), provided that L is sufficiently small. For technical smplifications
we restrict the sum (4.5) to numbers free of small prime divisors.

Proposition 4.1 Suppose care supported on positive integers having no
prime divisors< z. Then we have

D(L,N) K (4.9
{IcI2(@+ L=D~) + ez 1} N? (1 + DIN?)° |s|D*

whered = (48)~2, and ¢ is any positive number, the implied constant
depending ors and K.

Choosing L = D3 the bound (4.9) simplifiesto

D(L.N) < (llc]? + [lcl227%) N? (1+ D7IN?)*|s2D° . (4.10)
Next we derive by (4.4) and (4.10) that

Y ol ArLPIL(s HI* < (llel® + llclzz 1) 1sI°D* . (4.11)
feF

Finally we remove the spectral weights w¢ by applying the lower bound
(2.36) and as aresult obtain Theorem 1.1.
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5 The sums M (£)

It remains to prove Proposition 4.1 and for this we spend the rest of the
paper. We begin by making suitable arrangements in the double sum

GNP =3 Y A ()T (g amy) -

ny N2
Here we write n, as dn, with § | D* and (np, D) = 1. Then we have
At (8N2) = A (8)x (N2 A+ (n2) by (2.12) and

M)A f(N2) = A (OX(N2) Y x(d)rs(nnd?)

dl(ng,n)

by (2.11). Thus |G (N)|* is equal to
DR Y x(d) D ai(nng)x(n2)g(dny)g(sdny) -
§|D>® d ng ng

Hence, by Cauchy’s inequality (use aso (2.13))

GNP < ON Y Ve Y d D aimetn nF (5D

§| D> (d,D)=1 n
where

a(n, ) = )Y g(dn)g(ddny)x(ny) (52

N1 N2=n

for therelevant §, d and g.
Havingin mind some other applicationsin thefutureweconsider dightly
more general sums of type

Ne () =) s (Emo(n, 1) (53)

where F(xy, X») is afunction of Schwartz class on R? and

or(n, 0 = Y F(n,n)x(ny) . (5.4)

N1 nz=n

In particular the innermost sum in (5.1) agrees with A; (1) for the test
function F(X1, Xo) = g(dx;)9(8dxy). In this case

supp F C [ X1, 2X1] x [X2, 2X7] (5.5)
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with dX; = 8dX, = N and the partia derivatives satisfy (see (4.3))
Fe1e2) |5 artez X X" . (5.6)

From now on F is any smooth function satisfying (5.5) and (5.6) with
X1, Xo > % for any ay, ap > 0, the implied constant depending on a4, as.
Put

P=1+(X;+ X2)?D7 L. (5.7)
We think of X, X, both closeto D? so P issmall. Our god is
Proposition 5.1 Forany?¢ > land X, X, > % we have

S oM @ONM D) < (€72 + D) X1 X,Ps2D* (5.8)
feF

whered = (48)~2 and ¢ is any positive number, the implied constant
depending on.

We do not require ¢ to be free of small prime divisors, however for
technical smplifications in the following corollary we express the result
in terms of the greatest prime factor of ¢, denoted by p(¢) (by convention
p(l) = 1).

Corollary 5.2 Forany( > 1and X, X > 5 we have

D wihi () M| < (i + L - 56) X1X2P?|s]?D?  (5.9)
fer Ve o pi)

for anye > 0, the implied constant depending en

Proof. We write

MOMD =) > x(drsemd?or(m, x) .

m dje,m)

Ifd > 1thend > p(¢) so the contribution of such termsto the left side of
(5.9) isbounded by (apply Lemma2.2)

X1 X2 X1 X3 3
o( 0 (1+ . )(I095X1X2)> (5.10)

and this is absorbed by the right side of (5.9). From d = 1 we get M (£)
so the contribution of such termsis bounded by (5.8). Clearly theright side
of (5.8) is absorbed by the right side of (5.9). This completes the proof of
Corollary 5.2.

