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Our paper has been recently a source for the work “Mollification of the
fourth moment of automorphicL–functions and arithmetic applications”
by E. Kowalski, P. Michel and J. VanderKam, in which they extended and
improved significantly our results giving new important applications for
the simultaneous non-vanishing of central values of twisted automorphic
L–functions. In the process of adopting some of our arguments they found
that we made a mistake when changing the variable of integration in (44).
ConsequentlyΛh(z, y) should bes times larger in the next line. Unaware
of this missing factors we were able to apply relatively simple arguments
in the following three sections and, not surprisingly, we produced some
estimates which appeared to be stronger than they truly are.

In this errata, rather than modifying particular parts of the original paper
we propose to replace entirely Sects. 7, 9, 10, 11, 12 by the new ones
below. These corrections do not cause any change in the rest of the paper. In
particular all of the theorems and corollaries remain as stated in the paper.

We are grateful to the authors of “Mollification of ...” for pointing out the
error and we apologize for any trouble which they may have experienced
when correcting our arguments themselves. Yet, we wish to say that our
corrections were worked out completely independently of theirs, and later,
after seeing their manuscript we found substantial differences. Actually,
these authors went much further by establishing very strong asymptotic
formulas for the relevant sums while we give here only upper bounds of
true order of magnitude.

Finally we express special thanks to Philippe Michel for encouraging
correspondence.
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7 Estimates for Bessel functions

Recall thatk ≥ 2. Throughout we shall make frequent appeal to the follow-
ing estimates

z`J(`)k−1(z)� z(1+ z)−
3
2 ,(7.1)

z`Y(`)0 (z)� (1+ | log z|)(1+ z)−
1
2 ,(7.2)

z`K (`)
0 (z)� (1+ | log z|)(1+ z)−

1
2 ,(7.3)

for all z > 0 and anỳ ≥ 0, where the implied constant depends onk, `.
These estimates can be deduced from the corresponding power series if
0 < z ≤ 2, and the asymptotic expansions ifz ≥ 2 (see Sects. 8.44 and
8.45 of [GR]).

9 Evaluation of T−h (c) and T+h (c)

First we considerh = 0. Notice that

T+0 (c) = 0(9.1)

because the equationm + sn = 0 has no solution in positive integers.
However the sumT−0 (c) is not void; it runs over positive integersm,n
satisfying the equationm− sn= 0 and counted with multiplicities being
the divisor numbers. In view of [DFI2] this should be regarded as a singular
determinant equation. Therefore we have

(9.2)

T−0 (c) = −2π
∑

n

τ(sn)τ(n)
∫ ∞

0
Y0

(
4π

c

√
snx

)
Jk−1

(
4π

c

√
snx

)
F(x,n)dx .

Here we could further execute the summation with a good error term, but
we do not need to do so.

Supposeh 6= 0. The asymptotic evaluation ofT−h (c) andT+h (c) are the
problems which have been solved in [DFI2]. In the case ofT−h (c) we shall
apply Theorem 1 of [DFI2] for the test function

f(z, y) = −2π
∫ ∞

0
Y0

(
4π

c

√
zx

)
Jk−1

(
4π

c

√
xy

)
F
(

x,
y

s

)
dx(9.3)

with z> 0 andy> 0. Actually we haveY ≤ y ≤ 2Y with Y = sN, because
F(x, y) is supported on[M,2M] × [N,2N]. Put P = 1+ √sMN/c and
Z = c2P2M−1 so Z > Y. If z> Z we integrate by parts inx several times
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while we do not integrate by parts ifz≤ Z. We then differentiatei times in
z and j times iny. Finally we use the estimates (7.1), (7.2) showing that

zi yj f (ij )(z, y)�
(

1+ z

Z

)−A (
1+ y

Y

)−A
c−1
√

sMN MPi+ j−2 logc

(9.4)

for any i, j, A> 0, the implied constant depending oni, j, A. This verifies
the condition (2) of [DFI2]; therefore by (5) of [DFI2] we obtain

T−h (c) =
∫ ∞

0
g(h+ sy, y)dy+ O

(
P

1
4 (sN)

3
4 Mcε

)
(9.5)

where g(z, y) = G−(z, y)Λh(z, y) and Λh(z, y) is given by the rapidly
convergent series of Ramanujan sums

Λh(z, y) =
∞∑
w=1

(s, w)

w2
S(0,h;w) [log z− λw

] [
log y− λsw

]
(9.6)

with λw = 2γ + log(w2) andλsw = 2γ + log(sw2/(s, w)).

