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i Introduction 

The L-functions of Dirichlet, for primitive characters Z modulo q, satisfy the 
functional equation 

f q,~S/2 _['s + a'~_, - s + a ) L ( 1  _ s,g) 

wherea=X2(Z(1) -Z( -1) )andez=z(z )q-1 /2wi thz (x )=~b~modq)X(b)e (~) the  

Gauss sum, so I~xl = 1. From this and the Phragmen-Lindel6f convexity principle, 
it follows that they satisfy the bound 

(1.2) L(s, Z) ~ ql/41ogq 

on the line Re s = 2 x, the implied constant depending on s. This classical estimate 
resisted improvement for many years until Burgess I-B] reduced the exponent from 
�88 to ~ ,  many important  applications following therefrom. The proof of Burgess 
appeals to the Riemann Hypothesis for curves established by Weil. 

Another method to break the convexity barrier was given recently in [F-I] .  
This method, as well as being more elementary, combines well with the methods 
developed in the series [D-I2] to allow us here to treat the more difficult auto- 
morphic L-functions. 
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Although it is clear that the method extends to more general L-functions of 
rank one, we restrict here, for the sake of exposition, to those L-functions attached 
to an arbitrary holomorphic cusp form of weight k for the full modular group: 

(1.3) f ( z )  = ~ bmm ck-1)/2 e(mz) . 
m = l  

In this Fourier expansion the coefficients have been normalized so that Deligne's 
bound asserts that 

(1.4) bm ~ z(m) 

where the latter is the divisor function. 
With Z as before, we associate to the cusp formf(z), the automorphic L-function 

LI ( s , z  ) - -  ~ bmx(m)m -~. 
m = l  

These were studied by Hecke who proved that they are entire and satisfy the 
following functional equation: 

q s 1-~ k - 1  

where e x is as before, cf. [Sh, p. 93]. By the duplication formula this can also be 
written as 

;7 
s + -2 a2) Ls(1-s'2)' 

where al = �89 - 1) and a2 = �89 + 1), displaying more clearly its relation to (1.1). 
As before it follows by convexity that 

(1.6) L:(s, Z) < ql/2 (log q)2 , 

for Re s = �89 the implied constant depending only on s. The factor (log q)2 c a n  be 
deleted by refining the convexity argument. 

The Burgess method is not applicable here to reduce the exponent �89 In the case 
that Z is real and at the special point s = �89 the exponent was reduced to ~7 in [I] and 
in [D]. This was obtained by the combination of an estimate for the Fourier 
coefficients of half integral weight cusp forms together with Waldspurger's theorem 
and therefore does not apply at other points or for non-real characters. 

In this paper we prove 

Theorem 1 Let Z be a primitive character to modulus q and let Re s = �89 Then we 
have 

(1.7) L/(s, Z) ~ is 12 qS/11 z(q)2 log q 

where the implied constant depends only on f. 

We remark that here, and throughout the paper, we have not made any effort to 
obtain the best exponent in JsJ, in z(q), or in logq. 
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Combining the above estimate with the Waldspurger theorem (see [K])  we get 
the estimate 

(1.8) c(q) ~ qS/22z(q)logq 

for the Fourier coefficient of half integral weight forms on Fo(4). The exponent 
~ ,  although larger than the exponent ~ given in [I], is still strong enough to 
provide a simplification of the solution of the Linnik problem for the sphere given 
in [D] (see also [Sa]). The technique given here applies also to those L-functions 
which are similarly related to the more general ternary Linnik problems treated in 
[D] and [D-SP]. 

2 The delta-symbol 

Define 

10 if n = 0  
(2.1) 6(n) = if n =~ 0 . 

