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1. Introduction

Kloosterman sums have in recent years played an increasingly important role in
the study of many problems in analytic number theory. The Kloosterman sum
with characterχ (mod c) is

(1.1) Sχ(a,b; c) =
∑

x (mod c)

χ(x)e

(
ax + bx

c

)

wheree(t) = e2πit andxx ≡ 1 (modc). If χ is the principal character this is the
classical Kloosterman sum and ifχ(x) =

(
x
c

)
is the Jacobi symbol then this is the

Salíe sum. In applications we usually need estimates for incomplete sums of the
form ∑

x∈I

χ(x)e

(
ax
c

)

whereI is a segment of an arithmetic progression. A standard method of bounding
such a sum is to express it in terms of the complete sumsSχ(a,b; c) by a Fourier
technique and then apply Weil’s bound for the latter; see Lemma 8. WhenI is too
small this method gives nothing, and we are fortunate that for many applications
it suffices to bound these sums on average over the modulusc.

In this paper we consider general bilinear forms of the type

(1.2) B (M ,N ) =
∑∑
(m,n)=1

αmβne

(
a

m
n

)

wherea is a fixed (but possibly large) positive integer andαm, βn are arbitrary
complex numbers forM < m ≤ 2M , N < n ≤ 2N , respectively andmm ≡ 1
(mod n). A trivial bound for this is
∗Supported in part by NSF grant DMS-9500797
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(1.3) |B (M ,N )| ≤ 2‖α‖ ‖β‖(MN )
1
2

where‖ · ‖ denotes thè2-norm. Our aim is to obtain non-trivial improvements
which are needed for a number of applications; some of these are mentioned
below.

Our first result is

Theorem 1. For any positive integer a we have

(1.4) B (M ,N ) � ‖α‖ ‖β‖
{

(M + N )
1
2 +
(

1 +
a

MN

) 1
2

min(M ,N )

}
(MN )ε

where the implied constant depends only onε.

We prove (1.4) in Sect. 2 in the slightly stronger form (2.17) and (2.18). The
argument is elementary and has some features in common with the work [FV]
of Forti and Viola (on the large sieve) about which we learned years ago in con-
versations with Bombieri. A sharp bound expected forB (M ,N ) is conjectured
in (2.20).

Theorem 1 provides non-trivial bounds except in the case when one of the
rangesM , N is much larger than the other and in the case when they are nearly
equal. The former case is of less interest and in general it is not possible to obtain
non-trivial bounds. By contrast the case whenM andN are nearly equal is very
important for applications. Our second theorem provides, by more sophisticated
techniques (see the remarks following (3.4)), a non-trivial bound in this case.
Specifically, we have

Theorem 2. For any positive integer a we have

(1.5) B (M ,N ) � ‖α‖ ‖β‖(a + MN )
3
8 (M + N )

11
48+ε

the implied constant depending only onε.

In casea � MN , a condition usually satisfied in applications, the above result
improves the trivial bound (1.3) providedN > M

5
6 +ε andM > N

5
6 +ε. Combining

Theorem 1 and Theorem 2, we obtain a non-trivial estimate wheneverN > M ε

and M > Nε. More precisely, applying (1.4) ifa + MN < (M + N )59/30 and
(1.5) otherwise, we deduce

Theorem 3. For any positive integer a and any complex numbersαm, βn, we
have

(1.6) B (M ,N ) � ‖α‖ ‖β‖(a + MN )
14
29 (M + N )

1
58+ε

where the implied constant depends only onε.
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With applications in mind we establish bounds for the more general weighted
sum

(1.7) BF (M ,N ) =
∑∑
(m,n)=1

αmβne

(
a

m
n

)
F (m,n)

whereF (m,n) is a smooth function whose partial derivatives satisfy

(1.8) F (j ,k)(m,n) � ηj +km−j n−k ,

for 0 ≤ j , k ≤ 2 and someη ≥ 1.

Corollary. The bounds(1.4), (1.5), (1.6) for B (M ,N ) hold also forBF (M ,N ),
provided that, in each case the right hand side is multiplied byη2.

