Invent. math. 140, 227-242 (2000) ’

Digital Object Identifier (DOI) 10.1007/s002220000052 Iﬂ'l/e”tZO”eS:
mathematicae
0 Springer-Verlag 2000

Erratum

Bounds for automorphic L—functions. I

W. Dukel, J. Friedlander?, H. lwaniec!-2

1 Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA
2 Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1

Invent. math. 115, 219-239 (1994)

Oblatum 17-VI-1999 / Published online: 24 January 2000

Our paper has been recently a source for the work “Mollification of the
fourth moment of automorphit—functions and arithmetic applications”
by E. Kowalski, P. Michel and J. VanderKam, in which they extended and
improved significantly our results giving new important applications for
the simultaneous non-vanishing of central values of twisted automorphic
L—functions. In the process of adopting some of our arguments they found
that we made a mistake when changing the variable of integration in (44).
ConsequentlyAp(z, y) should bes times larger in the next line. Unaware

of this missing factos we were able to apply relatively simple arguments
in the following three sections and, not surprisingly, we produced some
estimates which appeared to be stronger than they truly are.

In this errata, rather than modifying particular parts of the original paper
we propose to replace entirely Sects. 7, 9, 10, 11, 12 by the new ones
below. These corrections do not cause any change in the rest of the paper. In
particular all of the theorems and corollaries remain as stated in the paper.

We are grateful to the authors of “Mollification of ...” for pointing out the
error and we apologize for any trouble which they may have experienced
when correcting our arguments themselves. Yet, we wish to say that our
corrections were worked out completely independently of theirs, and later,
after seeing their manuscript we found substantial differences. Actually,
these authors went much further by establishing very strong asymptotic
formulas for the relevant sums while we give here only upper bounds of
true order of magnitude.

Finally we express special thanks to Philippe Michel for encouraging
correspondence.
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7 Estimates for Bessel functions

Recall thatkk > 2. Throughout we shall make frequent appeal to the follow-
ing estimates

(7.1) 2302 < z(1+2)°2,
(7.2) 2Y"(2) <« 1+ |logz))(1+2)"2,
(7.3) 2K (2) < 1+ |logz))(1+2)"2,

for all z > 0 and any? > 0, where the implied constant dependskpi.

These estimates can be deduced from the corresponding power series if
0 < z < 2, and the asymptotic expansionsif> 2 (see Sects. 8.44 and
8.45 of [GRY]).

9 Evaluation of T, (c) and T, (c)

First we consideh = 0. Notice that
9.1) To+(c) =0

because the equatiam 4+ sn = 0 has no solution in positive integers.
However the sun; (c) is not void; it runs over positive integers, n
satisfying the equatiom — sn = 0 and counted with multiplicities being
the divisor numbers. In view of [DFI2] this should be regarded as a singular
determinant equation. Therefore we have

9.2)
Ty (c) = —27 Zr(sn)r(n)/o Yo<4?ﬂ sn>> Jk_1<4?ﬂ sn>> F(x, n)dx.

n

Here we could further execute the summation with a good error term, but
we do not need to do so.

Supposéh # 0. The asymptotic evaluation af, (c) andT,f(c) are the
problems which have been solved in [DFI2]. In the cas&,ofc) we shall
apply Theorem 1 of [DFI2] for the test function

00 4 4
©3) fzy=—2r [ o (T va) dea () F (x L) ox

with z > 0 andy > 0. Actually we haveY <y < 2Y with Y = sN, because
F(x, y) is supported oriM, 2M] x [N, 2N]. PutP = 1+ +/sMN/c and
Z=c*P?M~1soZ > Y. If z> Z we integrate by parts ir several times
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while we do not integrate by partsif< Z. We then differentiaté times in
zand | times iny. Finally we use the estimates (7.1), (7.2) showing that

(9.4)

S Z\—A yy\—A o
i D) z Yy -1 +j-2
2yl {0z y) < (1+Z) (1+Y) ¢ LV/SMNMP+~2logc

for anyi, j, A > 0, the implied constant depending igrj, A. This verifies
the condition (2) of [DFI2]; therefore by (5) of [DFI2] we obtain

(9.5) T, (© = /O g(h + sy, y)dy+ O (P%(sN)% Mc£>

whereg(z,y) = G (z, Y)An(z, y) and An(z,y) is given by the rapidly
convergent series of Ramanujan sums

oo

(9.6) An(zy) = Z S w) S0, h; w) [logz — A, ] [logy — Asy ]

w2

w=1
with &, = 2y + log(w?) andis, = 2y + log(sw?/(s, w)).

