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1 Introduction

We continue our study of GL2 L–functions with the aim of providing upper
bounds for their order of magnitude. As is familiar it suffices to provide
such bounds on the critical line and, both for the sake of applications and
for the ideas involved, we are most interested in breaking the convexity
bound and this with respect to the conductor. In this paper we are interested
primarily in L–functions attached to characters of the class group of the
imaginary quadratic field K = Q(√−D). We are motivated by our paper
[DFI4]. That work was not included in the current series because the class
group L–functions are treated there directly. They may however be viewed
as L–functions associated to cusp forms of weight 1, level D and character
(the nebentypus)

χD(n) =
(−D

n

)
, (1.1)

the Kronecker symbol (we assume throughout that −D is a fundamental
discriminant).

In this paper we focus on this larger framework and consider L–functions
for cusp forms

f(z) =
∞∑
1

λ f (n)n
k−1

2 e(nz) (1.2)
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of weight k, level D and any primitive character χ (mod D). For a tech-
nical reason we assume that k � 3 which helps us to resolve easily the
convergence problems for various series and integrals (see further com-
ments later). The full space of such cusp forms Sk

(
Γ0(D), χD

)
has a unique

finite basis, say F , consisting of primitive forms. To f ∈ F given by the
Fourier expansion (1.2) we attach the L–function

L(s, f ) =
∞∑
1

λ f (n)n
−s (1.3)

and the completed product

Λ(s, f ) =
(√

D

2π

)s

Γ

(
s+ k − 1

2

)
L(s, f ) . (1.4)

As shown by Hecke [H] this is an entire function and satisfies the functional
equation (see Sect. 3)

Λ(s, f ) = ε f Λ(1 − s, f̄ ) . (1.5)

The Riemann hypothesis is expected to hold for every such L–function.
Amongst its many consequences is the Lindelöf type bound

L(s, f ) � (k|s|D)ε (1.6)

for Re s = 1
2 , where ε is any positive number and the implied constant

depends only on ε. Of course, we are far from proving anything like this
in the near future, however from the Phragmen-Lindelöf principle and the
functional equation one easily obtains the “convexity” bound

L(s, f ) � (
k2|s|2 D

) 1
4 +ε

. (1.7)

For many applications it is sufficient to improve this bound in the D aspect
alone. Moreover, although the exponent 1

4 is rather weak, it is only required
to replace it by any smaller number. Thus, our priority in writing this paper
will be for simplification of the arguments rather than attainment of the
sharpest improvement.

A classical example of breaking the convexity bound in the conductor
aspect is due to Burgess [B]. He showed that for Dirichlet L–functions with
any character χ (mod D) one has

L(s, χ) � |s|A D
3

16 +ε (1.8)

while the convexity bound gives only 1
4 in place of 3

16 . Burgess found an
ingenious method for transforming short character sums into high moments
of complete sums for which estimates were available and, in particular, the
Riemann hypothesis for curves over a finite field (Weil’s theorem) furnishes
a strong bound.



Bounds for automorphic L–functions. III 223

In [FI] an alternative method was given for breaking the convexity
barrier. Although it produced a quantitatively weaker result in the Burgess
case, it turned out to be possible to apply this new method more generally, in
particular to GL2 automorphic L–functions in various aspects. For example
in [DFI3] we proved that

L(s, f ) � D
1
4 − 1

192 +ε (1.9)

for f ∈ Sk (Γ0(D)), keven, Re s = 1
2 , ε > 0, the implied constant depending

on k, s and ε.
In this paper we treat the analogous problem when the cusp form

f ∈ Sk (Γ0(D), χ) transforms in accordance with a multiplier given by
a primitive character χ of conductor equal to the level D. Our first result is

Theorem 1.1 Let k� 3 and D squarefree. Letχ (mod D) be a primitive
character withχ(−1) = (−1)k. LetF be the Hecke basis of Sk (Γ0(D), χ)
and L(s, f ) the L–function associated to f∈ F . Let c = (c
) be any
sequence of complex numbers with c
 = 0 if 
 has a prime divisor< z.
Then forRe s = 1

2 we have∑
f ∈F

∣∣∑

6L

c
λ f (
)
∣∣2|L(s, f )|4 � (‖c‖2 + ‖c‖2

1z−1) |s|6 D1+ε (1.10)

for

L = Dα with α = 1/13(48)2 = .0000333 . . . (1.11)

where‖c‖ denotes the
2–norm and‖c‖1 denotes the
1–norm, the implied
constant depending onε and k.

Remarks.The condition that c
 are supported on numbers free of small
prime divisors is introduced only for technical simplification; advantage of
this is taken only once, in the derivation of Corollary 5.2 from Proposi-
tion 5.1. This condition does not affect the application we have in mind,
nevertheless, with extra effort one could show that (1.10) holds for any
numbers c
, and without the second term on the right side.

A theorem of this type is an essential ingredient in our method, the
amplification method, for bounding an L–function; see the survey article [F].
Specifically we have by positivity∣∣A f (L)

∣∣2 |L(s, f )|4 � (‖c‖2 + ‖c‖2
1z−1) |s|6 D1+ε (1.12)

where A f (L) is the “amplifier”

A f (L) =
∑

6L

c
λ f (
) . (1.13)
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Taking the trivial amplifier of length L = 1, we just recover the convexity
bound for L(s, f ). The idea to improve on this goes by choosing the coef-
ficients c
 so as to amplify the contribution to the left side of (1.12) coming
from the individual f whose L–function we are seeking to bound. A natural
choice for this would be c
 = λ f (
), expecting that

A f (L) =
∑

6L

∣∣λ f (
)
∣∣2 � L (1.14)

whereas

‖c‖2 =
∑

6L

∣∣λ f (
)
∣∣2 � L . (1.15)

Choosing L = D4α would then yield (ignore ‖c‖2
1z−1 for the sake of illus-

tration) the bound L(s, f ) � D
1
4 −α+ε. This scheme works in the case of

Dirichlet L–functions and would work here as well if we could prove the
lower bound (1.14). Unfortunately this escapes us, at least for the above
“maximal” choice of c
. The trouble is that λ f (
) could be very small
very often. Fortunately we are able to derive weaker, but non-trivial, lower
bounds for other choices of c
. We do know that for prime p the Hecke
eigenvalues satisfy the relation

λ2
f (p) − λ f (p2) = χ(p) . (1.16)

This for p � D shows that at least one of the two terms has absolute value
� 1

2 , hence both cannot be small. To take advantage of this we choose

c
 =
{
λ f (p)χ(p), if 
 = p, 1

2

√
L < p�

√
L

−χ(p), if 
 = p2, 1
2

√
L < p�

√
L

(1.17)

and zero otherwise. This choice give

A f (L) = �
{

p; p � D, 1
2

√
L < p�

√
L
}


 √
L(log L)−1 (1.18)

whereas ‖c‖ � √
L(log L)−1 and ‖c‖1 � √

L(log L)−1 by the Deligne
bound

∣∣λ f (p)
∣∣ � 2. The numbers c
 are supported on integers having no

prime divisors < z = 1
2

√
L . Hence we obtain by (1.12) and (1.18) (with the

aid of the estimate α > 2−17)