In the next section we shall be applying Poisson’s summation in theh
variable. This requires small preparations of (9.5) and (9.6). First we truncate
the series (9.6) tow < q, estimating the tail byO

(
τ(|h|)τ(s)q−1 log2 q

)
so

that the resulting change inT−h (c) is O
(
τ(|h|)τ(s)MNq−1 log2 q

)
, which is

absorbed by the error term in (9.5). Next notice thatG−(z, y) is very small
if z is much larger thanZ (see (9.4)). Hence it follows thatT−h (c) and the
integral in (9.5) are both very small if|h| is much larger thanZ. Precisely,
we can introduce freely a factor(1+ |h|/Z)−2 into the error term in (9.5).
Therefore we have

T−h (c) =
∑

1≤w<q

(s, w)

w2
S(0,h;w)Y(h)+ O

(
(1+ |h|/Z)−2 P

1
4 (sN)

3
4 Mcε

)
,

(9.7)

where

Y(h) = −2π
∫∫ [

log(h+ sy)− λw
] [

log y− λsw
]

(9.8)

Y0

(
4π

c

√
(h+ sy)x

)
Jk−1

(
4π

c

√
sxy

)
F(x, y)dx dy.

Here the range of integration is restricted by the support ofF(x, y) and by
the conditionz= h+ sy> 0. Similarly we show that

T+h (c) =
∑

1≤w<q

(s, w)

w2
S(0,h;w)K(h)+ O

(
(1+ h/Z)−2 P

1
4 (sN)

3
4 Mcε

)
,

(9.9)
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where

(9.10) K(h) = 4
∫∫ [

log(h− sy)− λw
] [

log y− λsw
]

K0

(
4π

c

√
(h− sy)x

)
Jk−1

(
4π

c

√
sxy

)
F(x, y)dx dy.

Here the range of integration is restricted by the support ofF(x, y) and by
the conditionz= h− sy> 0.

10 Evaluation of T(c)

By (36) and (9.7) we obtain (recall that (9.7) is not valid forh = 0)

(10.1)

T−(c) = ϕ(c)T−0 (c)+
∑

1≤w<q

(s, w)w−2
∑
h6=0

S(0,h;w)S(0,h; c)Y(h)

+ O
(

P
9
4 (sN)

3
4 c2+ε

)
.

Have in mind thatY(h) depends also on the summation variablesc, wwhich
we shall exploit after the summation inh is executed.

For the sum of products of Ramanujan sums we are going to establish
the following general formula

Lemma 10.1 Let f(x) be a function ofC2 class onR such that(1+ x2)
f (`)(x)� 1 for ` = 0,1,2. Then we have∑

h

S(0,h; c)S(0,h;w) f(h) = ϕ((c, w))
∑′

u

f̂ (u(c, w)/cw)(10.2)

where f̂ (y) is the Fourier transform off . Here and hereafter the
∑′ restricts

the summation by the condition(
u,

cw

(c, w)2

)
= 1 .(10.3)

Proof. Splitting the summation into classesh ≡ a(mod[c, w]) and then
applying Poisson’s formula we obtain

1

[c, w]
∑

a(mod[c,w])
S(0,a; c)S(0,a;w)

∑
u

e

( −au

[c, w]
)

f̂

(
u

[c, w]
)
.

For anyu ∈ Z the resulting complete sum over the classesa(mod[c, w])
normalized by[c, w]−1 is equal to the number of solutions to the congruence

dw

(c, w)
+ δc

(c, w)
≡ u

(
mod

cw

(c, w)2

)
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in d(modc), (d, c) = 1 andδ(modw), (δ,w) = 1. There are no solu-
tions unlessu satisfies (10.3) in which case the number of solutions equals
ϕ((c, w)). This completes the proof.