For applications to Salié sums it is natural to consider the hermitian sum

(1.9) H (M ,N ) =
∑∑
(m,n)=1

αmβne

(
a

m
n

− a
n
m

)
.

Theorem H. The bounds(1.4), (1.5), (1.6) for B (M ,N ) hold as stated also for
H (M ,N ).

Since for the Salíe sum we have (see Lemma 5 of [I])

(1.10) Sχ(a,a; c) = εcc
1
2

(
a
c

) ∑
mn=c

(m,n)=1

e

(
2a

m
n

− 2a
n
m

)

if (c,2a) = 1 whereεc = 1 or i according toc ≡ 1 or 3 (mod 4) we deduce

Theorem 4. For positive integers a, r with8|r and b with(b, r ) = 1 we have
(1.11)∑
c≤x,(c,a)=1
c≡b (mod r )

c− 1
2 Sχ(a,a; c) = 24π−2εbδ(a)ψ(ar)aE(x/2a)+O

(
r

1
5 (a + x)

47
118x

35
59+ε
)

where the implied constant depends only onε and we defineδ(a) = 1 if a is a
square and zero otherwise,

ψ(q) =
∏
p|q

(
1 +

1
p

)−1

, E(y) =
∫ y

0
e(−1/t)dt.

Note thatE(y) = y +O(log(y + 1)) so, if a is a square the main term in (1.11)
is

12π−2εbψ(ar)
{

x + O
(

a log
(

1 +
x
a

))}
.

The estimate (1.11) is non-trivial, i.e. the error term improves uponx/r , if
x > (a

47
48 r 3 + r 142)aε, the main point here being that the exponent ofa is less

than one.
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Bilinear forms of typeB (M ,N ) with special coefficients arise in many prob-
lems, and our results, especially Theorem 2, have quite a number of applications.
One such is to the estimation of the Fourier coefficients of forms automorphic
with respect to a theta multiplier. Thus Theorem 4 gives a new and simpler
derivation of a sufficiently strong bound for these coefficients. See [I], [D], and
[DFI1-2] for the earlier ones. Our original motivation for this work, however,
comes from the application of these theorems to the problem of improving the
convexity bounds for theL-functions attached to the class group characters of
an imaginary quadratic field, and more generally to ArtinL-functions of degree
two. In [DFI4] we apply our results to considerably strengthen the results given
in [DFI3]. Some further applications, given in [DFI5], deal with the number of
solutions of determinant equations and new mean value theorems for Dirichlet
L-functions and Dirichlet polynomials. There are also applications to sums of the
type occurring in the works [BFI] on the distribution of divisor functions and of
primes in arithmetic progressions.

It is a simple matter to reduce the proof of Theorem 2 to estimates for
incomplete Kloosterman sums; however, these are over intervals too short to be
estimated by any known method. There are conjectured bounds for such short
sums (see C. Hooley [H]) which would more than suffice. Of course we prefer
to avoid any unproven hypothesis in this work. We find we are able to adapt the
amplification method developed in the earlier works in this series [FI], [DFI1,2,3]
although its use in the current paper is considerably different.

The proof of Theorem 2 applies almost without change to the twisted sum

(1.12) A(M ,N ) =
∑∑
(m,n)=1

αmβn

(
m
n

)
e

(
a

m
n

)
,

where
(

m
n

)
is the Jacobi symbol. We discuss this in Sect. 4.

Our methods begin by applying Cauchy’s inequality

(1.13) |B (M ,N )| ≤ ‖α‖C (M ,N ;β)
1
2

where

(1.14) C (M ,N ;β) =
∑

M <m ≤ 2M

∣∣∣ ∑
N<n≤2N

(n,m)=1

βne

(
a

m
n

) ∣∣∣2,

and we actually establish non-trivial estimates forC (M ,N ;β); see Theorems 5
and 6.

In several places, in order to simplify both statements and proofs, we have
refrained from trying to obtain the sharpest exponents within the reach of the
methods.