Now Propasition 4.1 follows from (5.9) and (5.1) on using the multi-
plicativity of the Hecke eigenvalue A ¢ (¢). Therefore, it remains to prove
Proposition 5.1.
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6 Applications of the Peter sson and the Poisson formulas

We begin the proof of Proposition 5.1 by applying the Petersson formula
(2.19); this gives

Yo N (@ON (D) =Ry+21* > 'R (6.1)
feF c=0(D)
where
Ro= ) &r(M. X)or(tm. x) < £ X1 X,D* (6.2)
and

Re = Xm: Xn:&F(m, 00E N, S (M, n; ©) 1 (%’W@mn) . (63)

Next we transform R; by means of the following involution.

Proposition 6.1 Let ¢ > 0, c = 0 (mod D) and (c,d) = 1. Let F be
a Schwartz function oR?. Then

d d
> oe(n, x)e<?n> = x(=d)c ) _oc(n, x)e( - g) (6.4)

where
G(y1, Y2) = / / F(CX1, Cxo)€(—X1Y2 — Xoy1)dX1dXo . (6.5)

Proof. Splitinto classesmodulo ¢ and apply the Poisson summation formula
asinLemma9.2 of [DlI].

Now we open the Kloosterman sum S, (¢m, n; ¢) in (6.3) and execute
the summation in n, but not in m, by means of (6.4). Consequently the
Kloosterman sum degenerates to the Ramanujan sum S(¢m — n, 0; ¢), and
we obtain

Ro=x(=Dc) Y ar(m, poe(n, )SEM—n,0;c)  (6.6)
m n
where G is the following integral transform of F (note the added Bessel
function):
G(y1, Y2) = (6.7)
/ / F(CX1, CX2) Je-1(4m v/ £MXi Xo) €(—X1Y2 — X2Y1)dXq dXo.

An important feature of the new expression (6.6) for R. (aside from the
fact that Ramanujan sums are simpler than Kloosterman sums) is that the
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“dua” variable n appears with the original m in an additive form rather than

in the multiplicative form as it was in (6.3). We now split the sum (6.6) in
accordance with £m — n = h, say

Re=) Reh)
h

and we shall treat each R;(h) separately.

(6.9)

7 Thesingular contribution

For h = 0weget S0, 0; ¢) = ¢(c) and

Re(0) = x(=1)p(0)c ) _ 58 (M, x)o(Em, x)

= x(=Dg©)c > x@)x(b)F(a, ap)G(by, by).

ajaxl=b1by
Combining the terms for by, b, with those for —b;, —b, we can replace
G(by, by) by
x(=1)Gx(by, b2) = x(=1)G(by, b2) + G(—by, —by)
= f f F(exa, ©%) Je1(4m/Caadoxaxz) Ex(brxa + boxa)dxa dx
where Ex(X) = e(X) + (—1)*e(—x), that is

(7.2)

E [ 2cos2rx, if k even,
KX =1 g gn2zx,  if k odd.
We obtain

RO = (-D'p©c ¥ x@)7(b)F(a, &)Gk(bi by (7.2)
ajaxl=biby

where a;, ap, by, by run over positive integers. Have in mind that
Gk (by, by) depends on a;a and ¢ by way of the integrated functions
F(cxa, C%) and Je_1 (4 v/ lar@oX1Xz).

We execute the summation over ¢ by means of the following

Lemma7.1 Let F be smooth, compactly supported®h. Then

1
F(O) = ——— [ tF(adt tydtF
c_%u:a)w(c) © §(2)V(D)/ ® +féo() (t

where

(D) p() [t t
éo(t)—T T{ﬁ}<<log(1+5) )

(d,D)=1
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Proof. Thisfollows from the Euler-Maclaurin formula, cf. [DFI3].
Summing ¢ 1 R.(0) over ¢ = 0(mod D) we obtain by Lemma 7.1
> @(OF(cxy, cxp) =

c=0(D)
1 5
m / tF(tXl, tX2)dt =+ / gD(t)& (tF(tXl, tXZ)) dt .