Remarks. The u = 0 term on the right-hand side of (10.2) contributes
δcwϕ(w) f̂ (0) whereδcw is the diagonal symbol of Kronecker. Therefore
Lemma 10.1 shows an orthogonality property of Ramanujan sums which
is particularly strong if f̂ (y) has small support. In our applications this
diagonal term is outside the range of summation, becausew < q ≤ c.

Applying Lemma 10.1 forY(h) we get

(10.4)
∑
h6=0

S(0,h; c)S(0,h;w)Y(h)

= −ϕ(c)ϕ(w)Y(0)+ ϕ((c, w))
∑′

u

Ŷ(u(c, w)/cw)

whereY(0) is given by (see (9.8))

(10.5) Y(0) = −2π
∫∫ [

logsy− λw
] [

log y− λsw
]

Y0

(
4π

c

√
sxy

)
Jk−1

(
4π

c

√
sxy

)
F(x, y)dx dy

and

(10.6)

Ŷ(v) = −2π
∫∫ (∫ ∞

0

[
log z− λw

]
Y0

(
4π

c

√
zx

)
cos 2πv(z− sy)dz

)
[
log y− λsw

]
Jk−1

(
4π

c

√
sxy

)
F(x, y)dx dy

by combining the terms foru and−u (recall thatu 6= 0 by the last remarks).
Inserting (10.4) into (10.1) we get

T−(c) =ϕ(c)T−0 (c)− ϕ(c)
∑

1≤w<q

ϕ(w)(s, w)w−2Y(0)(10.7)

+
∑

1≤w<q

ϕ((c, w))(s, w)w−2
∑′

u

Ŷ(u(c, w)/cw)

+ O
(

P
9
4 (sN)

3
4 c2+ε

)
.
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Next we evaluateT+(c). The arguments are similar to those used for
T−(c). By (36) and (9.9) we obtain (recall thatT+0 (c) = 0)

(10.8) T+(c) =
∑

1≤w<q

(s, w)w−2
∑

h

S(0,h; c)S(0,h;w)K(h)

+ O
(

P
9
4 (sN)

3
4 c2+ε

)
.

Applying Lemma 10.1 forK(h) we get

(10.9)
∑

h

S(0,h; c)S(0,h;w)K(h) = ϕ((c, w))
∑′

u

K̂(u(c, w)/cw)

where

K̂(v) = 4
∫∫ (∫ ∞

0

[
log z− λw

]
K0

(
4π

c

√
zx

)
cos 2πv(z+ sy)dz

)(10.10)

[
log y− λsw

]
Jk−1

(
4π

c

√
sxy

)
F(x, y)dx dy

by combining the terms foru and−u. Inserting (10.9) into (10.8) we get

(10.11) T+(c) =
∑

1≤w<q

ϕ((c, w))(s, w)w−2
∑′

u

K̂(u(c, w)/cw)

+ O
(

P
9
4 (sN)

3
4 c2+ε

)
.

For computational reasons (and for aesthetics) it is natural to consider
the following linear combinations of the special functionsY0, K0 (see also
Theorem 4.10 of the Iwaniec Rutgers Lecture Notes, Fall 1997):

C(z) = 4K0(2z)− 2πY0(2z) ,(10.12)

S(z) = 4K0(2z)+ 2πY0(2z) .(10.13)

These are given by the integral convolutions (see (3.864.1) and (3.864.2) of
[GR])

C(z) = 4
∫ ∞

0
cos(zt) cos

(z

t

) dt

t
,(10.14)

S(z) = 4
∫ ∞

0
sin(zt) sin

(z

t

) dt

t
.(10.15)
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Introducing (10.7) and (10.11) into (33) we derive that

T(c) =T∗(c)+ ϕ(c)T0(c)− ϕ(c)
∑

1≤w<q

ϕ(w)(s, w)w−2Y(0)

+
∑

1≤w<q

ϕ((c, w))(s, w)w−2
∑′

u

(Ĉ− Ŝ)(u(c, w)/cw)(10.16)

+ O
(

P
9
4 (sN)

3
4 c2+ε

)
,

where

(10.17) Ĉ(v) =
∫∫ (∫ ∞

0

[
log z− λw

]
C

(
2π

c

√
zx

)
cos(2πzv)dz

)
[
log y− λsw

]
Jk−1

(
4π

c

√
sxy

)
cos(2πsyv)F(x, y)dx dy,

(10.18) Ŝ(v) =
∫∫ (∫ ∞

0

[
log z− λw

]
S

(
2π

c

√
zx

)
sin(2πzv)dz

)
[
log y− λsw

]
Jk−1

(
4π

c

√
sxy

)
sin(2πsyv)F(x, y)dx dy.