Acknowledgement.We thank MSRI and IAS for providing us with comfortable conditions for work-
ing on this project in August and the fall of 1995. We are grateful to Martin Huxley for a useful
conversation and to the referee for a thorough reading of the paper.
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2. Proof of Theorem 1

First we establish the following

Theorem 5. For any positive integer a and complex numbersβn we have

(2.1) C (M ,N ;β) � ‖β‖2τ (a)(M + N 2)Nε

where the implied constant depends only onε.

This bound can be obtained, rather more quickly than we do here, by squaring
out, changing the order of summation, and then applying the well-known estimate
for incomplete Kloosterman sums derived (see Lemma 8) from the Weil bound
[W] for complete sums. We take the opportunity, however, to show how these
results follow, with not too much extra effort, from an elementary argument
which avoids the appeal to Weil’s bound.

We begin by assuming that theβn are supported on integersn prime to a.
At the end of the proof we remove this restriction. We write for everym

∑
(n,m)=1

βne

(
a

m
n

)
=
∑

(n,qm)=1

βne

(
aq

qm
n

)
+
∑

(n,m)=1

β′
ne

(
a

m
n

)

whereq is a prime number, to be selected later, from the intervalP < q ≤ 2P,
and

(2.2) β′
n =

{
βn if q|n
0 otherwise.

Hence∣∣∣ ∑
(n,m)=1

βne

(
a

m
n

)∣∣∣2 ≤ 2
∑

p

∣∣∣ ∑
(n,qpm)=1

βne

(
aq

pm
n

)∣∣∣2 + 2
∣∣∣ ∑

(n,m)=1

β′
ne

(
a

m
n

)∣∣∣2

wherep runs over all primes in the intervalP < p ≤ 2P. Summing overm in
the intervalM < m ≤ 2M we obtain

(2.3) C (M ,N ;β) ≤ 2C (P,M ,N ;β) + 2C (M ,N ;β′)

where

(2.4) C (P,M ,N ;β) =
∑

p

∑
m

∣∣∣ ∑
(n,qpm)=1

βne

(
aq

pm
n

) ∣∣∣2.
Regarding̀ = pm as a single variable which occurs with multiplicity≤ log `

in the intervalL < `≤ 4L for L = PM , we find that

(2.5) C (P,M ,N ;β) ≤
∑

`

f (`)
∣∣∣ ∑

(n,q`)=1

βne

(
aq

`

n

) ∣∣∣2
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where f (`) is a smooth function supported on12 L < `≤ 8L such thatf (j )(`) �
L−j log L for all j ≥ 0. Squaring out and changing the order of summation, we
obtain

(2.6)
∑∑

n1/=n2
(n1n2,q)=1

βn1βn2

∑
(`,n1n2)=1

f (`)e

(
aq(n2 − n1)

`

n1n2

)
+ O

(‖β‖2L
)
.

We shall chooseP sufficiently large so that the sum over` � L = PM is
essentially a Ramanujan sum. More precisely, by Poisson summation we have

(2.7)
∑

`

=
1

n1n2

∑
h

f̂

(
h

n1n2

)
S(aq(n2 − n1),h; n1n2)

whereS(b,h; c) is the Kloosterman sum. Forh = 0 this is the Ramanujan sum
which is bounded by

|S(b,0;c)| ≤ (b, c).

For h /= 0 we can afford to use the trivial bound

|S(b,h; c)| ≤ c

because the Fourier transform is very small; namely, by partial integration

(2.8) f̂

(
h

n1n2

)
�
(

1 +
|h|L
N 2

)−A

L log L

for any A> 1. Hence

∑
h/=0

∣∣∣f̂( h
n1n2

)∣∣∣� (
1 +

L
N 2

)−A

N 2 log L.

AssumingL > N 2+ε, we chooseA = 3ε−1 and infer that∑
`

� (n2 − n1,n1n2)LN−2.

Hence

C (P,M ,N ;β) � LN−2
∑∑

n1/=n2

|βn1βn2|((n2 − n1),n1n2) + ‖β‖2L.

