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1. Introduction 

Among the most fascinating arithmetic functions are the Fourier coefficients of 
holomorphic modular forms for a congruence group. The sequence of coefficients 
of an integral weight form restricted to values prime to the level may be expressed 
as a finite linear combination of multiplicative functions, namely eigenvalues of 
the Hecke operators. There is no adequate theory of Hecke operators for forms 
of weight half an odd integer. The Fourier coefficients of such forms along 
square-free numbers cannot be multiplicative, unless they are zero. 

In this paper we shall give quantitative evidence for this phenomenon in the 
case of holomorphic cusp forms of weight k =�89 + ~ with ~ > 2, ~eT/for Fo(N ), 
N = 0(mod 4). If 

f(z) = ~ Le(nz) (1) 
n = l  

is such a form and f ,  = n ~k- 1)/2f, then it will be shown that 

~ a,~b,f,,. << (X tie + X t/4 Y)(XY) ~ II a I[ [I b II (2) 
n < X  ra<-<_Y 

where (am) is a sequence of complex numbers supported on square-free integers 
and (b.) is any sequence, the constant implied in the symbol << depending on e 
and f only. This result follows, by Cauchy's inequality, from 

n~x m~<-_r a,nfmn 2 << (X + X 1t2 Y2)(XY)e I[ a II 2 (3) 

and the latter will follow from the estimate 

Z fn, f,~e-"/x << 6,sX + (rsX)l/2 +, (4) 
n 

for r and s square-free integers congruent rood 4 and prime to a number  depending 
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on f only. In both estimates the constant implied in << depends on e and f only. 
We expect that for the sum (3) restricted to square-free n the bound should be 
c(~)(X Y)e(X + Y)l} a[I z. 

It may be assumed that f (z)  is a Poincar6 series and so f,s may be evaluated 
as a sum of Kloosterman sums. The sum over n is then transformed using Poisson's 
summation for Fourier coefficients. The resulting sums are evaluated in terms of 
Gauss-Ramanujan sums and finally estimated to give (4). An alternative approach 
to (4) would be through the Rankin-Selberg method. This leads, however, to 
certain technical difficulties which arc avoided by the above exponential sums 
method. The exponential sums method seems to better reveal the nature of the 
Fourier coefficients of cusp forms and it allows transformations that are familiar 
in the theory of Hecke operators. 

We shall also estimate special bilinear forms (2) in which the coefficients b, are 
Dirichlet characters. In fact we shall deal with 

say, where ff is the Gauss sum of a Dirichlet character @ to modulus c = 0(mod N) 
and X >  2. The smoothing factor 1 -  nX -1 is introduced to claim nicer results. 
We shall prove that 

~, b , f ,  <<c2rl/2+'X(k-1)/: (6) 
n<.X,n~O(modr) 

for (r, c)= 1 and b n given by (5), where the constant implied in << depends on e 
and f only. Another bound will be given on average with respect to r, namely 

~ a ,b , f ,  << c z ]l a It R I:~xR/Z- 1/, +, (7) 
n<-X r~R (r ,c)=l 

~t ~ 0(rood r) 

where b, is given by (5) and a, is any sequence of complex numbers supported on 
square-free numbers, the constant implied in << depending on e and f only. 

A general bilinear inequality of type (2) and the special one of type (7) are 
crucial ingredients in Vinogradov's combinatorial method of treating the sum of 
a non-multiplicative function over primes. The method was first applied by him 
in 1937 to estimate 

e(otp). (8) 
p~_X 

Vinogradov's method was remarkably simplified by Vaughan in 1976. We shall 
apply one of Vaughan's identities to show that for the Fourier coefficients above 
and a primitive or principal character if(mode), c-= 0(modN), 

E ~(P)fp <<X155/ls6+~, (9) 
p_~X 

the implied constant depending only on c, e and f. Such an estimate for the Fourier 
coefficients of an integral weight eigenform would be equivalent to the non- 
vanishing of the associated L-function in a strip to the left of its line of absolute 
convergence and is thus far beyond current methods. 
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Apparently, there is a similarity between our estimate (9) and that of 
Heath-Brown and Patterson for sums of cubic Gauss sums to prime moduli [2]. 
Nevertheless, their technique is quite different since for estimating the relevant 
bilinear forms they use a kind of twisted multiplicativity for the cubic Gauss sums. 
The authors thank the referee for comments which led to improvements in the 
exposition of this work. 

2. Preliminaries 

The group SL2(R ) acts on the upper-half plane H by 

az +b  
~z = cz + d' 

jr~,2(z) = jr~(r2z)j~,~(z). 