The innermost integrals in thez–variable are evaluated in the Sect. 12.
Changing the variablez into z/2πv and then using the formulas (12.3)–
(12.6) we obtain

(10.19) Ĉ(v) = 1

v

∫∫ [
log

x

c2v2
− λw

] [
log y− λsw

]
F(x, y)

Jk−1

(
4π

c

√
sxy

)
cos(2πsyv) cos

(
2πx

c2v

)
dx dy,

(10.20) Ŝ(v) = 1

v

∫∫ [
log

x

c2v2
− λw

] [
log y− λsw

]
F(x, y)

Jk−1

(
4π

c

√
sxy

)
sin(2πsyv) sin

(
2πx

c2v

)
dx dy.

Subtracting we arrive at

(10.21) Ĉ(v)− Ŝ(v) = 1

v

∫∫ [
log

x

c2v2
− λw

] [
log y− λsw

]
F(x, y)

Jk−1

(
4π

c

√
sxy

)
cos 2π

(
syv + x

c2v

)
dx dy.
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We conclude this section with the crude estimate

Ĉ(v)− Ŝ(v)� v−1
(
1+ vsNP−1

)−1
MN(log MN)2(10.22)

which follows from (10.21) by partial integration. This is good enough to
truncate the series in (10.16) tou < q, the tail being absorbed by the error
term already present in (10.16).

11 Estimation of B(s)

We need to sumT(c) over all c ≡ 0(modq) in (28). To this end we use
(10.16) for c ≤ 2C and (27) forc ≥ C with a smooth partition of the
transition range, whereC is at our disposal subject toC ≥ √sMN . We
obtain

B(s)�(MN/s)
1
2 qε+1+ MNqε−1(11.1)

+ q
∑

N<n<2N

τ(sn)τ(n)|Q(n)|

+ q
∑

1≤w<q

(s, w)

w
|R(w)|

+ q
∑∑
1≤u,w<q

(s, w)

uw
|R(u, w)|

+ (sMN)
1
2 MNCε−1

+
(
C+ q−

5
4 (sMN)

9
8

)
(sN)

3
4 Cε

+ q(MN)
3
4 Cε− 1

2 .

Here the first term comes from the estimation ofT(0) given by (31), the
second term comes from the estimation ofT∗(c) given by (43), and the third
term comes fromT−0 (c) given by (9.2) where we have

Q(n) =
∑

c≡0(q)

ϕ(c)c−2
∫ ∞

0
Y0

(
4π

c

√
snx

)
Jk−1

(
4π

c

√
snx

)
F(x,n)dx.

(11.2)

The fourth term comes by estimatingϕ(w) ≤ w in (10.16) where

(11.3) R(w) =
∑

c≡0(q)

ϕ(c)c−2
∫∫ [

logsy− λw
] [

log y− λsw
]

F(x, y)

Y0

(
4π

c

√
sxy

)
Jk−1

(
4π

c

√
sxy

)
dx dy
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by (10.5). In the fifth term we have

(11.4)

R(u, w) =
∑′

c≡0(q)

ϕ((c, w))

c(c, w)

∫∫ [
log

xw2

u2(c, w)2
− λw

] [
log y− λsw

]
F(x, y)Jk−1

(
4π

c

√
sxy

)
cos

2π

c

(
syu

(c, w)

w
+ xw

u(c, w)

)
dx dy,

where
∑′ restricts the variablec by the condition (10.3) (see (10.16) and see

(10.21) withv = u(c, w)/cw). Notice that we have no restrictionc ≤ 2C
in the series (11.2), (11.3), (11.4), although we were cutting in the range
C < c< 2C. The tails of these series overc> C are estimated trivially by
(sMN)

1
2 MNCε−1 which comprises the sixth term on the right-hand side of

(11.1). The seventh term comes from the relevant sum of the error term in
(10.16) withc < 2C. Finally the eighth term comes from the application
of (27) to the part of the series (28) overc > C (recall thatk ≥ 2 and
M, N � q1+ε).