Theorem 1.2 Let k� 3, D squarefree andχ (mod D) a primitive charac-
ter withχ(−1) = (−1)k. Then, for any Hecke cusp form f∈ Sk (Γ0(D), χ),
andRe s = 1

2 , we have

L(s, f ) � |s|2 D
1
4 −α (1.19)

with α = 1/218 and the implied constant depends only on k.
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Of special interest to us is the case of the Kronecker symbol χ = χD.
Note that since D > 0, k must be odd, so we are only missing the case k = 1.
The cusp forms of weight one are special in many respects (algebraically and
analytically) and we intend to cover this case in a separate work. For k � 3
the space Sk

(
Γ0(D), χD

)
contains as a small but prominent subspace Θk(D)

spanned by theta series formed from Hecke characters for the imaginary
quadratic field K = Q(√−D). The Hecke characters in question are those
multiplicative functions ψ, defined on the ideals, which satisfy

ψ
(
(β)
) =

(
β

|β|
)k−1

for every β ∈ O, β �= 0 (1.20)

(we assume that D > 3 so the ring of integers O has two units ±1 and
(1.20) is well defined because k − 1 is even). Given any such character the
others are obtained on multiplying it by the characters of the class group
Cl(K ). Therefore we have h(−D) = �Cl(K ) such characters, where the
class number h satisfies

D
1
2 −ε � h(−D) � D

1
2 log D . (1.21)

We denote the set of these characters by Hk(D). For any ψ ∈ Hk(D) we
have the corresponding theta series

θψ(z) =
∑
a⊂O

ψ(a)(Na)
k−1

2 e(zNa)

=
∞∑
1

λψ(n)n
k−1

2 e(nz) (1.22)

where

λψ(n) =
∑
Na=n

ψ(a) . (1.23)

These are linearly independent Hecke cusp forms in Sk
(
Γ0(D), χD

)
so that

dim Θk(D) = h(−D) whereas

dim Sk
(
Γ0(D), χD

) 

∏
p|D

(p + 1) (1.24)

is much larger. Here we have abused notation a little by writing λψ(n) in
place of λ f (n) with f = θψ . We shall also write L(s, ψ) in place of L(s, f )
for f = θψ . In particular Theorem 1.2 gives

Theorem 1.3 Let ψ be a Hecke character for K= Q(√−D) as above.
Then forRe s = 1

2

L(s, ψ) � |s|2 D
1
4 −α (1.25)

with α = 1/218 and where the implied constant depends only on k.
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In the proof of Theorem 1.1 essential use is made of the spectral com-
pleteness of the family F = F k(D). The family H = Hk(D), although
much smaller, still enjoys a different completeness due to the orthogonality
of characters of the finite abelian group Cl(K ). Therefore one should be
able to prove the analogous result∑

ψ∈H

∣∣∣ ∑
Na6L

caψ(a)

∣∣∣2 |L(s, ψ)|2 � ‖c‖2|s|2 D
1
2 +ε . (1.26)

Here ca are any complex numbers supported on ideals composed of primes
of degree one. In the case of k = 1 the bound (1.26) was completely
established in [DFI4] (apart from the factor |s|2), and that method clearly
works for any odd k � 1. Note that here it is the square rather than the
fourth power of the L–function. Nevertheless, taking the trivial amplifier
one would recover the convexity bound for each L(s, ψ). However when
attempting the use of (1.26) to break convexity we are again faced with
the problem of choosing ca so that the amplifier is relatively large. In this
case, due to the above restriction on the support of ca, one needs to produce
many prime ideals of first degree and small norm. This is an important and
difficult problem. For special discriminants, but not for all, this problem
was resolved in [DFI4]. For example one finds there the bound

L(s, ψ) � D
1
4 −α+ε (1.27)

for those D with no prime divisors > Dα2
, where α = 1/1156.

The fact that the results of [DFI4] do not cover every D was the moti-
vation for this work. To explain the reason why the new method succeeds
in avoiding the problem described above (of finding small splitting primes)
we begin by observing that (1.26) is deduced in [DFI4] from a non-trivial
bound for the sum ∑

ψ∈H

λψ(
)|L(s, ψ)|2 . (1.28)

For simplicity of this discussion only we take 
 prime (and k = 1). Recalling
(1.23) for λψ(
) we see that if 
 does not split then λψ(
) = 0 for every ψ
so there is no possibility of cancellation in (1.28) for such 
. On the other
hand, if we knew there were relatively small primes 
 which do split in K
then for these there would be considerable cancellation, saving a factor 
− 1

2 .
In similar fashion Theorem 1.1 could be deduced from a bound for the sum∑

f ∈F

λ f (
)|L(s, f )|4 (1.29)

(actually for technical reasons we shall replace the L–functions by partial
sums). Here there will always be cancellation. Even if 
 does not split, and
hence λψ(
) = 0 for all ψ ∈ H , these f = θψ now make up only a part of
the total and do not inhibit cancellation in the full sum over f ∈ F .
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In many respects the arguments of this paper follow the path established
in the previous members of this series [DFI1] and [DFI3]. An obstinate
obstruction to the adoption of those however lies in the presence of the
non-trivial nebentypus χ. As in the earlier papers, almost at the outset we
encounter Kloosterman sums which after Poisson summation degenerate to
the simpler Ramanujan sums S(h, 0; c) with h of the type

h = det

(
m1 m2
n1 n2

)
= m1n2 − m2n1 . (1.30)

We need to count the solutions of this equation with considerable precision
when, in the critical range, the variables are all about the size

√
D (or slightly

different by factors coming from the amplifier). In [DFI3] this led to the
quadratic divisor problem, which already had some history and we treated
in [DFI2] producing an asymptotic formula uniform for h in a wide range. In
the current work this problem is much more difficult because the variables
in the lower row are now weighted by the character values χ(n1),χ(n2).
Since the size of the ranges for n1,n2 is relatively small (in terms of the
conductor) we are not able to exploit the fact that these are characters
and have to find results which hold for general complex coefficients. This
general determinant problem was solved in [DFI6] but the main work for
this is the paper [DFI5]. Both of these papers were completely motivated
by the current work. Certainly they have other applications. For example,
the main result of [DFI5] gave new bounds for sums of Salié sums and
thereby a more direct proof of a subconvexity bound for Fourier coefficients
of half–integral weight cusp forms; see [I1] for the original proof. We are
hopeful that these ideas will find still other applications elsewhere.

An interesting aspect (to the authors in any case) occurred when the main
idea for the solution of the general determinant equation [DFI6] turned out
to be a completely different application of the amplification method in an
unexpected setting. This occurs in the proof of Theorem 2 of [DFI5] where,
briefly speaking, we introduced a complete set of multiplicative characters as
companions to the invisible trivial character and amplified the contribution
of the latter. We are hopeful that the amplification method has a bright future
more generally.