For z6C\{0} we define 

z ~ = exp (k log [ z[ + ik arg z), 

where log Izler~ and a r g z ~ ( -  n, hi. Since the function 

arg Jr~r~(z) - arg Jr, (Y: z) - arg J~2(z) 

is constant in H we may put for k > 0 

h(?, ,  r2) = J~,r2(z)-*Jr,(rzz)kJ~2(z) k. 

Let /~  be a discontinuous and co-finite subgroup of SL2(R) with respect to the 

invariant measure d#z=y-Zdxdy ,  and suppose F contains ~ ( - 1  " ) A 
- - 1  " \ / 

function v:F--. C is called a multiplier system of weight k for F if it satisfies the 
consistency conditions 

v(~l ~2) = v(~)v(~2) jk(~,  ~).  (10) 

A holomorphic function f : H ~  C is called a modular form for F with respect to 
the multiplier system v of weight k > 0 if 

fO,z) = v(?)j,(z)*f(z) (11) 

for all ~ e F  and zEH, and f is holomorphic at each cusp. In particular, the function 

If(z)ly k/2 (12) 

is F-invariant .  If this function is bounded in H then f (z)  is called a cusp form. 
The space Sk(F, v) of holomorphic cusp forms for F with respect to the multiplier 
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system v of weight k is a finite dimensional Hilbert  space with the inner product  

( f , ~ ) =  S f(z)'J(z)Ykd# z. 
F\H 

Notice that  the function f(z)#(z)y k is F- invar ian t  and bounded in H. 

Suppose that ( 1  1 )  e F ,  so a cusp form f ( z )  has the Fourier  expansion 
1 

f (z)  = ~" f~e(nz). (13) 
n = l  

By the boundedness of ]f(z)[y k/2 we infer 

1 
E I-~l e e - 4 ' '  = S tf(z)l 2dx << y-k  
n 0 

for any y > 0. Hence on taking y = X - t  and discarding some positive terms we 
conclude that 

Z If~l 2 <<X~, (14) 
n_~X 

where the constant implied in the symbol << depends on f only. This is a Hardy 
and Hecke type extimate. By a similar argument it follows that 

f n e(en) << X k/z log X, (15) 
n<=X 

where the constant in << depends on f only. 
F rom now on we assume that F = Fo(N ) is the Hecke congruence group of 

level N = 0(mod 4), that the weight k is half an odd positive integer and that  the 
multiplier system is that of a theta-series, i.e. 

for 7SFo(N ), where X is a Dirichlet character to the modulus N, ~ is the extended 
quadrat ic  residue symbol (see [5]) and 

1 if d ~ l(mod4),  
~d= i 2k if d = - l ( m o d 4 ) .  

In part icular we have ~ = if c,d > 0. Notice that  

ea~a 2 = ( _ l ) ( 1 / a ) ( a ~  - 1 ) ( d ~ -  1)ea ~ ca2. 

For  any c -= O(mod N) and (d, c) = 1 we shall use the notat ion v(c, d) = v(~), where (: ") 1' = d eFo(N),  and v,(c, d) = ~d~d,V(C, d) if 2]/r. 
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Letting 

(c,d) = t 
Since there exists 7 = d EF~ by (11) we obtain 

Hence changing d into d we obtain 

f ( z '  ~)  ~- (CZ)--k ~"d(mod c) ~ff(-d'~)(c'd)f( ~-c~-~2 ) 

= (cz)-k ~ (.,.~dc t~(- d)z(d)ea(d)e(d-~ ) )'.e( ~ )" 

We have 

we conclude the following functional equation 

Now suppose r is a positive integer with (c, r) = 1. We shall derive a functional 
equation for 

f~(z, ff)= E ff(n)f~e(nz). (20) 
n-=0(modr} 

Let ~ be the principal character to the modulus s, so its Fourier transform 

d(mods) 
(d,s)= 1 

is the Ramanujan sum. We detect the divisibility n = 0(mod r) in (20) by means of 

3. A functional equation 

If ~ is a periodic function (mod c) we define its Fourier transform by 

~(n)=  ~ ~p(d)e(d---n~. (16) 
d (rood c) 

Suppose that ~k is a multiplicative character and that c = 0(modN). We shall 
establish a functional equation for the twisted form 

f(z, ~) = ~, ~(n)f~e(nz). (17) n 
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~s as follows 

~ ( n ) =  2 e = 
�9 1, dt~od,I 0, if n4~0(modr). 