In the next section we shall be applying Poisson’s summation it the
variable. This requires small preparations of (9.5) and (9.6). First we truncate
the series (9.6) ta < g, estimating the tail byD (z(|h|)t(s)q~* log? g) so
that the resulting change iy, (c) is O (z(|h])t(9)MNg*log® q), which is
absorbed by the error term in (9.5). Next notice tBat(z, y) is very small
if zis much larger thaiZ (see (9.4)). Hence it follows thdi, (c) and the
integral in (9.5) are both very small|ifi| is much larger tharZ. Precisely,

we can introduce freely a factot + |h|/Z)~2 into the error term in (9.5).
Therefore we have

(9.7)

Te= Y S2s0nuYt+o(a+ hyz?Pienine)
1<w<q

where

(9.8) Y(h) = —2r // [log(h +sy) — A,] [logy — Asy]
4 4
Yo <?,/(h + sy)x) J-1 (?4/sxy> F(x, y)dx dy.

Here the range of integration is restricted by the suppoR(&f y) and by
the conditionz = h + sy > 0. Similarly we show that
(9.9)

THo= Y %) 50, h; wyK(h) + O ((1+ h/Z)~2 P%(sN)%Mcf) ,

w2

1<w<q
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where
(9.10) K(h) = 4/ [logh —sy) — A,] [logy — Asy]

Ko <4n\/(h — sy)x) J-1 <4%T«/sxy> F(x, y)dx dy.

Here the range of integration is restricted by the suppoR(&fy) and by
the conditionz = h — sy > 0.

10 Evaluation of T(c)
By (36) and (9.7) we obtain (recall that (9.7) is not valid lfoe= 0)

(10.1)
T7(©=¢OTy, ©+ Y (sww 2y S0, h;w)SO,h; 0)Y(h)
1<w<q h=£0
+0 (P%(sl\b%c”g) :

Have in mind thalY(h) depends also on the summation varialslas which
we shall exploit after the summation linis executed.

For the sum of products of Ramanujan sums we are going to establish
the following general formula

Lemma 10.1 Let f(x) be a function of? class onR such that(1 + x?)
fO(x) « 1for ¢ =0, 1, 2. Then we have

(10.2) S0, h;0)S(O, h; w) f(h) = p((c, w)) Z' f(u(c, w)/cw)
h u

wheref (y) is the Fourier transform of . Here and hereafter the "’ restricts
the summation by the condition

Cw
(10.3) <u, & w)2> -

Proof. Splitting the summation into classés= a(modc, w]) and then
applying Poisson’s formula we obtain

1 u
cwl 2. SOEOSCaw) e ([c w]) ([c, w]) |

a(modc,w])

For anyu € Z the resulting complete sum over the clasagsodc, w])
normalized byc, w]~ is equal to the number of solutions to the congruence

dw s mod cw
Cw T ©Cw u( (c, w)z)
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in d(modc), (d,c) = 1 ands(modw), (8, w) = 1. There are no solu-
tions unlesa satisfies (10.3) in which case the number of solutions equals
¢((c, w)). This completes the proof.

Remarks. Theu = 0 term on the right-hand side of (10.2) contributes

Scwp(w) f(0) wheres,, is the diagonal symbol of Kronecker. Therefore
Lemma 10.1 shows an orthogonality property of Ramanujan sums which

is particularly strong iff (y) has small support. In our applications this
diagonal term is outside the range of summation, becauseq < c.