Integrating the first integral over x;, X, and changing these variables by
afactor t we arrive at theintegral of F(x;, X») against

/ Jk_1(47'[t\/ Za18.2X1X2) Ex ((bixz + box)t) t~idt .
0
However thislast integral vanishes by the orthogonality formula
/ Jc_1(2mat)Ex(bhttdt = 0
0

whichisvalidforb > a > 0 (see (6.693.1) and (6.693.2) of [GR]). Thisis
reminiscent of (55) of [DFI3]. In our case

b= b1X2 + bzXl > 2\/b1b2X1X2 = 2\/58182X1X2 =a.
Therefore we are left with
Z c'R:(0) = Z x(@2)X (D) F(ag, )l (agay; by, by)

c=0(D) ajapl=brby

where

0
I(m; by, bp) = // %—D(t)ﬁ (tF(txa, tX2)) Jee1 (4 v/ Em¥aXo)
Ex(box1 + bixo)dx, dxo dt .
Change x;, into x/x; and use the estimate
0
/ m (EF(txe, /1)) 8(bpXs + byx/x0)dx < [S12(L + bybyx) ™1

(see Lemma 11.3 of [DFI3]). Note that b;b, = ajaf < X1 X,£. A similar
bound holds for the Bessel function,

Notethat t2x = X; X» by the support of F(txy, tx/X;). Fromthe combination
of these two estimates we deduce that

o t _
1(m: by, by) < |s|2X1X2/ l0g(1+ 5 ) (t+ v XaXa) "t
0

< |82 %logD .
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Hence we conclude that

3 R0 < €7 2X 1 X,ls?D" . (7.3)
c=0(D)

This bound is absorbed by the right side of (5.8), thus completing the goal
for this section of estimating the singular contribution.

It is appropriate to insert here some explanation of our plans for the
estimation of the non-singular contribution which will take placein the next
two sections. Let h # 0. We have

Re(h) = x(~De Sth, 0: o) V(h) (7.4)
where
Vi) = > " Gr(m. 006N, X) - (7.5)
¢m—n=h

Opening o (M, x) and og(n, x) we can see f{m — n = h as a kind of
determinant equation. We shall estimate the sum V(h) separately for each
h s 0. The main tool for thisis Theorem 1 of [DFI6] which was derived
for this purpose although it deals with amore general determinant equation
(the character values can be replaced by arbitrary but bounded complex
numbers). Actually we shall need to combine Theorem 1 of [DFI6] with
afew estimates of a more direct nature. The required combination will be
performed in the next section.

8 Representations by the deter minant
Let F be asmooth functionon R x R x R™ x R* such that

§(,@2,61,62)
9aZ pa? abl obl?

-4
a14ao+pB1+B2 |a1| |a2| bl b2
z <1+ A) <1+—A 1+ — B 1+—B

where A, B, Z > 1, theimplied constant depending on «1, a, B1, B> aone.
Lét yb,, op, be complex numbers for by, b, > 0. Put

V(h) = ZZZZ YouOb, F(a, @; by, ) ,

ap b2 az bl

W = 35 G [ (57

(bg,b2)[h

8y a7 b bl F(au, a; by, by) < 81

; b, b2> dx

1

In the sequel we shall denote the above integral by | (by, by).
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Theorem 8.1 Let|y,| < 1and|dp,| < 1. For any h# 0 we have
V(h) = W(h) (8.2)

( () (1+ %) (ZBA—lsi‘é)zl“ (AB)”e)

with anye > 0, the implied constant depending en

Proof. By applying asmooth partition of unity on R* we may assume that
F is supported in one of the following sets:

Bi1=[-1,1] xR xRt x R*,
Br =R x[—-1,1] x R x R,
B = 01[ X1, 4X1] x 02[ X2, 4X2] x [Y1, 4Y1] x [Y2, 4Y>],

whereo = (01, 02) = (£, £) and Xy, Xo, Y1, Y, take values 2" > 3
If F issupported in B, then theleft side of (8.2) is

V(h) = > 85, F(0, 3; by, by)

—a2b1:h

—4
<B) (1+ |i|) (1+%> < Br(h) (1+ %)

ab=h

Next, the integral | (b, by) in W(h) is bounded by

by by o IX| x—h/\ ™
(“ B) (” B) / (1+b2) (“ Abl) ox
Here we have
b, b, IX| X — h]
(1+3) (%) (145 (")
(1+|X|>(1+|X |)>1+m
B AB )~ AB’