We also have ~,l~ = ff(s)(ibs~k) ̂ , so by (19) we conclude that 

1 - 1 - k - - 1  

r sl, r sir \ C  S z J 

The Fourier transform of Pc, factors. Indeed we have 

t$.(n)= ~ a  <rood c,) f f ( - d ' x ( d ' e a ( 7 ) e ( ~ s )  

= E E  Ik(-dls)z(dis)ea,s disTd2 c ~ . . o . ~  ~ - 7  - +  s ) '  
az(mod s) 

and by the quadratic reciprocity law we have 

, ,  , 

= ( c ' ~  (d2 ~ ( _  1)((,-,)/2)((a, - ,),'2, +(.- 1,,2 ' 
t,a, )t, s } 

and 

Therefore 

where 

e a ~ (  - 1) ~t~- l ) /2)t~a,-  1)/2)+ ( s -  1)/2 = ed ' 8s ( _ 1)c , -  U/2  = ee  t e~. 

Notice that 2s is multiplicative in s. We conclude 

Theorem 1. Let c = 0(mod N), ~k be a character to the modulus c and (c, r) = 1. We 
then have 

+(- 
r sir \ c  s z ] 

Corollary. We have 

n < x  sl 
a-~O{modr) 

}"#~,,(m)~s(m, fmfXyk+"i2Jk+l(~s~). 
�9 t-~) 
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Proof. For R e z > 0  we have 

E ~(n).~ e x p ( -  2~nz} = ~ - ~  Z Z(s)ffz(s) 
n.~0(modr) sir 

^ ~ k f - 21zm\ 
�9 ~ t~c(m)2~(m)f~(csiz)- exp t ~ ) "  

Moreover, for a > 0 , ~ > 0 , f l > 0 , y ~ R  we have 

1 
~!) e~z -  2 dz = max {7, 0}, 

and 

789 

/ 0t \ v / 2  

' s ) 2~i <~,) 

These formulas for ? = 2~(X - n), ~ = 2nX,/7 = 2~X, fl = 2~m(cs) -2 and v = k + 1 
yield the assertion of the corollary. 

4. Estimates for the mean-values 

Theorem 2. Let c - 0(mod N), ~k be a character to the modulus c and (r, c) = L Then 
for X > 1 we have 

E ( x -  ,O~(n)L << c~(r~(r))~/~x ~+'n, 
n~X 

n~O(modr) 

where the constant implied in << depends on f only. 

Proof. It follows from the Corollary to Theorem 1 by the following estimates 

I~c(m)l < c, 

12,(m)l < sl/Z(s,m)Xl2, 
Jr(Y) << rain {yV, y -  1/2 }, 

and by (14) with Cauchy's inequality. 

Obviously Theorem 2 yields (6). In order to prove (7) we first establish the 
following 

Lemma 1. For any complex numbers c~m, fl~ we have 

~.. ~*  ~,.fl~2s(m) << N a II II/~ II {(MS) 1/2 + mx/4S'  +"}, 
m~_M s~_S 

where ~*  means that s ranges over square-free odd numbers, the constant implied 
in << depending on e only. 

Proof. We have 
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Splitting into progressions (mod 4) we can assume that any two values of s are 
congruent (mod 4). Then by Cauchy's inequality the sum is bounded by 

m 2 1/2 

< II~It IIt311(SM)X/2 + IlatI(S X*Y,* IP,,P~2I X ( m "~ "~x/= 
~,**=~_s m<=u \slse)}) 

\n-<s m ~ " 

where ~ '  means that n ranges over integers ~ l (mod4) different from a square. 
For  this sum we apply a bound of Jutila [3], giving 

0(MS2+r 

from which the assertion of Lemma 1 follows. 
By the Corollary to Theorem 1 and by Lemma 1 we shall infer 

Theorem 3. For any sequence a, of complex numbers supported on square-free integers 
we have 

(X -- n)•(n)f, an(R) << [I a II c 2 R t/2 Xk/2 + 3/, + ~, 
n_~g 

where 

oo(R) = Z a, 
r<R 

rim (r,c) = 1. 

and the constant implied in << depends on e and f only. 