Applying Lemma 10.1 folY(h) we get

(10.4) )" S0, h; ©)S(0, h; w)Y(h)

h-40

= —p(©p(w)Y(0) + ¢((c, w)) Z/ Y (u(c, w)/cw)
whereY(0) is given by (see (9.8))

(10.5) Y(0) = —27 // [logsy— A, ][logy — Asy]

Yo (%Jsxy) J-1 <4%T«/sxy> F(x, y)dx dy
and
(10.6)

Y) = —27 // </OOO [logz — A,] Yo <4%J5<> cos 2rv(z — sy)dz)

4
[logy — Asw] Jk-1 (%./sxy) F(x, y)dx dy

by combining the terms far and—u (recall thatu # 0 by the last remarks).
Inserting (10.4) into (10.1) we get

(10.7) T7(© =¢©T5 (© — p(©) Y @(w)(s wyw 2Y(0)

1<w<q

+ 3 e wns ww? Y Ve w)/cw)

1<w<q u

+0 (P%(sl\l)%c”g) .
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Next we evaluatél *(c). The arguments are similar to those used for
T~(c). By (36) and (9.9) we obtain (recall th&§ (c) = 0)

(10.8) TH©O = Y (sww?)_ S0 h; 9SO, h; w)K(h)

1<w<q h

+0 (P%(srxb%c“*?) .

Applying Lemma 10.1 foK (h) we get
(10.9) ) S0, h; 9SO, h; w)K(h) = ((c, w)) Z' K (u(c, w)/cw)
h u

where

(10.10)

K@) = 4// </°° [logz — A,] Ko <4%J5(> cos Zrv(z + sy)dz)
0
4
[logy — Asw] J-1 <?ﬂ /sxy) F(x, y)dx dy

by combining the terms far and—u. Inserting (10.9) into (10.8) we get

(10.11) TH @ = Y ol w)(s, w)w—ZZ'K(u(c, w)/Cw)

1<w<q
+0(PisNic™) .

For computational reasons (and for aesthetics) it is natural to consider
the following linear combinations of the special functiors Ko (see also
Theorem 4.10 of the Iwaniec Rutgers Lecture Notes, Fall 1997):

(10.12) C(2) = 4Ko(22) — 27 Yo(22) ,
(10.13) S(z2) = 4Ko(22) + 27Yp(22) .

These are given by the integral convolutions (see (3.864.1) and (3.864.2) of
[GR])

o z\ dt
(10.14) C(2 = 4/0 cogzt) cos({) T

e . sz dt
(10.15) S(z) = 4 /0 sm(zt)sm(;)T.
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Introducing (10.7) and (10.11) into (33) we derive that

T(©) =T*(©) + ¢(©OTo(©) — p(©) Y @(w)(s w)w 2Y(0)

1<w<q
(10.16) + Y ¢((c, w))(s w)w_zz (€ = 9(u(c, w)/cw)
1<w<q
o (PisNic)

where

(10.17) C(v) = // (/OOO [logz —1,]C (%ﬂ) c05(2n2v)dz>

4
[logy — Asw] J1 (%T /sxy) cos2rsy) F(x, y)dx dy,

(10.18) Sv) = / / < / h [logz — 1,] s(%”ﬂ) sin(2n2v)dz>
0
[logy — Asw] J1 <4%T /sxy) sin(2rsy) F(x, y)dx dy.

The innermost integrals in the-variable are evaluated in the Sect. 12.
Changing the variable into z/2zv and then using the formulas (12.3)—
(12.6) we obtain

(10.19) C(v) = // Iog 575~ [Iogy Asu] F(X, Y)

J-1 < . /sxy) Cco927Sy) cos<2ﬂ ) dx dy,

(10.20) Sv) = / / Iog 575~ [Iogy Asw] F(X, )

N < JsTy) sin(2rsy) sin <27T ) dx dy.
Subtracting we arrive at
(10.21) C(v) — Sw) = // [Iogy Asw] F(X, Y)

4 X
J_1 <? /sxy) Cos Zr (syv + %) dx dy.
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We conclude this section with the crude estimate
(10.22) Cw) — Sv) < v (1+ vsNP) " MN(log MN)?

which follows from (10.21) by partial integration. This is good enough to
truncate the series in (10.16) to< g, the tail being absorbed by the error
term already present in (10.16).

