
INTEGRAL AND RATIONAL REPRESENTATIONS OF FORMS

W. DUKE

Abstract. Criteria are given for the integral representation of a binary quartic form by certain
integral ternary quadratic forms and its rational representation by some discriminant forms.
These conditions depend on integral or rational solutions of a Weierstrass equation associated
to the forms.

To Wolfgang Schmidt, on the occasion of his ninetieth birthday

1. Introduction

A form is a homogeneous polynomial. Let R be a ring containing Z. Suppose that F and
f are fixed forms in m and n variables, respectively, with coefficients in R. A basic and very
general problem is to determine whether or not m forms (ϕ1, . . . , ϕm) exist, each in the variables
of f and with coefficients in R, so that

(1.1) F (ϕ) = F (ϕ1, . . . , ϕm) = f

holds identically.
In this paper I will say that F represents f over R (or that (1.1) is solvable over R) if, in

addition to (1.1), we assume that m ≥ n, degF |deg f and each ϕj has degree deg f
degF . If F and f

represent each other over R then they are equivalent over R, in which case m = n, the degrees
are equal and ϕ ∈ GLm(R).

When R = C or R, whether or not F represents f over R is a problem of classical algebraic
geometry or invariant theory. Suppose, for example, that

F (ϕ) = ϕ2
1 + ϕ2

2 + ϕ2
3.

It is familiar that F represents any nonsingular ternary quadratic form f with nonzero complex
linear ϕj , which are real if f is real and positive definite. It is less well-known, but follows from
old work of Hesse [9], that F represents any nonsingular ternary quartic form f over C. Hilbert
showed in [11] that this can be done over R if f is also real and positive definite (see also [12],
[27] and [16]).

When R = Q or Z, the question of the solvability of (1.1) is a problem of arithmetic geometry
or number theory. It amounts to solving a special system of generally inhomogeneous polynomial
equations in rational numbers or the integers. Unless we restrict F and f , it is usually intractable,
the case R = Z being especially difficult. Over Z, a motivating special case is to determine which
integers are represented by F . Clearly, if F represents f over Z then F represents every integer
represented by f . In particular, if F and f are equivalent over Z, then they represent the same
integers.

It is trivial that solvability of (1.1) over Q (over Z) implies solvability over Qp (over Zp) for
all primes p (including p =∞, where Q∞ = Z∞ = R). In short, global solvability implies local
solvability. When F and f are quadratic forms (so that the ϕj are linear), Hasse [8] showed that
the converse holds over Q: local solvability implies global solvability.

Provided that we make various additional assumptions, Siegel’s main theorem on quadratic
forms implies that the converse also holds over Z, i.e. an integral local to global result holds
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when F and f are integral and quadratic.1 For example, by [20],[21] (see also [22]) it is enough
to assume that F and f come from symmetric integral matrices with nonzero determinants
∆ = ∆F and D = Df and that the genus of F contains only one class.2 Although the local
conditions involve all primes p, here local solvability is always possible for all but possibly finitely
many primes. Furthermore, the problem reduces to solving a finite system of congruences. Thus
for quadratic forms where an integral local to global result holds, it is possible to determine
solvability of (1.1) over Z in a finite number of steps, at least in principle.

In this paper I am interested in characterizing the integral representability of binary quartic
forms by an integral ternary quadratic form and their rational representability by a discriminant
form of degree two or four. In particular, this problem includes the representation over Z of a
binary quartic form at the sum of three squares.3 The goal is to give easily formulated and, if
possible, finitely verifiable solvability conditions. In addition to Siegel’s main theorem, I apply
results of Mordell/Thue and Nagell. Otherwise the methods used are elementary. Usually I give
explicit constructions of solutions when they exist. Some computations are lengthy and were
discovered, and are best verified, with the assistance of software, in particular PARI/GP.

Remarks. When F is a sum of squares, n = 2 and R is any field of characteristic not two, solving
(1.1) is a well-known problem in the algebraic theory of quadratic forms. See for instance [13]
and [17].