Proof. Clearly we may assume that R < X for the proof. The left-hand side is 
bounded by 

C 2 1 //XX~(R+I)/2 ( ~ S N ~ )  " 2~,~R t- ~=~m) [f=[ , ; / a s ,  Z(S)~a(s)~s(m)Jk+ 1 4rt 

Given t we break the summation over m and s into subintervals of type 

m > (cX) 2, s < R/t (22) 

and 

M < m < 2 M ,  S<s<=2S (23) 

with 1 < 2M =< (cX) 2 and 1 < 2S _~ R/t. 
In the range (22) we estimate trivially by means of (14) and J~+l(y)<<y -1/z 

getting 

i" x * ( k +  1)I2 
e2 E g-1 ~ 2 ( ~ }  [~m[ E ]tTlstlgl/2s(mX)-l'4 

t~R m > (cX} \ / s6R/t 

<<c"2RX'12+11"( X la,[~ Y, If.Ira -kl2-a" 
\r~_R / m>(cX)~ 
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<< c2 R ( r~<__ R l arl ) Xkl2 - t /4 << Il a ll c2 R 312 X k/2-1/', 

which is satisfactory because R ~ X. 
In the finite subintervals we shall apply Lemma 1. This requires the variables 

m, s to be independent.  In order to separate m from s in the argument  of the Bessel 
function we use the integral representat ion 

1 2 
Jk+ l(2Y) = ~ / ( ! )  F f  k + 3 y~dv (24) 

2 

valid for y > 0 with 0 < a < k + 1. In the range (23) with (cS)2X- 1 < M < (cX) 2 we 
use (24) with a = ~, say, getting the following bound  

,,, z<_ =ts.J 

with some/is such that I/l=l < las, l. Then by Lemma 1 and (14) we get 

( , , / / ~ V  = , ( x ' ~ ( ~ + l > / =  \1 ,2  

Similarly in the range (23) with M < (cS)2X- 1 we use (14) with a = k + 1 - e getting 
the following bound  

2 -l(xV+' 
- ~ - - ]  c t t ,~)  =.<~<:2MIf"'lls<~2sB'i=(m) 

with some fl= such that  I/LI < la=,l. Then by Lemma 1 and (14) we get 

M -e  X k + i  \ 1 / 2  

\ cS J \c~) \s<,<__~s 
Summing over M of type M = 2 ~ from bo th  estimates we get 

cZt- l(  ~ las,12)'/aSllZX k/2+3/4+2~. 
\ S < s < 2 S  

Next we sum over S of type S = 2 b < R/t affd over t < R giving the desired bound.  
This completes the proof  of Theorem 3. 

Obviously (7) follows from Theorem 3. 

5. Poisson's summation formulas 

The modular  relat ion (11) when expressed in terms of the Fourier  coefficients (: ") becomes a Poisson summat ion  type formula. Indeed by (11) for 7 = d ~ F  
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d 
and z = - - + i(cO- 1 with Re ( > 0 we obtain 

r 

i k d 27m ~f,,e(an~exp(-2n~n~=v(Y)(~) ~ f . e ( - c n ) e x p ( - ~ -  ). 
. \ c  / \ c /  

An extension of this formula will result from application of the Laplace inversion 
formula 

p(x) = L S exp ( - x~)q(Qd(, 
Z ~ l  {o) 

q(O = ( exp (x~)p(x)dx 
o 

valid for any p(x) of class C 2 and compactly supported in ~+. We obtain 

a 2zn ,k . ~f"e(cn)P(~-)='v(7)~f"e(  -d-n~r(2nn~'c / \ c / 

where 

r(y) = ~ ~ exp ( -  y ( -  1)(- kq(()d( 
.g~t (a) 

oo 1 
= ~ p(x)~-: ~ exp ( x r  y(-1)(-kd~ 

0 s  (a) 

--  i / X ~(k-  1312 
_ ) 

Setting G(x)= p(x)x ~k- 1)/2 we obtain 

~ f ~ e ( a n ) G ( ~ ) = i k v ( , ) ~ f . e ( - ~ n ) H ( ~ ) ,  (25) 

where 

n(y) = ~ G(x)J,_l(247y)dx. (2,) 
o 

Here the assumption that G(x) is compactly supported can be replaced by a weaker 
one that G(x) is of C 2 class in N + such that 

[G(J)(x)l<=(l+x2) -~ for j = 0 , 1 , 2  (27) 

by a suitable approximation and by the estimate 

Z If.I z<<x, (28) 
n < X  

which follows from (14) by partial summation. 
The formula (25) holds true for any co-finite discontinuous group with 

in it. if  F = Fo(N) we shall generalize the result as follows. 
1 
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Theorem& Let c -0 (modN) ,  (c,d)= 1 and r be square-free with (r ,N)= 1. We 
then have 

~ f , n e ( ! n ) G ( ~  ~-) 

- / d w \ / c  \ 1/2-- / n \  / - d v w n \  1"2~znw\ ZS,nt;)et )"tT ), 
(29) 

where gv is the sign of the Gauss sum, i.e. 