Let co(t) be an even function on ~ with o3(0) = 0 and compactly supported such 
that 

Put 

c~(k) = 1. 
k = l  

(2.2) 

We then have 

(2.3) 6(n) = ~ 6k(n). 
kin 

Using additive characters this yields 

k h (rood k) 

Putting 

(2.4) At(n) = ~ r -16c,(n) 
r 

we get, with r = (h, k), a = h/r, c = k/r, 

(2.5) 6 ( n ) = ~ c  -1 ~ *  e(a---n~Ac(n). 
c a (rood c) \ ~ /  

In practice we apply the above identity to integers [nl < ~, say, with test 
function ~(t)  supported on ~ < [ t l < K ,  and whose derivatives satisfy 
co(j~(t ) r K-~-1 .  Then 6k(n)vanishes save for 1 __< k < max(K,  ~) = K by choosing 
K = N I/2. Hence Ac(n) vanishes save for 1 __< c < K and Ac(n) ~ K -1. 
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3 A mean-value theorem 

Let a,  be complex numbers for 1 < n < ~. In this section our aim is to give an 
estimate for 

S= ~* a.z(n) , 
Z (rood q) 

where star restricts the summation to primitive characters. Expanding each primi- 
tive X using Gauss sums and then extending the resulting summation to all 
characters mod q, we get by orthogonality, 

S < ~p(q) ~* ~ [an'~[2 
= q .<.,o~,, a " e t y J [  " 

Next, extending to all residue classes we get 

sI<p(q)  T. s~, 
h ~ 0 (rood q) 

where 

Sh ~ Z ant an2 " 
nl -n2=h 

For  h = 0 we have the diagonal contribution r where 

(3.1) So = ~ la.I 2 �9 

We denote the remaining contribution from h 4= 0 by S, .  Given h 4:0  we apply 
(2.5) to split 

S h -----2c-lShc , 
c 

where 

She 
-(a ) Y,* Z ~ , a . ~ e  7( , , ,  - ,~ - h) a~(,~ - ,~ - h) .  

a(mod c) n l , n 2  

Now we specialize the sequence (a.) to be the convolution 

a. = Y~ ,~b .w(m) ,  
~'m=n 

where 2t are arbitrary complex numbers for 1 _< E < L and g is a ~2 function, 
supported in [M, 2M] and satisfying 

Igtl}(m)l < M -s f o r j  = 0, 1 ,2 .  

We then have 

S~ = F~ ~t, Xt~ r t , t~ (c ) ,  
/ ~ , / 2  

where 

Till2 (C)~ 2 "  eQ--a~hc) ~ bmlbm2e(a(~lml-E2m2)) s(HeIl,m2) 
a{mod c) m l ,  m2 
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and F(ml, mz) = g(ml)~j(m2)A~(glml -- E2mz -- h). Note  that  (with K = N 1/2 = 
2(LM) 1/2) 

(3.2) F "'j~ ~ K-a (cM/K)  - i - j  for 0 < i,j < 2.  

Next  we shall t ransform the sum of the Four ie r  coefficients bin, b,,~ by the following 
Poisson- type formula (cf. [D-I~,  p. 792]). 

L e m m a  1 Let F be a smooth and compactly supported function on IR +. For any 
integers c > 1 and (a, c) = 1 we have 

where a~ = 1 (mod c) and F(r) is the Hankel-type transform 

[:(y) = 27zikc -1 F(x)Jk-1 c dx , 
0 

where J is the usual Bessel function. 

Applying Lemma 1 in each variable m~, m2 we obta in  

- f a r '  a ~ "  "X 
(3.4) T~,e~(c) ~'* e(ah),~.~2b"b'2et~-llr '  cz = r2) F(rl, r2) 

a(mod c) \ r f , 

where ( '  = fx/(E1, c), f "  = ~2/(~2, c), cl = c/(~1, c), c2 = c/(~2, c) and 

F(r,,rz) = c,c247z2~o o F(xi'x2)Jk-a(4z~kC, xx/~lrl)Jk-'(47r/ \c2 xx/~zrz) dx'dx2" 

F r o m  the recurrence formula 

d 
~z (z~J'(z)) = z ' J ,_  ~(z) 

and the bound  

J~,(z) ~ (1 + z) -1/2 

we get, on integrat ing by par ts  and combining  with (3.2), 

M2 ( cMr, -5,,(l cMr2',-5'" 
\ 

Hence, using the bound  ~,_~ ~, I b,[ z <~ x (which follows from Parseval 's  equation),  
we infer 

(3.5) ~ br~b,=lF(rl,r2)l ~ K . 
r l , r 2  

The sum over a in (3.4) is a K loos t e rman  sum S(h, *; c) to which we apply  Wei r s  
bound.  Together  with (3.5) this gives 

Te, e2(c) = ~, b,,Sr~F(rx, r2)S(h, *; c) 
r l , r 2  

< (h, c)I/2cltZz(c)(LM)t/2. 
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Hence 

She ~ (h, c)l/2 cl/2z(c)(LM)l/2(~, 12~1) 2 . 