A well studied analytic technique for treating Diophantine systems over Q or Z is to count
asymptotically all solutions in a growing box, or show that none exist, via the Hardy-Littlewood
method or one of its nonabelian variations. When applied to general systems over Z, these
methods are usually only effective when the number of variables is large compared to the number
of equations and the associated system is homogeneous. The literature here is too large to
effectively summarize, but two highly influential papers are those of Birch [1] and Schmidt [19].

2. Integral representations by a ternary quadratic form

Let F be a nonsingular integral ternary quadratic form. The problem of representing binary
quadratic forms by F over Z was introduced by Gauss in his Disquisitiones [7, Art. 266–300].4 In
addition to anticipating aspects of integral local to global solvability by F , he made a number of
arithmetic applications using the relationship between the discriminants of the binary quadratics
represented by F and the integers represented by −(detF )F−1. Among these applications are
his formula for the number of representations of an integer as the sum of three squares in terms
of class numbers of binary quadratic forms.

In this section I will give a finite set of criteria for the representation of a binary quartic form
f over Z by a nonsingular integral ternary quadratic form F , assuming that the genus of F
contains only one class. Let

(2.1) f(x, y) = (a, b, c, d, e) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4 with a, b, c, d, e ∈ Z.

1Unless otherwise stated, an integral quadratic form will be supposed to come from an integral symmetric
matrix. I will not distinguish a quadratic form from its associated symmetric matrix.

2Here the notions of genus and class are defined with respect to GLm(Zp) for all p and GLm(Z). To apply
Siegel’s result we must assume that −∆ and −∆D are not squares in case m=2 or m=n+2, respectively. For a
direct proof that the one class per genus condition suffices in case n = 1 see e.g. [2]. For results without the one
class genus condition see [23].

3The problem of deciding which ternary quartic forms are the sum of three squares of integral quadratic forms
seems to be open and difficult.

4A useful supplement for the study of this part of [7] is [26, Chap. 4].



INTEGRAL AND RATIONAL REPRESENTATIONS OF FORMS 3

The usual invariants of f in (2.1) are5

I = If = ae− 4bd+ 3c2 and J = Jf = det
[
a b c
b c d
c d e

]
= ace+ 2bcd− ad2 − eb2 − c3.

The discriminant of f is

(2.2) D = Df = I3 − 27J2.

Associated to F and f from (2.1) is the Weierstrass equation

(2.3) ∆
2 Y

2 = X3 − IX + 2J,

where ∆ = detF 6= 0. Assuming that D 6= 0 for D from (2.2), this defines an elliptic curve E∆

over the rationals, which is the Jacobian of the curve of genus one over Q determined by

Y 2 = 2∆f(X, 1)

(c.f. [28]). By a theorem of Mordell [14], itself reliant upon a well-known result of Thue [25],
the equation (2.3) has at most finitely many solutions (X,Y ) where X is integral.6 Define for
λ ∈ Q

(2.4) Qλ =

 a 2b c+ λ
2b 4c− 2λ 2d

c+ λ 2d e

 .
Our first result reduces the binary quartic representation problem to a ternary quadratic one
with an extra condition that involves equation (2.3). Since I need the rational case later, here I
work over either Z or Q.

Theorem 1. Choose R to be either Q or Z. Let F be an integral ternary quadratic form with
∆ = detF 6= 0 and let f as in (2.1) be a Gaussian binary quartic form with invariants I, J and
with D 6= 0. Then F represents f over R if and only if F represents the ternary quadratic form
QX from (2.4) over R for some X ∈ R. In this case, we have that (X,Y ) satisfies the equation
(2.3) for some Y ∈ R.

Proof. That F represents f over R means that there exists ϕ = (ϕ1, ϕ2, ϕ3) with binary quadratic
forms having coefficients in R:

(2.5) ϕj(x, y) = ajx
2 + bjxy + cjy

2

such that

(2.6) f(x, y) = F
(
ϕ1(x, y), ϕ2(x, y), ϕ3(x, y)

)
.

Next note that for

(2.7) V = (x2, xy, y2) and U =

[
a1 b1 c1
a2 b2 c2
a3 b3 c3

]
∈ R3×3

we have UV t = ϕt and (2.6) is equivalent to ϕFϕt = f(x, y) and also

f(x, y) = V (U tFU)V t.