{~ /f v = l  (mod4) (30) 
gv= /f v - - - I  (mod4). 

Proof. The sum on the left-hand side is equal to 

, (=) <) Ae= E ~ f .e  crr G c -  r - 
r ct(modcr) 

~t _-- d(modc) 

The fraction ~/cr reduces to fl/cv with (fl, cv) = 1, r = vw, (c, w) = 1, flw - d (mod c) 
and the innermost sum transforms by (25) into 

. \ c v  ) \ c v  / 

Hence 

). 
r = vw ~(modcQ 

(c,w) = 1 #w -=d(modc) 

Here the multiplier is equal to 

by the quadratic reciprocity law. Furthermore we have 

eaCga~(- 1) ttaw- 1)/2~- t)/2 = co. 

Hence we obtain 

~=i%,(c ,d)  ~ v- s~X(w) w f . H  ~ g,(c,d;v,w) 
r = v w  

with 

fl - fin 
g,(c,d;v,w) = j(:~m~V~c) ( V )  e ( ~ - - v ) .  
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The latter sum vanishes unless (c,v)ln. Letting v =qv~, with qlc, (vl,c) = 1 and 
n = qnl we obtain 

#,,(c,d;v,w)= q(dW)-- ~ ( ~ )  e ___fin1) 
q tff~.~,~)) v t cv, 

=q~,T)~,-~ /'' 'v' e t c / 
from which (29) follows. 

6. Poinear6 series and Kioasterman sums 

From now on let k > 2. The Poincar6 series defined by 

e . ( z ; r , v )  = ~ ~(~)j,(z)-ke(mz), 
~eF~k,F 

where m is a positive integer, is a cusp form of weight k, and it has the Fourier 
expansion 

P,~(z; 1-', v) = s (n/m) (k- 1)/2p.(m)e(nz). 
n = l  

say, with the coefficients p.(m) given by (see [4]). 

P"(m)=tS~" + 2nik ~ c - l S ( m ' n ; c ) J k - l ( ~ - ~ )  (31) 

where S(m, n; c) is the Kloosterman sum to the modulus c defined by 

S(ra, n; c) = ~ ~(,)e(ma +~nd ~. (32) 

In the forthcoming arguments we shall also use the following sums 

S~(m,n;e)= ~, 7 , ~ ( c , d ) e ( ~ .  (33) 
d(mod c) \ e l  

I .emma 2. l f  pXmN, pin and p:]c then S(m, n; c)= O. 

Proof. We have 

S(m, n; c) = d~od ~ ~ 7~(c, d)e( ~ ) 

dz(mod p) 

dt(raodc/p) C Jd:(mod p) \ P 
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Lemma 3. If(s, raN)= 1 then S(m, ns; c)= 0 unless 

s = tu, t square-free (34) 

and 
c = tcl, (s,q) = 1 (35) 

in which case we have 

S(m, ns;c)=gtgtta:27~(u)(t)(~)S~(mut, n;cl). (36, 

Proof. If c is not  of type (35) then S(m, ns; c) vanishes by Lemma 2. Thus we assume 
that (34) and (35) hold. We write 

d =- dlh + dz61cl(mod clt) 

with d~,d 2 ranging over the reduced residue classes modulo c~, t respectively. We 
obtain 

d - dttt + d2ClCl(modclt), 

d - cl t 

e ( m d + n s d ) = e ( m d l t + n u d 1 ~ e : m d z C l ~  
q / \ - i - ) '  

(dz~e(md2C'~=(mc'~gt t ' /2 ,  
,~,,,od,)kt/ \ t / \ t j 

S(m, ns;c)= g:t/: <:~,i:, ~(d,)aa,(-l)W-')/2>"a' i~d-~jel ~ ) .  

Change d 1 --* ~idl and use 

cud, ( _ 1)ctt- n/2)l(ual - 1~/2) = e~d,e-~, 

completing the proof. 

7. Convolution series 

Our objective is to evaluate the series 
ex~ 

~ % ( f  | g; m) = ~frnO~o.J(n), (37) 

where f ,  geSk(F,v),w(x) is a suitable test function and r,s are positive integers. 
Traditionally the above series is investigated by the Rankin-Selberg method. In 
this paper we give another approach based on the formulas (29), (31) and (36). 