Indeed, the amplification method has now begun to also be exploited in
a number of other works; see [KMV] for a very nice recent example of such
a work. Meanwhile, Burgess’s ideas have now also entered into the ring
of GL2 theory. Specifically these have been applied in [FoIw] to break the
convexity bound for the Hecke L–functions of K = Q(√−D) which come
from cusp forms of level D2 and non-trivial nebentypus.

The resolution of the problems treated in [DFI5-6] still left behind
a number of thorny issues and, as might already be guessed from the previous
paragraphs, the present work has evolved over a period of years. During this
time we benefited from the hospitality of both of our home universities and
from frequent visits to MSRI Berkeley and to IAS Princeton. Who can tell
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the extent to which our work was enhanced by the scenery at the former and
the cuisine at the latter?

2 A brief account of Sk (Γ0(D), χ)

In this section we collect basic results about classical automorphic forms
which are needed in this paper. They all are standard and can be found with
proofs in [I2]. Throughout k � 3, D � 3, Γ = Γ0(D) is the group of
matrices γ = (a b

c d

) ∈ SL2(Z) with c ≡ 0 (mod D), so

ν(D) = [Γ0(1) : Γ0(D)] = D
∏
p|D

(
1 + 1

p

)
, (2.1)

and χ (mod D) is a primitive character such that

χ(−1) = (−1)k . (2.2)

LetH denote the upper-half plane consisting of complex numbers z = x+iy
with y > 0 acted on by the linear fractional transformations

γz = az+ b

cz+ d
.

Let Ak(Γ, χ) be the linear space of functions f : H→ C which satisfy

f(γz) = χ(d)(cz+ d)k f(z) .

Let Sk(Γ, χ) be the subspace of cusp forms. This is a finite dimensional
Hilbert space with respect to the Petersson inner product

〈 f, g〉 =
∫
Γ \H

f(z)ḡ(z)yk−2dx dy. (2.3)

Let F be an orthonormal basis of Sk(Γ, χ). Every f ∈ F has a Fourier
series expansion

f(z) =
∞∑
1

af (n)n
k−1

2 e(nz) (2.4)

with complex coefficients a f (n). The celebrated formula of Petersson asserts
that for any m,n � 1

(4π)1−kΓ(k − 1)
∑
f∈F

ā f (m)af (n) = (2.5)

δmn + 2πi −k
∑

c≡0(D)

c−1 Sχ(m,n; c)Jk−1

(
4π

c

√
mn

)
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where δmn is the Kronecker diagonal symbol, c runs over positive integral
multiples of D, Sχ(m,n; c) is the Kloosterman sum given by

Sχ(m,n; c) =
∑

ad≡1(modc)

χ(a)e

(
am+ dn

c

)
(2.6)

and Jk−1(x) is the Bessel function. Since Jk−1(x) � x for k � 3 and∣∣Sχ(m,n; c)
∣∣ � (m,n, c)

1
2 c

1
2 τ(c) (2.7)

the series on the right-hand side of (2.5) converges absolutely.
From now on we assume that F is the Hecke basis. Since the character

χ (mod D) is primitive every f ∈ F is a primitive cusp form. This means
f is an eigenfunction of all the Hecke operators

(Tn f ) (z) = 1√
n

∑
ad=n

χ(a)
(a

d

) k
2
∑

b(modd)

f

(
az+ b

d

)
. (2.8)

Thus for any n (not necessarily prime to the level D) we have

Tn f = λ f (n) f (2.9)

for some complex numbers λ f (n). Note that we have normalized Tn so that
the Ramanujan conjecture (proved by P. Deligne) is the bound

|λ f (n)| � τ(n) (2.10)

where τ(n) denotes the divisor function. The eigenvalues λ f (n) enjoy the
multiplicativity property

λ f (m)λ f (n) =
∑

d|(m,n)

χ(d)λ f (mnd−2) . (2.11)

They are not always real numbers, even if χ (mod D) is a real character.
Precisely we have

λ f (n) = χ(n)λ f (n) if (n, D) = 1 . (2.12)

If n is not prime to D then the relation (2.12) does not hold. For every p | D
we have λ f (p
) = λ f (p)
 with

|λ f (p)| = 1 . (2.13)

Every primitive form is automatically an eigenfunction of the involution
operator W : Sk(Γ, χ) → Sk(Γ, χ) which is defined by W = KW, where

(W f)(z) = (z
√

D)−k f(−1/zD)

(K f )(z) = f̄ (−z̄) .
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Note that W : Sk(Γ, χ) → Sk(Γ, χ) and K : Sk(Γ, χ) → Sk(Γ, χ). The
operator K acts on the Fourier series (2.4) by conjugating its coefficients,
thus K is not linear over C, nor is W. As we have said and as follows from
the multiplicity-one property of Hecke operators

W f = η f f if f ∈ F (2.14)

for a complex number η f with |η f | = 1 (which follows from W
2 = 1 and

W(η f ) = η̄ W f for η ∈ C). The eigenvalue η f is given by

η f = λ f (D)τχ D− 1
2 (2.15)

where τχ is the Gauss sum

τχ =
∑

x(mod D)

χ(x)e

(
x

D

)
. (2.16)

The Fourier coefficients af (n) of a primitive form f are proportional to the
Hecke eigenvalues λ f (n),

af (n) = af (1)λ f (n) . (2.17)

Hence putting

ω f = (4π)1−kΓ(k − 1)|af (1)|2 (2.18)

we can write the Petersson formula (2.5) as

Lemma 2.1 LetF be the Hecke basis of Sk(Γ, χ). Then for any m,n � 1∑
f ∈F

ω f λ̄ f (m)λ f (n) = (2.19)

δmn + 2πi −k
∑

c≡0(D)

c−1Sχ(m,n; c)Jk−1

(
4π

c

√
mn

)
.

Assuming ‖ f ‖ = 1 we have (cf. Proposition 13.1 of [I2])

|af (1)|−2 = (4π)−kΓ(k) vol(Γ \H) res
s=1

L(s, f ⊗ f̄ ) (2.20)

where L(s, f ⊗ f̄ ) is the Rankin-Selberg L–function

L(s, f ⊗ f̄ ) =
∞∑
1

|λ f (n)|2n−s . (2.21)

This has the Euler product L(s, f ⊗ f̄ ) = ∏
p

L p(s, f ⊗ f̄ ) with

L p(s, f ⊗ f̄ ) = (
1 − p−s

)−1
(2.22)
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if p | D and

L p(s, f ⊗ f̄ ) = (
1 + p−s

)
(2.23)(

1 − |α f (p)|2 p−s
)−1 (

1 − p−s
)−1 (

1 − |β f (p)|2 p−s
)−1

if p � D. Moreover, for a suitable factor L∞(s, f ⊗ f̄ ), the product may be
completed to Λ(s, f ⊗ f̄ ) = L∞(s, f ⊗ f̄ )L(s, f ⊗ f̄ ) (cf. Theorem 2.2
of [L]) which is holomorphic on C except for simple poles at s = 1, 0, and
satisfies the functional equation