We chooseC = s
√

MN making the sixth and the eighth terms negligible
by comparison to the first term. The second term is also negligible.

It remains to estimateQ(n), R(w) and R(u, w). Changing the variable
x into c2t2 we write

Q(n) =
∫ ∞

0
Y0
(
4πt
√

sn
)

Jk−1
(
4πt
√

sn
) ∑

c≡0(q)

ϕ(c)F(c2t2,n)

dt2 .

(11.5)

In this way we eliminatedc in the oscillating Bessel functions. For the last
sum we use the following

Lemma 11.1 Let f be a smooth function compactly supported onR+.
Then

(11.6)
∑

c≡0(q)

ϕ(c)

c
f(c) = 1

ζ(2)ν(q)

∫
f(x)dx

+ O

(
ϕ(q)

q

∫
| f ′(x)| log

(
1+ x

q

)
dx

)
where

ν(q) = q
∏
p|q

(
1+ 1

p

)
(11.7)

and the implied constant is absolute.
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Proof. Our sum is equal to

S=
∑

d

µ(d)

d

∑
n

f (n[d,q]) .

Hence we derive by the Euler-Maclaurin formula∑
`

F(`) =
∫ (

F(t)+ {t}F ′(t)) dt(11.8)

(this is valid for anyF ∈ C∞0 (R)) that

S=
(∑

d

µ(d)

d[d,q]

)∫
f(x)dx+

∫
ξq(x) f ′(x)dx .

Here the factor in front off̂ (0) equals 1/ζ(2)ν(q) and

ξq(x) =
∑

d

µ(d)

d

{
x

[d,q]
}
.

Another expression for this is

ξq(x) = ϕ(q)

q

∑
(d,q)=1

µ(d)

d

{
x

dq

}
.

Hence it follows that

ξq(x)� ϕ(q)

q

∑
d

1

d
min

(
1,

x

dq

)
� ϕ(q)

q
log

(
1+ x

q

)
.

This completes the proof of (11.6).

Applying (11.6) for the sum in (11.5) we get(
2ζ(2)ν(q)t2)−1

∫
F(x,n)dx+ O

(√
M t−1 log(1+ Mt−1)

)
.

Hence

Q(n) = 1

ζ(2)ν(q)

(∫ ∞
0

Y0(t)Jk−1(t)t
−1dt

)∫
F(x,n)dx

+O

(√
M
∫ ∞

0
|Y0(4πt

√
sn)Jk−1(4πt

√
sn)| log

(
1+ M

t

)
dt

)
.
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The first integral vanishes (see (12.1)) so applying (7.1) and (7.2) with` = 0
we are left with

Q(n)�√M
∫ ∞

0

1+ | log t
√

sn|
1+ t
√

sn
log

(
1+ M

t

)
dt�

(
M

sn

) 1
2

(logsnM)2 .

(11.9)

Summing overn we derive that

∑
N<n<2N

τ(sn)τ(n)|Q(n)| � τ(s)

(
MN

s

) 1
2

(logsMN)5 .(11.10)

Similarly we show that (replace the summation inn by an integration
in y)

R(w)�
(

MN

s

) 1
2

(logsMN)5 .(11.11)

The case ofR(u, w) is also similar except that we shall appeal to the
orthogonality formula (12.2) in place of (12.1). Moreover the estimation of
the error term requires extra care. First we eliminatec from the oscillating
cosine and the Bessel function by changing the variables. We writed =
(c, w), c= `[d,q] so the conditions of summation are now overd | w such
that (

w

d
,

q

(d,q)

)
= 1 ,

(
wq

d(d,q)
,u

)
= 1,(11.12)

and(`,uw/d) = 1. We change the variables of integrationx, y into `xy,
`x/sygetting