Since the space Sk(F, v) is spanned by a finite number of Poincar6 series we 
can assume without loss of generality that 

o(z) = m ~k- ~/2Pm(Z; F, v) (38) 
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for some m > 1, in which case we have (by (31)) 

9,, = t5 .... +2xik ~ c-~S(m, ns;c)Jk_l(4~zx~mns~. (39) 
c~G(modN) 

For technical simplicity we assume that (rs, mN)= 1, r - s ( m o d 4 )  and r,s are 
square-free. We then get by Lemma 3 

k ( "~m , ( c )  1(47z m~nu~. ~,.=,~,...+2,,i E ~,e,x(,,)_-_t-"" E c -  s.(,,,,.,~-,,,;~)s,,_ 
' , = , .  \ t j ~---01,~o~'/ s \ c ~ t / 

(40) 
Hence 

m -1 c 

,=., \ t J ~-=o<,.odN) 
(41) 

where 

with 
/" cx "x / 2~th~mux ~ 

Here f,,,/, is defined to be 0 if slrm. Then by (29) and (33) we infer that 

~(u/t)= ~.f,,'~(muf, n;c)G(2~ n (42) 

(43) 

(w)(c),, (n) (2 nw) 
~.(u/t)=i-kz(-~l) ~ gveqoZ(W) ~ ~w v- / ~ A .  v ~c(htv, q)H ~ , 

r = q v w  
cI[c 

(44) 
where 

h = muv - nwt (45) 

and ~c(htv, q) is a Gauss-Ramanujan sum defined by 

,"x(- ,) z 

e 
d( e) 
(c ,d)  = 1 

tv f 
\ q  /,=,kt \q/a(moa,o)~q,] \kq]  

(') (') 
= - -  Z k ~ ( r  - Z - e - -  

q ~ke  q d(modq) q q 

"=~"J~,h \ q / 



Bilinear forms in the Fourier coefficients 

We set 

r~(h,q) = Z k#(E)([h/k ~" 
~=k: \ q I 

klh 

797 

(46) 

( 2rmw ~ 
Next we express H \  cv g in (44) in terms of the original test function co(x). We 

recall that H(y) is the transform (26) of G(x) given by (43). Thus we have 

where 

(47) 

. ( 2 = . ] = i  ,. v'" 

Gathering together the above evaluations we conclude 

Theorem 5. Let N = 0 (mod 4), m > 1, (rs, raN) = 1, r --- s (rood 4), and r, s be square- 
free. Let co(x) be a function of C 2 class on ~ + satisfying (27). We then have 

(-) (7)(:) &a's ( f |162176 s f " /*+  2ni-2k ~" ~(U)X(--W) e(t,v,q) 
s = t u  

r = pwq 

1( s_~)  ~ ( n )  C m~uu m u 2 n  nw _ 1 / 4 ,  

c ~  O(modN) 

(48) 
where 

e,(t, v, q) = ~,gvgqete, v = +_ 1, 

h is given by (45), rc(h,q) is given by (46) andj,o(A,B ) is the transform ofo)(x) given 
by (47). 

The result simplifies a bit if r = s = 1. We obtain 

Corollary. I f  r = s = 1 then we have 

~ ( f |  co)=c~ +2r~i-2k E ~:)E- s f,,j~,[ - ~ ,  -~ )(ran)- . 
k/-= 0(modN) n~m(modk) \ " ~  ' ~  / 

(49) 

6. Estimation of ~~174  r 

Let s  @ g, o2) stand for the partial sum of the fight hand side of (48) restricted by 

h = muv - nwt = 0. (50) 

We have r~(0, q ) =  0 unless q = 1 in which case r,(0,1) = r By (50) we get t = v 
and w lu, so r ls. Assuming that s < r (which can be done without loss of generality) 
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we infer from (50) that r = s and m = n giving 

where 

Thus 

where 
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- 1 " 2T~ 
"~0)'(f @ g; CO):  27~i -2kx(- - I  ' f r e e  E ~O(C)C J o ( ~ O N / ~ ) ,  

N / ~  vlr c-=0(rnod N) 
(c, rJffi I 

jo,(A) =jo,(A, A) --- a -  ' ; co(xA - 2)S~_ t (2V/x)dx. 