A calculation using (2.4) shows that for any λ

(2.8) V QλV
t = f(x, y).

Therefore (2.6) is equivalent to

(2.9) V (U tFU)V t = V QλV
t.

5See [18, §199] for the basic invariant theory of binary quartic forms. I am using I, J in place of his S, T .
6Although Thue’s result is non-effective, the finiteness statement can be made effective, albeit with huge

constants. See [24, Chap. IX] for a discussion and references.
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Now

Qλ =
[
a 2b c
2b 4c 2d
c 2d e

]
+ λJ0, where J0 =

[
0 0 1
0 −2 0
1 0 0

]
.

It is easy to show that if A is a 3× 3 symmetric complex matrix such that

V AV t = 0

identically, then A is a multiple of J0. It follows from this and a look at the c+ λ entries of Qλ
from (2.4) that, if (2.9) holds for some λ = X ∈ R, we must have

(2.10) U tFU = QX .

The “only if” part of the first statement of the Theorem now follows. The “if” part is a direct
consequence of (2.9) and (2.8).

Now observe that if (2.10) holds then detQX = ∆Y 2 for some Y ∈ R. Explicitly,

(2.11) Y = detU.

Finally, from (2.4) a calculation shows that

detQX = 2X3 − 2IX + 4J

so we get the second statement. �

Say that ϕ with ϕj from (2.5) is non-degenerate if detU 6= 0 for U from (2.7). The condition
of ϕ(x, y) being non-degenerate is invariant under (x, y) 7→ (x, y)A for A ∈ GL2(Q).

Using Siegel’s integral local to global result we can deduce from Theorem 1 the following finite
set of criteria for the non-degenerate solvability over integers of f by a form F with one class in
its genus.

Theorem 2. Let F be a nonsingular integral ternary quadratic form that belongs to a genus that
contains one class and let f = (a, b, c, d, e) be a Gaussian binary quartic form with invariants
I, J and with D 6= 0. Then F represents f over Z with a non-degenerate ϕ if and only if the
following holds: for some solution (X,Y ) to

∆
2 Y

2 = X3 − IX + 2J,

with X ∈ Z and (X,Y ) not of order two in the associated elliptic curve, we have that for any
prime p (including p =∞)

U tFU = QX

has a solution U ∈ Mat3,3(Zp), where QX is from (2.4).

Example 1. Suppose that F (ϕ) = ϕ2
1 + ϕ2

2 + ϕ2
3, which is in a genus of one class. Let

f(x, y) = (2,−1, 3,−2, 3) = 2x4 − 4x3y + 18x2y2 − 8xy3 + 3y4,

for which I = 25 and J = −8. The elliptic curve with Weierstrass equation
1
2Y

2 = X3 − 25X − 16

has no rational points of order two. The equation has four integral solutions (X,Y ) with Y > 0:
(−1, 4), (−3, 8), (6, 10) and (22, 142). We have

Q−1 =
[

2 −2 2
−2 14 −4
2 −4 3

]
, Q−3 =

[
2 −2 0
−2 18 −4
0 −4 3

]
, Q6 =

[
2 −2 9
−2 0 −4
9 −4 3

]
, Q22 =

[
2 −2 14
−2 −10 −4
14 −4 3

]
.

It can be checked that

Q−1 = U tU, U =
[

0 −2 1
1 −3 1
1 1 1

]
gives f(x, y) = (−2xy + y2)2 + (x2 − 3xy + y2)2 + (x2 + xy + y2)2

and

Q−3 = U tU, U =
[−1 1 −1
−1 1 1
0 4 −1

]
gives f(x, y) = (−x2 +xy−y2)2 +(−x2 +xy+y2)2 +(4xy−y2)2.