Λ(s, f ⊗ f̄ ) = Λ(1 − s, f ⊗ f̄ ) . (2.24)

In general the local factor at p = ∞ is quite involved, but if D is squarefree
then

L∞(s, f ⊗ f̄ ) = (2π)−sζ(2s)Γ(s)Γ(s+ k − 1)
∏
p|D

(ps + 1). (2.25)

Define the symmetric square L–function by means of the Euler product
L(s, sym2 f ) = ∏

p
L p(s, sym2 f ) with the local factors given by

L p(s, sym2 f ) = (
1 − p−s

)−1
(2.26)

if p | D and

L p(s, sym2 f ) = (2.27)(
1 − |α f (p)|2 p−s

)−1 (
1 − p−s

)−1 (
1 − |βp|2 p−s

)−1

if p � D. This can be also written in terms of the Hecke eigenvalues

L p(s, sym2 f ) = (2.28)(
1 − χ(p)λ f (p2)p−s + χ(p)λ f (p2)p−2s − p−3s

)−1

(note that χ(p)λ f (p2) is real). At the infinite place we define

L∞(s, sym2 f ) = (
D/2π3/2)s Γ (s+1

2

)
Γ(s+ k − 1) (2.29)

and we put Λ(s, sym2 f ) = L∞(s, sym2 f )L(s, sym2 f ). Note that

Λ(s, f ⊗ f̄ ) = 1
2π

− s+1
2 Γ

(
s
2

)
ζ(s)Λ(s, sym2 f ) (2.30)
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by the duplication formula Γ
(

s
2

)
Γ
(

s+1
2

) = √
π21−sΓ(s). Therefore the

functional equations for L(s, f ⊗ f̄ ) and ζ(s) yield the functional equation
for L(s, sym2 f ), namely

Λ(s, sym2 f ) = Λ(1 − s, sym2 f ) . (2.31)

Moreover it is known that Λ(s, sym2 f ) is entire (essentially due to
G. Shimura, cf. [S]). From (2.30) we obtain

res
s=1

L(s, f ⊗ f̄ ) = D

ν(D)

L(1, sym2 f )

2πζ(2)
. (2.32)

Moreover we have vol(Γ \ H) = π
3 [Γ0(1) : Γ0(D)] = π

3 ν(D). Inserting
these values into (2.20) we get

|af (1)|−2 = π−2(4π)−kΓ(k)DL(1, sym2 f ) . (2.33)

Finally we get by (2.33) and (2.18)

ω f = 24πζ(2)

(k − 1)DL(1, sym2 f )
. (2.34)

Using (2.10) one can show that

L(1, sym2 f ) � (log kD)3 . (2.35)

Hence

ω f � (kD)−1(log kD)−3 (2.36)

where the implied constant is absolute. This bound is quite precise because
the average value of ω f is asymptotically 1/ dim Sk(Γ, χ). Indeed it follows
from the Petersson formula (2.19) that∑

f ∈F

ω f = 1 + O(D−1) . (2.37)

We shall require the following extension of (2.37).

Lemma 2.2 For any complex numbers an we have

∑
f ∈F

ω f

∣∣∣∑
n6N

anλ f (n)
∣∣∣2 = {

1 + O(ND−1)
}∑

n6N

|an|2 . (2.38)

Proof. Follows verbatim the proof of Theorem 5.7 of [I2] which gave the
result for χ = 1.
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3 The L–functions

To each f ∈ F we associate the Hecke L function

L(s, f ) =
∞∑
1

λ f (n)n
−s . (3.1)

By (2.11) this has the Euler product

L(s, f ) =
∏

p

(
1 − λ f (p)p−s + χ(p)p−2s

)−1

=
∏

p

(
1 − α f (p)p−s

)−1 (
1 − β f (p)p−s

)−1
(3.2)

with α f (p)+β f (p) = λ f (p) and α f (p)β f (p) = χ(p). Hecke showed that
L(s, f ) is entire and satisfies the functional equation

Λ(s, f ) = ε f Λ(1 − s, f̄ ) (3.3)

where f̄ = K f and Λ(s, f ) is the completed product

Λ(s, f ) =
(√

D

2π

)s

Γ

(
s+ k − 1

2

)
L(s, f ) . (3.4)

This follows by applying the Mellin transform to (2.14) for z = iy. One
gets (3.3) with

ε f = i kλ f (D)τ̄χ D− 1
2 . (3.5)

However, all we need to know about ε f in this paper is that

|ε f | = 1 . (3.6)

Using the functional equation (3.3) we shall represent L(s, f ) on the
critical line Re s = 1

2 in terms of rapidly converging series, essentially
equivalent to partial sums of length |s|√D. To this end we choose a function
G(u) which is holomorphic in | Re u| � 1 such that

G(u) = G(−u)
G(0) = 1 (3.7)

G(u) � (1 + |u|)−ke
π
2 |u| .

Consider the integral

I(s, f ) = 1

2πi

∫
(1)

Λ(s+ u, f )G(u)u−1du .
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Moving the integration to the line Re u = −1 and applying (3.3) we get

Λ(s, f ) = I(s, f ) + ε f I(1 − s, f̄ ) . (3.8)

On the other hand, introducing the Dirichlet series (3.1) and integrating
termwise we obtain

I(s, f ) =
∞∑
1

λ f (n)
1

2πi

∫
(1)

(√
D

2πn

)s+u

Γ
(
s+ u + k−1

2

)
G(u)u−1du .

Inserting this into (3.8) and dividing by (
√

D/2π)sΓ
(
s+ k−1

2

)
we arrive at

the desired representation:

Lemma 3.1 For s withRe s = 1
2 we have

L(s, f ) = (3.9)
∞∑
1

λ f (n)n
−sVs

(
2πn√

D

)
+ ε f (s)

∞∑
1

λ̄ f (n)n
s−1V1−s

(
2πn√

D

)

where

ε f (s) = ε f

(√
D

2π

)1−2s
Γ(1 − s+ κ)

Γ(s+ κ)
, (3.10)

κ = k−1
2 , and Vs(y) is given by the Mellin integral

Vs(y) = 1

2πi

∫
(1)

Γ(s+ u + κ)

Γ(s+ κ)

G(u)

u
y−udu . (3.11)

Remark.For Re s = 1
2 we have |ε f (s)| = 1.

Moving the integration to the line Re s = −κ we deduce that

Vs(y) = 1 + O
(( y

|s|
)κ)

(3.12)

where the implied constant depends on κ, that is on k. In applications of
Lemma 3.1 we need to control the growth of Vs(y) and its derivatives for
large y. To this end we choose

G(u) =
(

cos
πu

A

)−A
(3.13)

where A is a large integer, A � 3.

Lemma 3.2 For any integer a� 0 we have

V(a)
s (y) �

( |s|
y

)a(
1 + y

|s|
)−A

(3.14)

the implied constant depending only on a, A and k.
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Proof. Move the integration to the line Re u = A and differentiate a times
getting

V(a)
s (y) �

∫
(A)

∣∣∣∣Γ(s+ u + κ)

Γ(s+ κ)

(
ycos

πu

A

)−A (u

y

)a du

u

∣∣∣∣ .