Next  summing over c < 2(LM) 1/2 we obta in  

Sh ~ z(h)(LM)a/4(log L M ) ( ~  [2~,1) 2 . 

Summing over h -- 0(mod q), 0 < [hi < L M  we obta in  

(3,6) S ,  ~ z (q)(LM) 7/4 (log LM) 2 (~  IRe 1)2. 

F o r  our  choice of a, (3.1) gives 

(3.7) So ~ M ( l o g M )  ~, 12~[2T(gr . 

By combining  (3.6) and (3.7) we complete  the p roof  of the following mean-value  
theorem. 

Theorem 2 Let 2e, 1 < g <_ L be complex numbers. Let g(m) be a function of C 2 class 
supported in [M,  2 M ]  and such that 

[ g ~  -J, j = 0 , 1 , 2 .  

Let bmm (k- 1)/2 be the Fourier coefficients of a cusp form f of weight k for the modular 
group. Put 

Then we have 

(3.8) S ~, ~p(q)M(logM) ~, I;~12z(~) + z(q)(LM)7/'(log LM) z 12tJ , 

where the implied constant depends only on f. 

We shall apply  Theorem 2 via the following 

Corollary.  Let 7. be a primitive character to modulus q and #(m) as above. We have 

(3.9) B z = ~ b,,7.(m)g(m) ~ (q7/22M7/ll + MT/a)z(q)2logM . 
ra 

Proof. Choose  2~ = )~(t). The cont r ibut ion  to S from 7. is equal  to 

[{f < L : ( f , q )  = 1}lElBrl 2 . 

The cont r ibu t ion  to S from each other  character  ~,(mod q) is non-negat ive and so 
we can discard it. Choos ing  

L = q4/ l lM-a/ l l  + 2q~(q)q~(q) -1 

the corol lary  follows from (3.8). 

Remark. Our  bound  (3.9) is trivial for M < qT/S. 
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4 Proof of Theorem 1 

We shall require the following multiplicative version of the Poisson formula (3.3). 

Lemma 2 Let  F be as in Lemma 1. For any primitive character ~ to modulus q we 
have 

2 (4.1) ~ b , z (m)F(m)  = e x ~ br~(r)F(r) , 
m r 

where e z = z(z)q-1/2  as before. 

Proof. We have 

and 

•(m) = ~ - ~  ~ ~(a)e 
a(mod q) 

~(X) aCmo~ qJ 

Thus (4.1) follows from (3.3). 
Now we are ready to prove Theorem 1. By using a smooth dyadic part i t ion of 

unity it suffices to estimate sums of type 

H = ~ bmz(m)m-~h(m) 
in 

for h a smooth function supported on [M, 2M] such that h~J)(m) ~ M - L  I f M  <~ q 
we apply (3.9) with 9(m) = m-~h(m) and get 

H ~ Is12(qT/Z2M a/22 + M3/S)r(q)21ogq . 

Hence the contribution of partial sums with M <~ q is 

(4.2) (9 ( IslZ qS/ l l r(q)21og q) . 

If M >> q we first apply Lemma 2 to replace g by ~. By partial  integration ~ satisfies 
the bound 

~t(r) <~ Is lZM1/2q-l(1 + q - 2 M r ) - 5 / 4  . 

Making a dyadic subdivision in r we obtain from (3.9) 

H ,~ [s[2(q7/22R 7/11 + RT/S)M1/2q- I (1  + q - 2 M R ) - 5 / 4 z ( q ) 2 1 0 g q .  

for some R _>_ 1. This is greatest for R = q 2 M -  ~ and the resulting bound is greatest 
for M = q. Hence the contribution of partial  sums with M >> q satisfies the same 
bound (4.2). This completes the proof of Theorem 1. 
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