On the other hand, U tU ≡ Q6 (mod 4) and U tU ≡ Q22 (mod 4) have no solutions.
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Remarks. The focus of this paper is the basic question of the solvability over Z or Q of (1.1) for
certain F and binary quartic f and, when possible, to explicitly find some solutions. For the
more refined problems of finding all solutions, or counting them with weights, it is natural to
consider equivalence classes of solutions, with equivalence appropriately defined. Two solutions
of the general equation (1.1) can be said to be equivalent if they can be transformed into each
other in the obvious way by either an automorph of F or of f , defined over R. In Example 1
above, the automorphs of F consist of all sign changes and permutations of (ϕ1, ϕ2, ϕ3) while the
only nontrivial automorph of f is given by (x, y)↔ (−x,−y). It is clear that the two solutions
given are inequivalent in this sense. It is likely that they represent all classes. To prove this we
would need to show that no other inequivalent solutions to either quadratic system Q−1 = U tU
or Q−3 = U tU exist as well as that no other integral points on the elliptic curve exist.

3. Rational representations by discriminant forms

In this section I will consider the representation of binary quartics by certain discriminant
forms, and now only over Q.

Representation by a symmetric 2× 2 determinant. Four times

(3.1) F (ϕ1, ϕ2, ϕ3) = ϕ2
2 − ϕ1ϕ3 = −det

[
ϕ1 ϕ2

ϕ2 ϕ3

]
,

is the usual discriminant of the binary quadratic form

ϕ1x
2 + 2ϕ2xy + ϕ3y

2.

The following genus zero result is easy to prove.

A nonsingular integral binary quadratic form f(x, y) = ax2 + 2bxy + cy2 is represented by F
from (3.1) over Q with linear forms ϕj if, and only if, the conic determined by

f(X,Y )− Z2 = 0

contains nontrivial rational points.

For a binary quartic form f , we have a genus one version of this result.

Theorem 3. Let f be a Gaussian binary quartic form with invariants I, J and with D 6= 0 and
E be the elliptic curve over Q defined by

(3.2) Y 2 = X3 − 4IX − 16J.

If f is represented by F from (3.1) over Q then E contains nontrivial rational points. If E
contains nontrivial rational points not of order 2 then f is represented by F over Q by a triple
ϕ = (ϕ1, ϕ2, ϕ3) of binary quadratic forms ϕj(x, y) = ajx

2 + bjxy + cjy
2 with

(3.3) b1 = 2a2, c1 = a3, and 2c2 = b3.

Proof. The first statement follows from the last statement of Theorem 1 applied to

(3.4) F1(ϕ) = 2(ϕ2
2 − ϕ1ϕ3),

for which ∆F1 = −2, and with f replaced by 2f. Note that I2f = 4If and J2f = 8Jf .
For the second statement, let (X,Y ) solve Y 2 = X3−4IX−16J with Y 6= 0. This is possible

by our assumption that E has a nontrivial point, not of order 2. Define7

(3.5) B = 1
Y

[
8b2−8ac−2aX 8bc−8ad−4bX 2c2−2ae−2cX+ 1

2
X2

4bc−4ad−2bX 10c2−8bd−2ae−4cX− 1
2
X2 4cd−4be−2dX

2c2−2ae−2cX+ 1
2
X2 8dc−8be−4dX 8d2−8ce−2eX

]
.

7One method to derive the matrix B will be indicated at the end of the paper.
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Then for F from (3.1) and V from (2.7), a (software assisted) calculation verifies that

F (BV t) = f(x, y),

where BV t = ϕt. The last statement follows from this and (3.5). �

Example 2. Let

f(x, y) = (1, 1, 3, 1, 2) = x4 + 4x3y + 18x2y2 + 4xy3 + 2y4,

for which I = 25 and J = −18. By using the method of the previous section, we can see that f
is represented over Z by F from (3.1). Here we use that the Weierstrass equation

Y 2 = X3 − 100X + 288

has three integral solutions: (8, 0), (−8,±24). The first corresponds to a point of order two.
Using (−8, 24), it is easy to get the explicit integral solution:

f(x, y) = (x2 + 2xy − 16y2)2 − (y2)(−46x2 − 68xy + 254y2).

On the other hand, the matrix B from Theorem 3 with (X,Y ) = (−8, 24) yields the non-
integral representation over Q

f(x, y) = (x2 + 71
12xy + 5

6y
2)2 − (2xy + 47

12y
2)(47

12x
2 + 5

3xy −
1
3y

2),

but with the symmetry condition given in (3.3).