&ao(f | g, co) = i -  2kz(-- 1) ~rr ~ J~- '  (2V/-~)K(x)dx' 

//C2/.72 X 
KI )=Z  Z ). 

vtr c=-O~mMN) 
(c,r)= I 

Let oh(z) be the Mellin transform of co(x), so 

o(x) = -1-  ~ ~(z)x-=dz, ~ > 1 
27ri (~) 

and K(x) is the Mellin inverse transform of 

/ C2V2 X~-z 

vlr c =- ~mod N) 
(c,r) =- 1 

[4n2mr'V--  i 2~ ~ tp(cN) _2~&,z, 
= < p ( N ) ~ )  L v  - L ._757~-~ c t l 

\ ~' / vlr (c,r)=l u/[lvj " 

/2n~ 2~ 
= r  - ' c ( 2 z -  

pj, .),N ~(2z) l)~(z) 

From the above expression it is plainly seen that/~(z) is meromorphic in Rez > �89 
with only a simple pole at z = 1 with residue 

res/((z) = 12 N 1 + o3(l)mr = Kmr, (51) 
z= l  

say. The point z = �89 is a zero of/((z). On the line Re z = �89 we have 

where the constant implied in << is absolute. 
From the above evaluations we obtain 

&vo(f | 9, co) = i -  2k~(__ 1 ) f ro  1 " ~ J ( l  - z)K.(z)dz 
mr z~l (2) 

=i-2~Z(-- l ) f "  I . J J ( l  - z )K(z )dz  + i-z~z( - l ) f .KJ(0) ,  
mr zlrl (if2} 
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where J(z) is the Mellin transform of Jk 2_ 1(2v/X), 

Y(z) = r ( 1  - 2 z ) r ( k  - 1 + z ) / F t k  - z ) r 2 ( 1  - z). 

Hence we conclude that 

" -  2 k  / , x  f . .  1 . F(2z - 1)F(k - z) ~t.~,t.  
+ t ;~t- t)~rr ~-~tl]2)F2(z)F(k + z - 1) r~ j~ . .  

Now we specify the test function to(x) to be 

e~(x) = exp ( - x X -  a) (54) 

with X > 2. Then 
~,(z) = r ( z )X ' ,  

so 6~(1) = X. By (52) and (53) we finally get 

Lemma 4. We have 

12X(k - 1)-1 . _  2k : /" { X ~ 1 / 2  / 

~ o ( f  | O, co)= [ ~ o ( ~  t Z(-1) f ro+ O~1 f,.l~mrr) z(r)pI~l~ 1 + ~ ) ) ,  

(55)  

where the constant implied in 0 is absolute. 

7. Estimation of ~*Oe| to) 

Let L#*,(f | g, ~) stand for the partial sum of the right-hand side of (48) restricted 
by h = muv - nwt ~- 0 and let ~o(x) be given by (54). We then have 

j,o(A, B) = .v/ABXIk_ 1 (2ABX) exp ( -  (A 2 + B2)X), 

where L(z) is the Bessel function (see [1, p. 51]). Since 

L(z) << min { z ~, z - l/2}eZ 

we obtain for k > ~ that 

j,~(A, B) << X~/z min { 1, ( AB X) 2 } e x p ( -  (A - B)2 X) 

< < X ' / 2 m i n { ( A ) E , ( B ) 2 , ( A B X ) 2 } .  

In particular for A = - c - - x / ~  = -c-x/-V-- we get 

�9 (muv nwt mnuw 2)  
j~(A, B) << X 1/2 mm ~t-wt'  muv' ~ X ~, 

and 

I~*(f |  < 2n ~ q-~/4 ~ : -~  ~. ifq.l(mnrs)-X/.]j~] 
s = t u  c = kr O(modN) 

r = vWr klh,h ~ 0 



800 W. Duke and H. Iwaniec 

I/4 f muv } <<X'/2(mrs) -'/4 Y. q-';+ ~ If+n}n- z([h[)min~wt ,nwt 
.~ = m I:?IU V 

r=vwq h~'O 

"log(mnrsX) 

<<X1/Z(mrs)-t/" . . . . .  ~ q-l:+~ -1/+ .. fmuv nwt } 
Ifq.ln man ~ n~wt , ~ u  v (mnrsX) + 

r=vwq  

q l / 4 ( r n u v ~ 3 / 4 ,  << (mrsX)~(mrs)- 1/a X 1/2 ~ 
k-w-t- / 

r = vwc] 

by (28) and Cauchy's inequality. Hence we conclude 

Lemma 5. We have 
s | a, co) << (mrsX) t/+ + ~, (56) 

where the constant implied in << depends on e and f only. 

Combining Lemmas 4 and 5 one obtains (4). Clearly (4) implies (3) for any 
sequence (a~) supported on square-free integers prime to the level and of given 
residue class mod 4. The last two conditions can be released by standard arguments. 

8. Sums over primes 

Now we are ready to prove (9). We do not attempt to get the strongest result but 
rather to give the simplest argument within the available estimates (2) and (7). In 
fact it will be convenient to modify (2) as follows. 