R(u, w) =2

s

∑′′

d|w

ϕ(d)

d[d,q]
∫ ∞

0

∫ ∞
0

Jk−1

(
4πx

[d,q]
)

(11.13)

cos

(
2πx

[d,q]
( du

wy
+ wy

du

))
Φd(x, y)

dx dy

y
,

where

Φd(x, y) =
∑

(`,uw/d)=1

[
log

`xyw2

u2d2
− λw

] [
log

`x

sy
− λsw

]
F

(
`xy,

`x

sy

)
`x

(11.14)

and
∑′′ is restricted by the conditions (11.12).
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Lemma 11.2 Let F(t) be a smooth function compactly supported onR+.
Then ∑

(`,k)=1

F(`) = ϕ(k)

k

∫
F(t)dt +

∫
ηk(t)F

′(t)dt(11.15)

where

ηk(t) =
∑
m|k
µ(m)

{
t

m

}
.(11.16)

Proof. This follows from the Euler-Maclaurin formula (11.8).

Note thatηk(t) = tϕ(k)/k if 0 ≤ t < 1 and that|ηk(t)| ≤ τ(k). Hence

|ηk(t)| ≤ τ(k)min(1, t) .(11.17)

In particular (11.15) fork = uw/d yields

Φd(x, y) = ϕ(k)

k

I(y)

x
+
∫
ηk

(
t

x

)
H(t, y)dt(11.18)

where

I(y) =
∫ [

log
tyw2

u2d2
− λw

][
log

t

sy
− λsw

]
F
(
ty,

t

sy

)
t dt(11.19)

and

H(t, y) = ∂

∂t

[
log

tyw2

u2d2
− λw

][
log

t

sy
− λsw

]
F
(
ty,

t

sy

)
t .(11.20)

Now we introduce (11.18) into (11.13). From the leading term we obtain
the following integral in thex–variable∫ ∞

0
Jk−1

(
4πx

[d,q]
)

cos

(
2πx

[d,q]
(

du

wy
+ wy

du

))
dx

x
= 0

by virtue of (12.2), because
du

wy
+ wy

du
≥ 2. Therefore we are left with

R(u, w) = 2

s

∑′′

d|w

ϕ(d)

d[d,q]
∫

Jk−1

(
4πx

[d,q]
)∫

ηk

(
t

x

)
I(t, x)dt dx

(11.21)

where

I(t, x) =
∫

H(t, y) cos
(

2πx

[d,q]
(

du

wy
+ wy

du

))
dy

y
.(11.22)



Bounds for automorphicL–functions. II 239

We shall estimateI(t, x) by means of the following

Lemma 11.3 SupposeH(y) is a smooth function supported on[Y,2Y]
such that|H(y)| ≤ 1 and |H ′(y)| ≤ Y−1, whereY > 0. Then for any
a,b> 0 we have∫

H(y) cos

(
ay+ b

y

)
dy

y
� (1+ ab)−

1
4(11.23)

where the implied constant is absolute.

Proof. By Lemma 4.5 of Titchmarsh, Theory of the Riemann Zeta-Function
applied twice, together with the trivial bound, we deduce that∫ y

Y
cos

(
ax+ b

x

)
dx

x
� min

(
1,a−1/2,b−1/2)

for Y ≤ y ≤ 2Y. Hence∫
H(y) cos

(
ay+ b

y

)
dy

y
= −

∫ 2Y

Y

(∫ y

Y
cos

(
ax+ b

x

)dx

x

)
H ′(y)dy

� min
(

1,a−
1
2 ,b−

1
2

)
which is a slightly better bound than (11.23).

Before applying (11.23) toH(t, y)we record from the support ofF(x, y)
that √

sMN≤ t ≤ 2
√

sMN(11.24)

and

H(t, y)� (logq)2 .(11.25)

Therefore Lemma 11.3 yields

I(t, x)�
(

1+ x

[d,q]
)− 1

2

(logq)2 .(11.26)

Inserting this estimate into (11.21) and usingJk−1(z) � (1+ z)− 1
2 (see

(7.1)) we obtain

R(u, w)�(
MN

s

) 1
2

(logq)2
∑
d|w
τ
(uw

d

)∫ ∞
0
(x+ [d,q])−1 min(1,

√
sMN/x)dx .