Representation by a symmetric hyperdeterminant. Consider now the quartic form

(3.6) F (ϕ) = F (ϕ1, ϕ2, ϕ3, ϕ4) = ϕ2
1ϕ

2
4 − 3ϕ2

2ϕ
2
3 + 4ϕ1ϕ

3
3 + 4ϕ4ϕ

3
2 − 6ϕ1ϕ2ϕ3ϕ4,

which gives the discriminant of the binary cubic form

ϕ1x
3 + 3ϕ2x

2y + 3ϕ3xy
2 + ϕ4y

3.

It is also the symmetric Cayley hyperdeterminant [3]. Eisenstein [5] introduced this discriminant
in his study of integral binary cubic forms. It is invariant under the simultaneous transpositions
ϕ1 ↔ ϕ4 and ϕ2 ↔ ϕ3. In addition to being homogeneous of degree four, it satisfies for k 6= 0

(3.7) F (k3ϕ1, k
2ϕ2, kϕ3, ϕ4) = k6F (ϕ1, ϕ2, ϕ3, ϕ4).

In particular,

F (ϕ1, ϕ2, ϕ3, ϕ4) = F (−ϕ1, ϕ2,−ϕ3, ϕ4) = F (ϕ1,−ϕ2, ϕ3,−ϕ4).

Other special properties are the composition formula [6]

F (F1,
1
3F2,

1
3F3, F4) = 16F 3,

where Fj = ∂F
∂ϕj

and the Hessian identity [4]

det[Fi,j ] = 432F 2.

Our next aim is to characterize those binary quartic forms that can be represented over Q by
this discriminant form evaluated at linear forms

ϕ = (a1x+ a2y, b1x+ b2y, c1x+ c2y, d1x+ d2y).

Now the associated system of equations is quartic, not quadratic, but the solvability criterion
now only depends on whether or not the elliptic curve over Q defined by (3.2) contains nontrivial
rational points of order three.
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Theorem 4. Let f = (a, b, c, d, e) be a (Gaussian) binary quartic form with invariants I, J such
that D 6= 0. Then f is represented by F from (3.6) over

Q by linear forms ϕj if, and only if, the elliptic curve E defined over Q by

Y 2 = X3 − 4IX − 16J

contains rational points of order three.

Proof. The proof of Theorem 4 makes use of the basic invariant theory of pairs of binary Gaussian
cubic forms, [18, p.204–218].

Our problem is to determine when (a1, b1, c1, d1) ∈ Q4 and (a2, b2, c2, d2) ∈ Q4 exist so that
for F from (3.6) and f from (2.1) we have

F (a1x+ a2y, b1x+ b2y, c1x+ c2y, d1x+ d2y) = f(x, y).(3.8)

For the pair of binary cubic forms

(3.9) fj = (aj , bj , cj , dj) = aju
3 + 3bju

2v + 3cjuv
2 + djv

3, j = 1, 2,

(3.8) can also be written

discu,v(xf1 + yf2) = f(x, y).

The coefficients a, b, c, d, e of f are invariants of the pair (f1, f2). There are two other such
invariants that make the resulting set of seven complete and independent over C. These are
given by

P = Pf1,f2 = a1d2 − a2d1 − 3(b1c2 − b2c1)(3.10)

Q = Qf1,f2 = det

 a1c1 − b21 a1c2 + c1a2 − 2b1b2 a2c2 − b22
a1d1 − b1c1 a1d2 + d1a2 − b1c2 − c1b2 a2d2 − b2c2

b1d1 − c2
1 b1d2 + d1b2 − 2c1c2 b2d2 − c2

2

 .(3.11)

Now a computation (using software) shows that for the coefficients of f coming from the
assumption (3.8),

12I = P (P 3 − 24Q)(3.12)

216J = −P 6 + 36P 3Q− 216Q2.

In addition,

D = (P 3 − 27Q)Q3.

The equations of (3.12) are equivalent to the conditions given by Nagell in [15, Thm.1]8 for E
from (3.2) to have rational points of order three. In this case, the points are given by

(X,Y ) = (1
3P

2,±4Q).