By Stirling’s formula we derive that uaΓ(s+ u + κ)/Γ(s+ κ) is bounded
by

|s|−κ|s+ u|κ+A|u|a exp
π

2
(| Im s| − | Im(s+ u)|) � |s|a+A exp

(π
2

|u|
)

.

Hence we deduce that V(a)
s (y) is bounded by( |s|

y

)a+A ∫
(A)

∣∣∣∣(cos
πu

A

)−A
exp

(π
2

|u|
) du

u

∣∣∣∣ �
( |s|

y

)a+A

.

This yields (3.14) if y � |s|. If y < |s| and a > 0, then we move the
integration to the line Re u = 0 and estimate as above getting (3.14). If
y < |s| and a = 0 then (3.12) is more precise than (3.14).

4 Preliminary estimates of L(s, f )

Applying a smooth partition of unity we derive by (3.9) and (3.14) that

L(s, f ) �
∑

N

|Gf (N)|N− 1
2

(
1 + N

|s|√D

)−A

(4.1)

where Gf (N) are sums of type

Gf (N) =
∑

n

λ f (n)g(n) (4.2)

with g(x) a smooth function supported on [N, 2N] for N = 2ν/2, ν � −1,
such that

g(a)(x) �
( |s|

N

)a

(4.3)

for all a � 0, the implied constant depending only on a, A and k. By
Hölder’s inequality

L(s, f )4 �
∑

N

|Gf (N)|4 N−2

(
1 + N

|s|√D

)−4A

log 2N . (4.4)

Here, and in (4.1), the implied constant depends only on A and k.
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Fix the complex numbers c
. Put

A f (L) =
∑

6L

c
λ f (
) . (4.5)

By (2.10) and the Cauchy inequality we get

Af (L) � ‖c‖L
1
2 (log 2L)

3
2 (4.6)

where ‖c‖ denotes the 
2–norm. This trivial estimate, of course, cannot be
improved for a given general f (apart from the logarithmic factor). Our goal
is to establish non-trivial estimates for the averages

D(L, N) =
∑
f ∈F

ω f

∣∣Af (L)
∣∣2 ∣∣Gf (N)

∣∣4 . (4.7)

Using the multiplicativity of Hecke eigenvalues one easily derives by
Lemma 2.2 the following general result

D(L, N) � ‖c‖2
(
1 + D−1L N2

)
N2+ε (4.8)

where ε is any positive number, the implied constant depending on ε and k.
This would be sufficient if L N2 � D, but not so in the crucial range N 
 D

1
2

in which case the factor |Af (L)|2 has only a trivial effect on the bound (4.8).
Exploiting the smooth sum of Hecke eigenvalues Gf (N) we shall improve
on (4.8), provided that L is sufficiently small. For technical simplifications
we restrict the sum (4.5) to numbers free of small prime divisors.

Proposition 4.1 Suppose c
 are supported on positive integers having no
prime divisors< z. Then we have

D(L, N) � (4.9){‖c‖2(1 + L13 D−θ) + ‖c‖2
1z−1} N2 (1 + D−1N2)2 |s|2 Dε

where θ = (48)−2, and ε is any positive number, the implied constant
depending onε and k.

Choosing L = Dθ/13 the bound (4.9) simplifies to

D(L, N) � (‖c‖2 + ‖c‖2
1z−1

)
N2
(
1 + D−1 N2

)2 |s|2 Dε . (4.10)

Next we derive by (4.4) and (4.10) that∑
f ∈F

ω f |Af (L)|2|L(s, f )|4 � (‖c‖2 + ‖c‖2
1z−1

) |s|6 Dε . (4.11)

Finally we remove the spectral weights ω f by applying the lower bound
(2.36) and as a result obtain Theorem 1.1.
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5 The sums Nf (
)

It remains to prove Proposition 4.1 and for this we spend the rest of the
paper. We begin by making suitable arrangements in the double sum

∣∣Gf (N)
∣∣2 =

∑
n1

∑
n2

λ f (n1)λ f (n2)g(n1)ḡ(n2) .

Here we write n2 as δn2 with δ | D∞ and (n2, D) = 1. Then we have
λ f (δn2) = λ f (δ)χ(n2)λ f (n2) by (2.12) and

λ f (n1)λ f (δn2) = λ f (δ)χ(n2)
∑

d|(n1,n2)

χ(d)λ f
(
n1n2d

−2
)

by (2.11). Thus
∣∣Gf (N)

∣∣2 is equal to

∑
δ|D∞

λ f (δ)
∑

d

χ(d)
∑
n1

∑
n2

λ f (n1n2)χ(n2)g(dn1)ḡ(δdn2) .

Hence, by Cauchy’s inequality (use also (2.13))

∣∣Gf (N)
∣∣4 � (DN)ε

∑
δ|D∞

√
δ
∑

(d,D)=1

d
∣∣∑

n

λ f (n)σ(n, χ)
∣∣2 (5.1)

where

σ(n, χ) =
∑∑
n1 n2=n

g(dn1)ḡ(δdn2)χ(n2) (5.2)

for the relevant δ,d and g.
Having in mind some other applications in the future we consider slightly

more general sums of type

Nf (
) =
∑

n

λ f (
n)σF(n, χ) (5.3)

where F(x1, x2) is a function of Schwartz class on R2 and

σF(n, χ) =
∑

n1 n2=n

F(n1,n2)χ(n2) . (5.4)

In particular the innermost sum in (5.1) agrees with Nf (1) for the test
function F(x1, x2) = g(dx1)ḡ(δdx2). In this case

supp F ⊂ [X1, 2X1] × [X2, 2X2] (5.5)



238 W. Duke et al.

with dX1 = δdX2 = N and the partial derivatives satisfy (see (4.3))

F(α1,α2) � |s|α1+α2 X−α1
1 X−α2

2 . (5.6)

From now on F is any smooth function satisfying (5.5) and (5.6) with
X1, X2 � 1

2 for any α1, α2 � 0, the implied constant depending on α1, α2.
Put

P = 1 + (X1 + X2)
2 D−1 . (5.7)

We think of X1, X2 both close to D
1
2 so P is small. Our goal is

Proposition 5.1 For any
 � 1 and X1, X2 � 1
2 we have∑

f ∈F

ω f Nf (
)Nf (1) � (

− 1

2 + 
6 D−θ
)
X1 X2 P2|s|2 Dε (5.8)

where θ = (48)−2 and ε is any positive number, the implied constant
depending onε.

We do not require 
 to be free of small prime divisors, however for
technical simplifications in the following corollary we express the result
in terms of the greatest prime factor of 
, denoted by p(
) (by convention
p(1) = 1).

Corollary 5.2 For any
 � 1 and X1, X2 � 1
2 we have

∑
f ∈F

ω f λ f (
)
∣∣Nf (1)

∣∣2 �
(

1√



+ 1

p(
)
+ 
6

Dθ

)
X1 X2 P2|s|2 Dε (5.9)

for anyε > 0, the implied constant depending onε.