Hence we finally get

R(u, w) � τ(u)τ3(w)

(
MN

s

) 1
2

(logq)3 .(11.27)
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Now we have all the estimates ready to complete the proof of Theorem 2
in the caser = 1. We introduce (11.10), (11.11) and (11.27) into (11.1)
getting

B(s)� (MN/s)
1
2 q1+ε +

(
s
√

MN + q−
5
4 (sMN)

9
8

)
(sN)

3
4 qε

� qε
(
qs−

1
2 + q

3
4 s

15
8

)
(MN)

1
2 .

This is slightly better than the original estimate (11) of Theorem 2 provided
s≤ q4/27. However, ifs> q1/9 then (11) follows from Corollary 1.

12 Definite integrals of special functions

Here we give the integral formulas which are needed in this work. We give
proofs of those which we couldn’t find in the literature.

First are the following orthogonality formulas

∫ ∞
0

Y0(z)Jk−1(z)z
−1dz= 0(12.1)

if k is even (see (6.576.6) of [GR]), and

∫ ∞
0

Jk−1(az) cos(bz)z−1dz= 0(12.2)

if k is even andb≥ a> 0 (see (6.693.2) of [GR]).
Next we shall prove the following formulas for anya> 0

∫ ∞
0

C(
√

az) cosz dz= 2π cosa ,(12.3) ∫ ∞
0

S(
√

az) sinz dz= 2π sina ,(12.4) ∫ ∞
0

C(
√

az)(log z) cosz dz= 2π(loga) cosa ,(12.5) ∫ ∞
0

S(
√

az)(log z) sinz dz= 2π(loga) sina .(12.6)
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For the proof we write these formulas as Fourier transforms∫ ∞
0

C(
√

z) cos(bz)dz= 2π

b
cos

1

b
,(12.3′) ∫ ∞

0
S(
√

z) sin(bz)dz= 2π

b
sin

1

b
,(12.4′) ∫ ∞

0
C(
√

z)(log z) cos(bz)dz= −4π

b
(logb) cos

1

b
,(12.5′) ∫ ∞

0
S(
√

z)(log z) sin(bz)dz= −4π

b
(logb) cos

1

b
,(12.6′)

by changing the variablez intobzwith b= a−1. Actually(12.5′), (12.6′) are
obtained by this change of variables and using(12.3′), (12.4′) respectively.

Now we write

C(
√

z) =
∫ ∞

0

4

b

(
cos

1

b

)
cos(bz)db(12.3*)

by changing the variable in (10.14). This is the Fourier cosine transform
of 4

b cos1
b. Therefore(12.3′) follows from (12.3∗) by Fourier inversion.

Similarly (12.4′) follows from

S(
√

z) =
∫ ∞

0

4

b

(
sin

1

b

)
sin(bz)db(12.4*)

by Fourier inversion of the Fourier sine transform.
For the proof of(12.5′) we write

C(
√

z) log z=
∫ ∞

0

4

b
(logbz)

(
cos

1

b

)
cos(bz)db

−
∫ ∞

0

4

b
(logb)

(
cos

1

b

)
cos(bz)db .

Changingb into 1/bz in the first integral we get

C(
√

z) log z= −
∫ ∞

0

8

b
(logb)

(
cos

1

b

)
cos(bz)db .(12.5*)

This is the Fourier cosine transform of−8
b(logb) cos1

b. Therefore(12.5′)
follows from (12.5∗) by Fourier inversion. Similarly one derives(12.6′)
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from

S(
√

z) log z= −
∫ ∞

0

8

b
(logb)

(
sin

1

b

)
sin(bz)db .(12.6*)

Remarks. All the integrals considered here converge due to oscillations
of trigonometric functions, but not absolutely. Nevertheless, one can justify
the Fourier inversions by mollifying the integrals(12.3∗) – (12.6∗) with the
functionω(b) = exp(−εb− εb−1) and lettingε tend to zero.