Hence the main term in (8.2) satisfies

10 2) TR 103) (03)

(b1, bz)\h

|h|
Br(h) 1+ —
<« Br(h) ( + AB)
These estimates are absorbed by the error termin (8.2) showing that Theo-
rem 8.1listrivia if F issupported in 8. Similarly we seethat Theorem 8.1
istrivial if F issupported in 8.
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Now suppose F issupportedinthepositivebox 8 = 871 = [ Xy, 4X1]x
[Xo, 4X5] x [Y1,4Y1] x [Yo, 4Y>]. First we estimate both V(h) and W(h)
trivially using the bound F « T~ where

ey = (142 X2 N Y2
T-te) = (147 (1+2) (14 5) (1+ 5)

Hence

V(h) « T | {(ag, @, b1, b)) € B;  agb, — apby = h} |
[h|

2
_ min(X1Ys, X5Y1) (X1 X2Y1Y9)?
X1Y2+X2Y1) (X1Y2, X5Y1) (X1X2Y1Y2)

<7 (1 +

Ih| lh|
and, becauseT(1+ m) > 1+ 43, itfollows that

h -2
V(h) < T2 (1 + %) (X1 XoYiYp) 34 |

Similarly it follows that

h -2
W(h) < T2 (1 + %) (X1 XoYiYp) 34 |

We apply these estimates for V(h) and W(h) when the box 8 does not
satisfy

A%A < X1, Xo < ATIA

A’B<Y,Y.< A'B (8.3)

where A > 0 will be chosen later. We obtain
V(h) = W(h) + O 4 1+ i} _Z(AB)”S ) (8.4)

T AB

Next we apply Theorem 1 of [DFI6] getting

19
Ih| )‘2 (xlvz xzvl)s
V(h) =Wh)+O( |1+ +
™) ™ (( X1Ys + XoY; XoY1  XiYa

Z8(Y1Y2) 8 (Y1 + Vo) @ (xlxzvlvz)g) .

To be precise Theorem 1 of [DFI6] requires the variables a;, a, to be separ-
ated from by, by, however this can be accomplished for any F(ay, ay; by, by)
which satisfies (8.1) at the cost of an extrafactor Z° in the error term. This
explains why we have above Z8 rather than Z1%/8 asin [DFI6]. Moreover
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thefirst factor (1 + |h|/(X1Y2 + X»Y1)) 2 isredundant, but will be needed
later on. We use the above formulaif B does satisfy (8.3) getting

V(h) = W(h) + O (A—23T—12853—3(AB)8 <1+ %) ) . (85

We equalize the error termsin (8.4) and (8.5) by choosing
47 L

A= (Z8A'B®)% (8.6)
This choice makes the bound (8.4) valid for any positive box 8. Similarly
one can show that (8.4) holdsfor any box of type 87 witho = (+, +). Sum-
ming over the boxes 81, B, and B we complete the proof of Theorem 8.1
since

> T(B) < (I0g2A)2(10g2B)* < (AB) .
B

For special coefficients we can estimate the main term W(h) in (8.2)
successfully. We are interested in the coefficients given by

Yoo = xa(ba/ly) Ly by, =0 ifly by, 8.7)
8, = x2(b2/l2)  ifla| by, 8, =0 ifly 1 by, :

where x1 (mod D), x> (mod D») are non-trivial Dirichlet characters. In
this case we write

I(b b

VOEDWICEED B) ISP ASEL
sdih by=0([5d, £1])
bp=0([4d, £2])

Trivially 1(b, by) <« Amin(by, by) < Ay/biby, but the condition (8.1)
implies that
gP1t+p2

bﬁlbﬁ2 S (b, by)

b1 b2 |h|
B1+B2 -
L 2P A byl (1+ B) (1+ B) (1+ AB)
Hence, applying Burgess's estimate (see [B])

3 (b % « D

b<B
which holds for any non-trivial character x (mod D), one derives
Proposition 8.2 If the coefficients are given by (8.7) then

2
W(h) <« (h) <l+ %) Z2A(D4 Dz)%ﬂ (8.8)

for anye > 0, the implied constant depending en
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9 The non-singular contribution