Proof. We write

λ f (
)Nf (1) =
∑

m

∑
d|(
,m)

χ(d)λ f (
md−2)σF(m, χ) .

If d > 1 then d � p(
) so the contribution of such terms to the left side of
(5.9) is bounded by (apply Lemma 2.2)

O

(
X1 X2

p(
)

(
1 + X1 X2

D

)
(log 5X1 X2)

3

)
(5.10)

and this is absorbed by the right side of (5.9). From d = 1 we get Nf (
)
so the contribution of such terms is bounded by (5.8). Clearly the right side
of (5.8) is absorbed by the right side of (5.9). This completes the proof of
Corollary 5.2.

Now Proposition 4.1 follows from (5.9) and (5.1) on using the multi-
plicativity of the Hecke eigenvalue λ f (
). Therefore, it remains to prove
Proposition 5.1.
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6 Applications of the Petersson and the Poisson formulas

We begin the proof of Proposition 5.1 by applying the Petersson formula
(2.19); this gives∑

f ∈F

ω f N f (
)N f (1) = R0 + 2πi −k
∑

c≡0(D)

c−1 Rc (6.1)

where

R0 =
∑

m

σ̄F(m, χ)σF(
m, χ) � 
−1 X1 X2 Dε (6.2)

and

Rc =
∑

m

∑
n

σ̄F(m, χ)σF(n, χ)Sχ(
m,n; c)Jk−1

(
4π

c

√

mn

)
. (6.3)

Next we transform Rc by means of the following involution.

Proposition 6.1 Let c > 0, c ≡ 0 (mod D) and (c,d) = 1. Let F be
a Schwartz function onR2. Then

∑
n

σF(n, χ)e

(
dn

c

)
= χ(−d)c

∑
n

σG(n, χ)e

(
− d̄n

c

)
(6.4)

where

G(y1, y2) =
∫∫

F(cx1, cx2)e(−x1 y2 − x2 y1)dx1dx2 . (6.5)

Proof. Split into classes modulo cand apply the Poisson summation formula
as in Lemma 9.2 of [DI].

Now we open the Kloosterman sum Sχ(
m,n; c) in (6.3) and execute
the summation in n, but not in m, by means of (6.4). Consequently the
Kloosterman sum degenerates to the Ramanujan sum S(
m − n, 0; c), and
we obtain

Rc = χ(−1)c
∑

m

∑
n

σ̄F(m, χ)σG(n, χ)S(
m− n, 0; c) (6.6)

where G is the following integral transform of F (note the added Bessel
function):

G(y1, y2) = (6.7)∫∫
F(cx1, cx2)Jk−1(4π

√

mx1x2)e(−x1 y2 − x2 y1)dx1 dx2.

An important feature of the new expression (6.6) for Rc (aside from the
fact that Ramanujan sums are simpler than Kloosterman sums) is that the
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“dual” variable n appears with the original m in an additive form rather than
in the multiplicative form as it was in (6.3). We now split the sum (6.6) in
accordance with 
m − n = h, say

Rc =
∑

h

Rc(h) (6.8)

and we shall treat each Rc(h) separately.

7 The singular contribution

For h = 0 we get S(0, 0; c) = ϕ(c) and

Rc(0) = χ(−1)ϕ(c)c
∑

m

σ̄F(m, χ)σG(
m, χ)

= χ(−1)ϕ(c)c
∑

a1a2
=b1b2

χ(a2)χ(b2)F(a1,a2)G(b1,b2).

Combining the terms for b1,b2 with those for −b1,−b2 we can replace
G(b1,b2) by

χ(−1)Gk(b1,b2) = χ(−1)G(b1,b2) + G(−b1,−b2) (7.1)

=
∫∫

F(cx1, cx2)Jk−1
(
4π
√

a1a2x1x2

)
Ek(b1x2 + b2x1)dx1 dx2

where Ek(x) = e(x) + (−1)ke(−x), that is

Ek(x) =
{

2 cos 2πx, if k even,
2i sin 2πx, if k odd.

We obtain

Rc(0) = (−1)kϕ(c)c
∑

a1a2
=b1b2

χ(a2)χ(b2)F(a1,a2)Gk(b1,b2) (7.2)

where a1,a2,b1,b2 run over positive integers. Have in mind that
Gk(b1,b2) depends on a1a2 and c by way of the integrated functions
F(cx1, cx2) and Jk−1

(
4π

√

a1a2x1x2

)
.

We execute the summation over c by means of the following

Lemma 7.1 Let F be smooth, compactly supported onR+. Then∑
c≡0(D)

ϕ(c)F(c) = 1

ζ(2)ν(D)

∫
tF(t)dt +

∫
ξD(t)dtF(t)

where

ξD(t) = ϕ(D)

D

∑
(d,D)=1

µ(d)

d

{
t

dD

}
� log

(
1 + t

D

)
.
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Proof. This follows from the Euler-Maclaurin formula, cf. [DFI3].

Summing c−1 Rc(0) over c ≡ 0(mod D) we obtain by Lemma 7.1∑
c≡0(D)

ϕ(c)F(cx1, cx2) =

1

ζ(2)ν(D)

∫
tF(tx1, tx2)dt +

∫
ξD(t)

∂

∂t
(tF(tx1, tx2))dt .

Integrating the first integral over x1, x2 and changing these variables by
a factor t we arrive at the integral of F(x1, x2) against∫ ∞

0
Jk−1

(
4πt

√

a1a2x1x2

)
Ek ((b1x2 + b2x1)t) t−1dt .

However this last integral vanishes by the orthogonality formula∫ ∞

0
Jk−1(2πat)Ek(bt)t−1dt = 0

which is valid for b� a � 0 (see (6.693.1) and (6.693.2) of [GR]). This is
reminiscent of (55) of [DFI3]. In our case

b = b1x2 + b2x1 � 2
√

b1b2x1x2 = 2
√

a1a2x1x2 = a .

Therefore we are left with∑
c≡0(D)

c−1 Rc(0) =
∑

a1a2
=b1b2

χ(a2)χ(b2)F(a1,a2)I(a1a2; b1,b2)

where

I(m; b1,b2) =
∫∫∫

ξD(t)
∂

∂t
(tF(tx1, tx2)) Jk−1

(
4π
√

mx1x2

)
Ek(b2x1 + b1x2)dx1 dx2 dt .

Change x2 into x/x1 and use the estimate∫
∂

∂t
(tF(tx1, tx/x1))e(b2x1 + b1x/x1)dx1 � |s|2(1 + b1b2x)−

1
4

(see Lemma 11.3 of [DFI3]). Note that b1b2 = a1a2
 
 X1 X2
. A similar
bound holds for the Bessel function,

Jk−1
(
4π

√

m x

) � (
1 + √


m x
)− 1

2 � (1 + X1 X2
x)−
1
4 .