\,.n=zxla.~b.12 ) ( X I / Z M - I / 2  + X I / 4 M 3 1 4 ) X ( k  - t)lz+e, (57) 
M < m < 2 M  

where (am) is a sequence of complex numbers supported on square-free integers, 
(b.) is any sequence of complex numbers and the constant implied in << depends 
on e and f only. The proof of (57) follows easily from (3) by Perron's formula. 

As regards (7) the result has convenient shape for applications. However, a new 
sum needs to be estimated in which the coefficient b, is replaced by b, logn. Instead 
of generalizing (7) to cover this case we state rather an independent inequality 
(which follows immediately from (15)). 

E ~(n)L << cX "2 log x, (58) 
n < X,n=.O(modr} 

where the constant implied in << depends on f only. This result is weaker than 
(6) but it holds for all r and is free of the smooth factor 1 - n X - 1 .  The latter 
enables one to use partial summation in X or the formula 

n n 
log r = ~- t-  1dr 

giving 

~, ~(n)f. log n << cX kI2 (logX) z. (59) 
n ~ X  

.~O(modr) 
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Now let us consider the sum 

P ( X ) =  ~ b, f ,A(n) ,  (60) 
n__<x 

where bn is given by (5) and A(n) is the Mangoldt function. We appeal to a 
combinatorial partition of A(n) fi la Vaughan E6], 

A(n) = X #(r)l~ n -  ~, #(m)A(:) (61) 
/ :rain 

r<R :~Q,rn~R 

valid for n with Q < n < QR = X,  say. We split the second sum into <(21ogX) 2 
sums over dyadic intervals L < : < 2L, M < m < 2M with 2L < Q and 2M < R, 
and we write accordingly 

A(n) = A R(n) - ~ ~ aLu(n) 
L M 

and 

where 

P(X) = P R(X) - ~ ~. P LM(X) + O(Q (k + *)/2X~) 
L M 

t"R = ~ bnf~aR(n), 
n < X  

PLu(X) = E b , f ,  ALM(n), 
n'< X 

and the error term above takes care of terms n < Q on both sides which are not 
covered by the identity (61). This error term is obtained by an application of (14) 
through Cauchy's inequality. 

For  P~(X) we apply (59) getting 

PR(X) << RXk/2(log X)  2. 

For  PLM(X) we shall give two bounds. To get the first bound we intend to apply 
(7) with r = Ira. This require lm to be square-free, so we split PLM(X) = P'zn(X) + 
P'~M(X), where P'L~c(X) meets this requirement. We obtain 

p,Ln(X ) << LMX(~/2)- 1/4 +,. 

For  estimating P'~n(X) we use (6) giving 

P '~ (X)  << ~ ~ [/z(m) lA (:)(fro) ~/2X(k-*)/2 +~ 
L<E<2L 

M<m~2M 
~It'm)= 0 

<< LMa/2X(k - 1)/2 +e. 

Combining both estimates we get our first bound 

PLM(X) << ( L M X -  3/4 + LMa/2X - l)X(k + 1)/2 + ~. 

For  the second bound we appeal to (57) with am =/~(m) giving 

PLn(X) << ( M -  1/2 + M3:4 x - 1/4)Xfk + 1)/2 +, 
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From the above results we conclude that 

P(X) << ( R X -  112 + QMX-at,* + QM3/ZX- t + M -  1/2 + R3/4 X -  1/4)X(~ + a)/2 + e 

for any M, Q, R subject to 1 < M -< R = Q -  Ix .  We choose 

M = X 1126, Q =  X 9/la, R = X 4I~3 

getting 

P(X) << X ~k§ 1,12-./5z)+~. (62) 

Finally, to prove (9) it remains to get rid of the smoothing factor 1 - n X -  1. This 
is performed by means of a general inequality 

1813 __< 8FG, 
where 

S =  ~ a., F = m a x l ~ ( x - n ) a . I ,  G =  ~ l a . l  z. 
M~_X x~X  n~_x n~_X 

We obtain 

(k(n) f .A(n) << X ~k + 1)/2 -~1r156)+~ 
n < X  

and by partial summation 

Z ~(P)fp << XClssI15~)*"" 
p_-<x 

Here ~ ( p )  = ~7(p)~O) if vie, s o  we get (9) provided ~[1) • 0. The non-vanishing of 
the Gauss sum ~(1) is guaranteed for primitive characters. If one wishes to remove 
the character ~(pl in (9) then it suffices to apply (9) for another form whose Fourier 
coefficients are twisted by ~b. 
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