Now wereturnto R;(h) for h = Owhichisgivenby (7.4) and (7.5). Opening
op(m, x) and og(n, x) we obtain

V() =3 > x(b)x(by)F (@, bp)Gay, by)

tajby—azbi=h

with G(ay, by) being the integral transform

/ / F(CXq, CXp) J—1 (4 +/ LarhoXg X2 ) €(—X1by — Xpap)dxg dX .
Thisis asum of the type considered in Theorem 8.1 for

F(ay, a; by, bp) = F(ay, £ 1hy)
/ / F(cxq, cxo) Je_1(4m/agboXiXo)e(—xXx1by — Xoan)dx dXo .

Wehave F(ay, ay; by, by) <« ¢72X1 X, by atrivia estimation. The condition
(8.1) is satisfied (after scaling by the factor c=2X1X,) with Z = 2|s|,
A = (C+ VEX X)X and B = (¢4 € X1 X2) X1, Moreover our
coefficients are given by (87) with 1 = 1, €, = £, x1 = X, X2 = X.
Combining Theorem 8.1 and Proposition 8.2 we get

Ih| X1 X, )‘2
(C+ € X1X2)2

ﬂ i
e+ VEX1 XX DF + (e VEXaXoP2XaXo) (XX )

V(h) < t(h)[s2E X1 Xo <1+

and so, applying the bound |S(h, 0; ¢)| < (h, ¢) then summing over al
h £ 0 we conclude that R = R: — R:(0) satisfies

R < [s%¢ L (c+ Ve xlxz)z{(c+ VX1 X2) X1 D3
1

ﬂ —
e+ VXX 2 (XX (X XE) ).

This result is not useful if cisvery large. We shall apply it for ¢ < C, say,
with some C > /¢ X1 X, getting

e ISPCHE A
Y IR < szlxz{D X+ C(xxg) "} 9.1)
c<C
c=0(D)
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10 An elementary estimate for R}

For large c we can do better by using the original expression (6.3).

Lemma10.1 Suppose &3, X2) is bounded and supported in the box
[X1, 2X3] x [ X2, 2X] with X1, X, > 3. Then

k—1
X1 X
Rc < <%) (C + £X1X2) X1X2 (|Og 5X1X2)5 . (10'1)

Proof. Open the Kloosterman sum S, (¢m, n; ¢) and the Bessel function
J-1(%Z+/¢mn) by means of the integral representation

B 1 [‘(_s) X\ 25+k—1
o=z [ Ferw(a)

with o = (log5X1X2) 1 (see (8.412.4) of [GRY]). Then apply

el [

d(modc) ' mg<M n<N

< el IBI(C+ EM)Z(c+ N)?

which follows by Cauchy’s inegquality and the orthogonality of additive
characters. Thisleadsto (10.1).

We also need a bound for R.(0). To this end we use the trivia estimate
Gi(by, bp) < €72X1 Xa(c™1/€ X1 X2)%2, giving

Re(0) < (¢ X1 X5) ™ X4 X5 (10g 5X; X2)2.
This is absorbed by the right side of (10.1); therefore Lemma 10.1 holds

dsofor R = R. — R:(0).
Assumek > 3 and C > ¢X;X,. By (10.1) for R; we derive

Y ORI K UCD) T (XaX2) (log5X1X,)® . (10.2)

c>C
c=0(D)

11 Proof of Proposition 5.1. Conclusion
Adding (7.3), (9.1) and (10.2) we get

Y ¢ IR < €72 X1 XoS12D" + £(CD) (X1 X2)* (109 5X1 X)°
c=0(D)

oL
+{PIxs 4+ (XX ) ™ | D20 Xo) M5
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where C is any number > ¢X;X,. We choose C = 0 X1 X2 and estimate
some parts by using X1, X, < +/PD to deduce that

3 TR < (€72 + £°D ) Xy Xa(I8| P?D* (11.1)
c=0(D)

where = (48)~2. By virtue of (6.2) being absorbed by the first term on the
right side of (11.1) this also gives a bound for the sum (6.1). Hence (5.8)
follows.
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