11 Estimation of B(s)

We need to sunT(c) over allc = 0(modq) in (28). To this end we use
(10.16) forc < 2C and (27) forc > C with a smooth partition of the
transition range, wher€ is at our disposal subject © > +/sMN. We
obtain

(11.1) B(9) <(MN/9)2g"! + MNg
+4 Y w(sm(n)|Qm)|
N<n<2N
+9 Y S Rw)
1<w<q
(s, w)
+q12;] IR, w)

+ (sMNZMNC:?
+ (c + q’%(sMN)%) sNice
L q(MN)iC* 2

Here the first term comes from the estimationTg®) given by (31), the
second term comes from the estimatioméfc) given by (43), and the third
term comes fronT,; (c) given by (9.2) where we have

(11.2)

© /4 4
Q(n) = Z <p(C)CZ/O Yo (%T snx) Jk1 (?n snx) F(x, n)dx.

c=0(q)

The fourth term comes by estimatiggw) < w in (10.16) where

(11.3) Rw)= Y p(Oc? / / [logsy— iu] [logy — Asw] F(X, Y)

c=0(a)

4 4
Yo (%Jsxy) J_1 <?n4/sxy> dx dy



Bounds for automorphit.—functions. Il 235

by (10.5). In the fifth term we have

(11.4)

R(U. w) = Z w((c w)) //[ u2(c Aw} [logy — Asu]

c=0(a)

47 2 .(C’ w) Xw
F(x, y)Jk_1< S JsTy) cos S <syu ” + i, w)) dx dy,

where) ' restricts the variableby the condition (10.3) (see (10.16) and see
(10.21) withv = u(c, w)/cw). Notice that we have no restrictian< 2C
in the series (11.2), (11.3), (11.4), although we were cutting in the range
C < ¢ < 2C. The tails of these series over- C are estimated trivially by
(sM N)% MNC?~1 which comprises the sixth term on the right-hand side of
(11.1). The seventh term comes from the relevant sum of the error term in
(10.16) withc < 2C. Finally the eighth term comes from the application
of (27) to the part of the series (28) over> C (recall thatk > 2 and
M, N <« ql+£).

We choos&€ = s+ MN making the sixth and the eighth terms negligible
by comparison to the first term. The second term is also negligible.

It remains to estimat€(n), R(w) and R(u, w). Changing the variable
X into c?t? we write

(11.5)

Q(n) = / " Yo (4rt/sn) J_1 (4nty/sn) ( Z @(C)F(c?t?, n)) dt? .

0 c=0(q)

In this way we eliminated in the oscillating Bessel functions. For the last
sum we use the following

Lemma11l.1 Let f be a smooth function compactly supported ®h.
Then

(11.6) Z &C) () = B (q)/ f(x)dx

c=0(q)
@(Q) , X
+0 <—q / 1£/(x)| log (1+ a)dx)

where
1
(11.7) w@ =a[] (1 + _>
piq P

and the implied constant is absolute.
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Proof. Our sum is equal to

BV
S= de | Z f(n[d, q)) .
Hence we derive by the Euler-Maclaurin formula
(11.8) S F@) = / (F(t) + (t}F'(D) dt
l

(this is valid for anyF € Cg°(R)) that

(d) ,
_ (Xd: dl;d, q]>/ f(x)dx—i—/éq(x)f (x)dx .

Here the factor in front off (0) equals 1z(2)v(qg) and

pd [ x
o= 2 5

d

Another expression for this is

)] p@) [ X
o= 3 5 )

(d.g=1

Hence it follows that
(P(Q) o(Q)
§q(X) €« — Z d min <1 —) < T log (]__|_ q)

This completes the proof of (11.6).