Note that t2x 
 X1 X2 by the support of F(tx1 , tx/x1). From the combination
of these two estimates we deduce that

I(m; b1,b2) � |s|2 X1 X2

∫ ∞

0
log
(

1 + t

D

)(
t + √


 X1 X2
)−1

t−1dt

� |s|2
− 1
2 log D .
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Hence we conclude that∑
c≡0(D)

c−1 Rc(0) � 
− 1
2 X1 X2|s|2 Dε . (7.3)

This bound is absorbed by the right side of (5.8), thus completing the goal
for this section of estimating the singular contribution.

It is appropriate to insert here some explanation of our plans for the
estimation of the non-singular contribution which will take place in the next
two sections. Let h �= 0. We have

Rc(h) = χ(−1)c S(h, 0; c)V(h) (7.4)

where

V(h) =
∑∑

m−n=h

σ̄F(m, χ)σG(n, χ) . (7.5)

Opening σF(m, χ) and σG(n, χ) we can see 
m − n = h as a kind of
determinant equation. We shall estimate the sum V(h) separately for each
h �= 0. The main tool for this is Theorem 1 of [DFI6] which was derived
for this purpose although it deals with a more general determinant equation
(the character values can be replaced by arbitrary but bounded complex
numbers). Actually we shall need to combine Theorem 1 of [DFI6] with
a few estimates of a more direct nature. The required combination will be
performed in the next section.

8 Representations by the determinant

Let F be a smooth function on R× R×R+ × R+ such that

aα1
1 aα2

2 bβ1
1 bβ2

2

∂(α1,α2,β1,β2)

∂aα1
1 ∂aα2

2 ∂bβ1
1 ∂bβ2

2

F(a1,a2; b1,b2) � (8.1)

Zα1+α2+β1+β2

(
1 + |a1|

A

)−4 (
1 + |a2|

A

)−4 (
1 + b1

B

)−4 (
1 + b2

B

)−4

where A, B, Z � 1, the implied constant depending on α1, α2, β1, β2 alone.
Let γb1, δb2 be complex numbers for b1,b2 > 0. Put

V(h) =
∑∑∑∑

a1b2−a2b1=h

γb1δb2 F(a1,a2; b1,b2) ,

W(h) =
∑∑
(b1,b2)|h

γb1δb2

(b1,b2)

b1b2

∫
F

(
x

b2
,

x − h

b1
; b1,b2

)
dx .

In the sequel we shall denote the above integral by I(b1,b2).
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Theorem 8.1 Let |γb1| � 1 and |δb2 | � 1. For any h �= 0 we have

V(h) = W(h) (8.2)

+O

(
τ(h)

(
1 + |h|

AB

)−2 (
Z8 A−1 B

47
48

) 1
24

(AB)1+ε

)

with anyε > 0, the implied constant depending onε.

Proof. By applying a smooth partition of unity on R4 we may assume that
F is supported in one of the following sets:

B1 = [−1, 1] × R×R+ × R+,
B2 = R× [−1, 1] ×R+ × R+,
Bσ = σ1[X1, 4X1] × σ2[X2, 4X2] × [Y1, 4Y1] × [Y2, 4Y2],

where σ = (σ1, σ2) = (±,±) and X1, X2,Y1,Y2 take values 2n � 1
2 .

If F is supported in B1 then the left side of (8.2) is

V(h) =
∑

−a2b1=h

γb1δb2 F(0,a2; b1,b2)

� B
∑
ab=h

(
1 + |a|

A

)−4 (
1 + b

B

)−4

� Bτ(h)

(
1 + |h|

AB

)−4

.

Next, the integral I(b1,b2) in W(h) is bounded by(
1 + b1

B

)−4 (
1 + b2

B

)−4 ∫ ∞

−∞

(
1 + |x|

b2

)−4 (
1 + |x − h|

Ab1

)−4

dx.

Here we have(
1 + b1

B

)(
1 + b2

B

)(
1 + |x|

b2

)(
1 + |x − h|

Ab1

)

�
(

1 + |x|
B

)(
1 + |x − h|

AB

)
� 1 + |h|

AB
.

Hence the main term in (8.2) satisfies

W(h) �
(

1 + |h|
AB

)−2∑∑
(b1,b2)|h

(b1,b2)

b1

(
1 + b1

B

)−2 (
1 + b2

B

)−2

� Bτ(h)

(
1 + |h|

AB

)−2

.

These estimates are absorbed by the error term in (8.2) showing that Theo-
rem 8.1 is trivial if F is supported in B1. Similarly we see that Theorem 8.1
is trivial if F is supported in B2.
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Now suppose F is supported in the positive boxB = B++ = [X1, 4X1]×
[X2, 4X2] × [Y1, 4Y1] × [Y2, 4Y2]. First we estimate both V(h) and W(h)
trivially using the bound F � T−4 where

T = T(B) =
(

1 + X1

A

)(
1 + X2

A

)(
1 + Y1

B

)(
1 + Y2

B

)
.

Hence

V(h) � T−4 | {(a1,a2,b1,b2) ∈ B ; a1b2 − a2b1 = h} |
� T−4

(
1 + |h|

X1Y2 + X2Y1

)−2

min(X1Y2, X2Y1) (X1 X2Y1Y2)
ε

and, because T
(

1 + |h|
X1Y2+X2Y1

)
� 1 + |h|

AB, it follows that

V(h) � T−2

(
1 + |h|

AB

)−2

(X1 X2Y1Y2)
1
2 +ε .

Similarly it follows that

W(h) � T−2

(
1 + |h|

AB

)−2

(X1 X2Y1Y2)
1
2 +ε .

We apply these estimates for V(h) and W(h) when the box B does not
satisfy

∆2 A < X1, X2 < ∆−1 A
∆2 B < Y1,Y2 < ∆−1 B (8.3)

where ∆ > 0 will be chosen later. We obtain

V(h) = W(h) + O

(
∆

T

(
1 + |h|

AB

)−2

(AB)1+ε

)
. (8.4)

Next we apply Theorem 1 of [DFI6] getting

V(h) = W(h) + O

((
1 + |h|

X1Y2 + X2Y1

)−2 (X1Y2

X2Y1
+ X2Y1

X1Y2

) 19
8

Z8(Y1Y2)
7
8 (Y1 + Y2)

11
48 (X1 X2Y1Y2)

ε

)
.

To be precise Theorem 1 of [DFI6] requires the variables a1,a2 to be separ-
ated from b1,b2, however this can be accomplished for any F(a1,a2; b1,b2)
which satisfies (8.1) at the cost of an extra factor Z5 in the error term. This
explains why we have above Z8 rather than Z19/8 as in [DFI6]. Moreover
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the first factor (1 + |h|/(X1Y2 + X2Y1))
−2 is redundant, but will be needed

later on. We use the above formula if B does satisfy (8.3) getting

V(h) = W(h) + O

(
∆−23T−1 Z8 B

95
48 (AB)ε

(
1 + |h|

AB

)−2
)

. (8.5)

We equalize the error terms in (8.4) and (8.5) by choosing

∆ = (
Z8 A−1 B

47
48
) 1

24 . (8.6)

This choice makes the bound (8.4) valid for any positive box B. Similarly
one can show that (8.4) holds for any box of type Bσ with σ = (±,±). Sum-
ming over the boxes B1,B2 and Bσ we complete the proof of Theorem 8.1
since ∑

B

T(B) � (log 2A)2(log 2B)2 � (AB)ε .