This shows that if we have a representation of f by F over Q then E has points of order three.
For the converse, given that points (X,Y ) of order three exist on E, we must produce ϕ that

represents f . By Nagell’s criteria we can assume that we have P,Q ∈ Q with Q > 0 that satisfy
the equations of (3.12). Define the matrix

(3.13)

C =

[
12acP+aP3−12aQ−12b2P

12Q3
6adP−6bcP+bP3−12bQ

12Q2
2aeP+4bdP−6c2P+cP3−12cQ

12Q
6beP−6cdP+dP3−12dQ

12

6adP−6bcP+bP3−12bQ

12Q3
2aeP+4bdP−6c2P+cP3−12cQ

12Q2
6beP−6cdP+dP3−12dQ

12Q
12ceP−12d2P+eP3−12eQ

12

]
.

Using (3.12), one can check by (software assisted) computation that for F from (3.6)

F
(
(x, y)C

)
= f(x, y).

�

8If P = 0 then I = 0 and J = −Q2 6= 0. If P 6= 0, in his notation use 3c = P and P 2d = 36Q.
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Example 3. Let

f(x, y) = 5x4 − 4x3y − 48x2y2 + 12xy3 + 12y4,

for which I = 264 and J = 23. The elliptic curve given by

Y 2 = X3 − 1056X − 368

has rank zero with points of order three: (3.12) gives P = 12 and Q = 61. Computation of C
yields the representation over Q:

f(x, y) = F
(
− 77

226981x−
41

226981y,−
41

3721x−
940
3721y,−

940
61 x+ 321

61 y, 321x− 264y
)
.

Derivation of matrices C and B. Although the proof of Theorem 4 is complete as given, the
origin of the matrix C in (3.13) likely seems mysterious. To clarify this, and since it has
generalizations, I will sketch its derivation. Note that if the result of Theorem 4 holds then so
does the second statement of Theorem 3. One way to derive the other mysterious matrix B
given in (3.5) is to use C to give it in this special case and then verify that it works in general.
I will show how at the end.

We need the basic invariant theory of binary quartic forms. Again, a good reference is [18].
The Hessian of a quartic f = (a, b, c, d, e) is the covariant given by

(3.14) Hf (x, y) = (ac−b2)x4 +2(ad−bc)x3y+(ae+2bd−3c2)x2y2 +2(be−cd)xy3 +(ce−d2)y4.

We must produce ϕ by which F represents f or, what is the same, a suitable pair of binary
cubic forms (3.9) so that

(3.15) f(x, y) = discu,v(xf1 + yf2) = F
(
(x, y)C

)
.

The idea, which over C was utilized by Hilbert in [10], is to find a binary quartic g with the
property that

(3.16) gu = ∂g
∂u = 4f1 and gv = ∂g

∂v = 4f2.

We have the following readily checked identity:

(3.17) discu,v
(

1
4(xgu + ygv)

)
= −Jgg + IgHg.

We will proceed under the assumption that P 6= 0 and Q > 0 and make the ansatz

(3.18) g = αf + 6Hf .

Then by (3.17) we are led to solve the equation

(3.19) −Jαf+6Hf
(αf + 6Hf ) + Iαf+6Hf

Hαf+6Hf
= βf

in α, β. For this we apply the well-known formulas (see e.g. [18, p. 201])

Iαf+6Hf
=Iα2 + 18Jα+ 3I2

Jαf+6Hf
=Jα3 + I2α2 + 9IJα+ (54J2 − I3) + 3I2

Hαf+6Hf
=(αI + 9J)f + (α2 − 3I)Hf .

Upon using the Nagell criteria, a solution of (3.19) is shown to be

α = P 3−12Q
2P and β = 64Q6

P 4 .

Therefore, (3.17) and (3.18) yield

f = P 4

64Q6 discu,v
(

1
4(xgu + ygv)

)
where g = P 3−12Q

2P f + 6Hf .

Next, apply (3.14), homogeneity of F and (3.7) to get f1, f2 from (3.16). Finally, we get C from
(3.15).
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Turning to the matrix B in (3.5), one way to derive it from C is to compute the (binary cubic)
Hessian of xf1 + yf2 using C. The discriminant of this Hessian equals that of xf1 + yf2, which
is f .
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