Applying (11.6) for the sum in (11.5) we get
(2c2v(t?) / F(x, nydx+ O (N tlog(l + Mrl)) :
Hence

— 1 > -1
QM = 5 ( /O Yo(t) J_1 (Ot dt) / F(x, n)dx

+0 <N / " No(4rt/sR) d1(4rty/sT)| log (1 + ¥>dt> .
0
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The firstintegral vanishes (see (12.1)) so applying (7.1) and (7.2 wtl0
we are left with

(11.9)
1 4 |logty/sn M M 2 ,
Q) <« N/O Tﬁlog <1+ T>dt < <§]> (logsnM)? .

Summing oven we derive that

MN\ 2
(11.10) Z 7(sn)t(N)|Q(N)| <« (9 <T> (IogsM[\D5 .

N<n<2N

Similarly we show that (replace the summatiomitby an integration
iny)

MN\ 2 ;
(11.11) Rw) « (T) (logsMN)® .

The case oR(u, w) is also similar except that we shall appeal to the
orthogonality formula (12.2) in place of (12.1). Moreover the estimation of
the error term requires extra care. First we elimirat®m the oscillating
cosine and the Bessel function by changing the variables. We drrite
(c, w), ¢ = £[d, q] so the conditions of summation are now odgrw such
that

w q wq
11.12 —— =1, _—, =1
(11.12) <d m,m> <dm,m “)

and (¢, uw/d) = 1. We change the variables of integrationy into £xy,
£x/sygetting

// @(d) / / < 47X )
11.13) R
(11.13) Rl w) = dmm Y\ d g
2nx cdu  wy dx dy
OS<[d, 3l (w—y+ du>> Dy(X,y)
where
(11.14)
Dy(X, y) = Z [Iog Xyw? - X ][Ioge_x_)L } F(ny e_x>£x
o B (¢,uw/d)=1 2d2 ! Sy > ’ Sy

and)_" is restricted by the conditions (11.12).
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Lemma 11.2 Let F(t) be a smooth function compactly supportedioh
Then

(11.15) > F) = @/ F(t)dt+/nk(t)F/(t)dt
k
£,k=1
where
(11.16) nk(t)—Zu(m){ }
m|k

Proof. This follows from the Euler-Maclaurin formula (11.8).
Note thaty(t) = tp(k)/kif 0 <t < 1 and thatnk(t)| < z(k). Hence

(11.17) Ink(®)| < (k) min(1, 1) .

In particular (11.15) fok = uw/d yields

(11.18) Dy(X,y) = (Tk) @ +/ (%) H(t, y)dt
where

(11.19)  I(y) = / [log% - ,\w][logsiy— Asw]F(ty, Siy)tdt

and
(11.20)  H(t, y) = [Iog u{’;ﬁ ][log Siy - xsw} F(t, Siy)t .

Now we introduce (11.18) into (11.13). From the leading term we obtain
the following integral in thex—variable

/OO ] Arrx 27X (du + wy d_x B
o " \d.ql [d ql du X

. du wy .
by virtue of (12.2), because; + e > 2. Therefore we are left with
w

(11.21) ; .
” (p( ) TTX
R = Z aaar | > () () emares
where

27x (du wy)) dy
( ) 0 / Ly COS([d, al (wy du// y
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We shall estimaté(t, x) by means of the following

Lemma 11.3 SupposeH(y) is a smooth function supported g, 2Y]
such that|H(y)| < 1 and |H'(y)| < Y%, whereY > 0. Then for any
a, b > Owe have

(11.23) / H(y) cos(ay+ ?/) d7y < (1+ab4

where the implied constant is absolute.