For special coefficients we can estimate the main term W(h) in (8.2)
successfully. We are interested in the coefficients given by

γb1 = χ1(b1/
1) if 
1 | b1 , γb1 = 0 if 
1 � b1 ,
δb2 = χ2(b2/
2) if 
2 | b2 , δb2 = 0 if 
2 � b2 ,

(8.7)

where χ1 (mod D1), χ2 (mod D2) are non-trivial Dirichlet characters. In
this case we write

W(h) =
∑
δd|h

µ(δ)d
∑∑

b1≡0([δd,
1])
b2≡0([δd,
2])

χ1(b1)χ2(b2)
I(b1,b2)

b1b2
.

Trivially I(b1,b2) � Amin(b1,b2) � A
√

b1b2, but the condition (8.1)
implies that

bβ1
1 bβ2

2

∂β1+β2

∂bβ1
1 ∂bβ2

2

I(b1,b2)

� Zβ1+β2 A
√

b1b2

(
1 + b1

B

)−2 (
1 + b2

B

)−2 (
1 + |h|

AB

)−2

.

Hence, applying Burgess’s estimate (see [B])∑
b6B

χ(b)b− 1
2 � D

3
16 +ε ,

which holds for any non-trivial character χ (mod D), one derives

Proposition 8.2 If the coefficients are given by (8.7) then

W(h) � τ(h)

(
1 + |h|

AB

)−2

Z2 A(D1 D2)
3

16 +ε (8.8)

for anyε > 0, the implied constant depending onε.
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9 The non-singular contribution

Now we return to Rc(h) for h �= 0 which is given by (7.4) and (7.5). Opening
σF(m, χ) and σG(n, χ) we obtain

V(h) =
∑∑∑∑


a1b2−a2b1=h

χ(b2)χ(b1)F(a1,b2)G(a2,b1)

with G(a2,b1) being the integral transform∫∫
F(cx1, cx2)Jk−1

(
4π
√

a1b2x1x2

)
e(−x1b1 − x2a2)dx1 dx2 .

This is a sum of the type considered in Theorem 8.1 for

F(a1,a2; b1,b2) = F(a1, 

−1b2)∫∫

F(cx1, cx2)Jk−1(4π
√

a1b2x1x2)e(−x1b1 − x2a2)dx1 dx2 .

We have F(a1,a2; b1,b2) � c−2 X1 X2 by a trivial estimation. The condition
(8.1) is satisfied (after scaling by the factor c−2 X1 X2) with Z = 2|s|,
A = (c + √


 X1 X2)X
−1
2 and B = (c + √


 X1 X2)X
−1
1 . Moreover our

coefficients are given by (8.7) with 
1 = 1, 
2 = 
, χ1 = χ, χ2 = χ.
Combining Theorem 8.1 and Proposition 8.2 we get

V(h) � τ(h)|s|2cε−2 X1 X2

(
1 + |h|X1 X2

(c + √

 X1 X2)

2

)−2

{
(c + √


 X1 X2)X
−1
2 D

3
8 + (c + √


 X1 X2)
2(X1 X2)

−1
(

X−1
1 X

47
48
2

) 1
24
}

and so, applying the bound |S(h, 0; c)| � (h, c) then summing over all
h �= 0 we conclude that R∗

c = Rc − Rc(0) satisfies

R∗
c � |s|2cε−1(c + √


 X1 X2)
2
{
(c + √


 X1 X2)X
−1
1 D

3
8

+(c + √

 X1 X2)

2(X1 X2)
−1
(

X−1
1 X

47
48
2

) 1
24
}
.

This result is not useful if c is very large. We shall apply it for c � C, say,
with some C �

√

 X1 X2 getting

∑
c6C

c≡0(D)

c−1 R∗
c � |s|2C3+ε

D2 X1 X2

{
D

3
8 X1 + C

(
X−1

1 X
47
48
2

) 1
24
}
. (9.1)
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10 An elementary estimate for R∗
c

For large c we can do better by using the original expression (6.3).

Lemma 10.1 Suppose F(x1, x2) is bounded and supported in the box
[X1, 2X2] × [X2, 2X2] with X1, X2 � 1

2 . Then

Rc �
(√


 X1 X2

c

)k−1

(c + 
X1 X2) X1 X2 (log 5X1 X2)
5 . (10.1)

Proof. Open the Kloosterman sum Sχ(
m,n; c) and the Bessel function
Jk−1

(
4π
c

√

mn

)
by means of the integral representation

Jk−1(x) = 1

2πi

∫
(σ)

Γ(−s)

Γ(s+ k)

(x

2

)2s+k−1
ds

with σ = (log 5X1 X2)
−1 (see (8.412.4) of [GR]). Then apply

∑∗

d(mod c)

∣∣∣∣ ∑
m6M

αme

(
d
m

c

)∣∣∣∣
∣∣∣∣∑

n6N

βne

(
d̄ n

c

)∣∣∣∣
� ‖α‖ ‖β‖(c + 
M)

1
2 (c + N)

1
2

which follows by Cauchy’s inequality and the orthogonality of additive
characters. This leads to (10.1).

We also need a bound for Rc(0). To this end we use the trivial estimate
Gk(b1,b2) � c−2 X1 X2(c−1

√

 X1 X2)

k−1, giving

Rc(0) � (
c−1

√

 X1 X2

)k−1
X1 X2(log 5X1 X2)

2.

This is absorbed by the right side of (10.1); therefore Lemma 10.1 holds
also for R∗

c = Rc − Rc(0).
Assume k � 3 and C � 
X1 X2. By (10.1) for R∗

c we derive∑
c>C

c≡0(D)

c−1 R∗
c � 
(CD)−1(X1 X2)

3(log 5X1 X2)
5 . (10.2)

11 Proof of Proposition 5.1. Conclusion

Adding (7.3), (9.1) and (10.2) we get∑
c≡0(D)

c−1 Rc � 
− 1
2 X1 X2|s|2 Dε + 
(CD)−1(X1 X2)

3(log 5X1 X2)
5

+
{

D
3
8 X1 + C

(
X−1

1 X
47
48
2

) 1
24
}

D−2(X1 X2)
−1|s|2C3+ε
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where C is any number � 
X1 X2. We choose C = 

3
2 X1 X2 and estimate

some parts by using X1, X2 <
√

PD to deduce that∑
c≡0(D)

c−1 Rc � (

− 1

2 + 
6 D−θ
)
X1 X2(|s|P)2 Dε (11.1)

where θ = (48)−2. By virtue of (6.2) being absorbed by the first term on the
right side of (11.1) this also gives a bound for the sum (6.1). Hence (5.8)
follows.
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