Proof. By Lemmad4.5 of Titchmarsh, Theory of the Riemann Zeta-Function
applied twice, together with the trivial bound, we deduce that

y b\ dx ,
/ cos(ax+ —) — < min(La % b1?)
v x) x

forY <y < 2Y.Hence

by dy Xy by dx\ |,
/ H(y) cos(ay+ )—/) 7 = —/Y </Y cos(ax+ ;)?> H'(y)dy

< min (1, a‘%,b‘%)

which is a slightly better bound than (11.23).
Before applying (11.23) téi(t, y) we record from the support &f(x, y)
that

(11.24) VSMN < t < 2//sSMN
and
(11.25) H(t, y) < (logq)?.
Therefore Lemma 11.3 yields
x \ "2
(11.26) I(t, X) < <1+ 7 q]> (logq)? .

Inserting this estimate into (11.21) and usidgi1(z2) < (1+ z)*% (see
(7.1)) we obtain

R(u, w) <«

MN 2 , uwy [ .
<T) (logq) Zt(F)/(; (X + [d, g))" min(1, vSMN/x)dx .

dlw

Hence we finally get

(11.27) R(u, w) <« t(u)t3(w) (@)ﬁ (logq)® .
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Now we have all the estimates ready to complete the proof of Theorem 2
in the case = 1. We introduce (11.10), (11.11) and (11.27) into (11.1)
getting

B(S < (MN/9 207 + (sVMN + g 3 sMNB) (sN i

< (qs*% +qgs%5) (MN)? .

This is slightly better than the original estimate (11) of Theorem 2 provided
s < q¥?’. However, ifs > g*° then (11) follows from Corollary 1.

12 Definite integrals of special functions

Here we give the integral formulas which are needed in this work. We give
proofs of those which we couldn't find in the literature.

First are the following orthogonality formulas
(12.1) /OOO Yo(2) J_1(2)z2'dz=0
if kis even (see (6.576.6) of [GR]), and
(12.2) /O h J_1(az)cogbz)zldz=0

if kis even and > a > 0 (see (6.693.2) of [GR]).
Next we shall prove the following formulas for aay> 0

(12.3) / C(+/az) cosz dz= 2x cosa ,
0

(12.4) / S(v/az) sinzdz= 2r sina,
0

(12.5) /oo C(+v/az)(logz) cosz dz= 2r(loga) cosa ,
0

(12.6) /Oo S(vaz)(logz) sinz dz= 2r(loga) sina.
0
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For the proof we write these formulas as Fourier transforms

(12.3) /oo C(+/z) cogbz)dz = 2% cos%,
0
(12.4) /OO S(v/z) sin(bz)dz = 2 sin},
0 b b
o0 47 1
(12.8) / C(v/2)(log 2) cogbz)dz = —F(Iog b) cosB ,
0
(12.8) /Oo S(v/z)(log 2) sin(bz)dz = —%T(Iog b) cos% ,
0

by changing the variableinto bzwith b = a~*. Actually (12.5), (12.6) are
obtained by this change of variables and usitg3'), (12.4") respectively.
Now we write

(12.3%) CWz) = /oo 4 <cos}> cogbz)db
o b b

by chan?ing the variable in (10.14). This is the Fourier cosine transform
of f—)‘cosB. Therefore(12.3") follows from (12.3*) by Fourier inversion.
Similarly (12.4") follows from

(12.4%) SW2) = / w4 <sin}> sin(b2)db
, b\

by Fourier inversion of the Fourier sine transform.
For the proof o0f(12.5) we write

C(v/2)logz = /Oo g(log b2) <cos%> cogbz)db
0

x4 1
—/O B(Iogb) <cosB> cogbzdb.

Changingb into 1/bzin the first integral we get
> 8 1
(12.5%) C(v/z)logz = —/ B(Iog b) <cosB> cogbz)db.
0

This is the Fourier cosine transform ef (logb) cosz. Therefore(12.5)
follows from (12.5%) by Fourier inversion. Similarly one derivgd2.6")
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from

(12.6%) SWz)logz = — /Oo E(Iog b) <sin%> sin(bz)db.
0

Remarks. All the integrals considered here converge due to oscillations
of trigonometric functions, but not absolutely. Nevertheless, one can justify
the Fourier inversions by mollifying the integralk2.3*) — (12.6*) with the
functionw(b) = exp(—eb — eb™1) and lettings tend to zero.