Since, for givenn1,∑
n2/=n1

(n2 − n1,n1n2) =
∑
n2/=n1

(n2 − n1,n
2
1) ≤ 2

∑
0<n<N

(n,n2
1) ≤ 2Nτ (n2

1),

this gives
C (P,M ,N ;β) � ‖β‖2L.

Hence we conclude by (2.3) that
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(2.9) C (M ,N ;β) ≤ 2C (M ,N ;β′) + O(‖β‖2L),

whereβ′ was defined in (2.2).
Let V (M ,N ) denote the norm of the linear operator given by the matrix

(e(a m
n )) with M < m ≤ 2M , N < n ≤ 2N , (n,am) = 1 so C (M ,N ;β)

≤ ‖β‖2V (M ,N ) for any complex numbersβn. Our inequality (2.9) asserts that

C (M ,N ;β) ≤ 2‖β′‖2V (M ,N ) + O(‖β‖2L).

Now we chooseq in P < q ≤ 2P such that

‖β′‖2 � ‖β‖2P−1 log N

which we can do for every interval (P,2P] since this holds on average for primes
in such an interval. Therefore we have established that

C (M ,N ;β) � ‖β‖2(V (M ,N )P−1 log N + L)

for all complex numbersβn with (n,a) = 1. In other words,

V (M ,N ) � V (M ,N )P−1 log N + L.

ChoosingP = (1 + N 2M −1)Nε, we obtain

V (M ,N ) � L = PM = (M + N 2)Nε

which gives

(2.10) C (M ,N ) � ‖β‖2(M + N 2)Nε.

This is (2.1) without the factorτ (a). Now, at the cost of re-inserting this factor,
we remove the restriction onn prime toa. To this end we note∣∣∣∑

n

βne

(
a

m
n

) ∣∣∣2 ≤ τ (a)
∑
cd=a

∣∣∣ ∑
(n,d)=1

βcne

(
d

m
n

) ∣∣∣2

and for eachd apply (2.10) getting Theorem 5.
The same method works for slightly perturbed sums of the type

(2.11) Cg(M ,N ;β) =
∑

M <m ≤ 2M

∣∣∣ ∑
(n,m)=1

βne

(
a

m
n

+ gn(m)

) ∣∣∣2

wheregn is a smooth function with small derivatives, precisely

(2.12) g(j )
n � θM −j

for all j ≥ 0 with someθ ≥ 1 and the implied constant depending only onj .
This perturbation term appears in (2.4) asgn(pm/q) and in (2.5) in the form
gn(`/q). Then we have in (2.6) the factore

(
gn1(`/q) − gn2(`/q)

)
. The formula

(2.7) remains valid but witĥf (h/n1n2) replaced by
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(2.13)
∫

f (t)e

(
ht

n1n2
+ gn1

(
t
q

)
− gn2

(
t
q

))
dt.

This integral satisfies the same bound (2.8) providedL = PM > θN 2+ε. Therefore
the remaining arguments are exactly the same except that we chooseP somewhat
larger, namelyP = (1 +θN 2M −1)Nε so L = PM = (M + θN 2)Nε. This yields

Theorem 5′. For any positive integer a, any complex numbersβn and any func-
tionsgn satisfying (2.12) withθ ≥ 1 we have

(2.14) Cg(M ,N ;β) � ‖β‖2τ (a)(M + θN 2)Nε

where the implied constant depends only onε.

If we apply (2.14) forgn(m) = −a/mn, so (2.12) holds withθ = 1 +a/MN ,
and apply the reciprocity formula

(2.15)
m
n

+
n
m

≡ 1
mn

(mod 1)

we obtain

(2.16)
∑

M <m≤2M

∣∣∣ ∑
(n,m)=1

βne

(
a

n
m

) ∣∣∣2 � ‖β‖2τ (a)(M + N 2 + aNM−1)Nε.

Now we are ready to prove Theorem 1. Using (1.13), we derive by (2.1) and
(2.16) two estimates

B (M ,N ) � ‖α‖ ‖β‖
(

M
1
2 + N

)
(aN)ε(2.17)

B (M ,N ) � ‖α‖ ‖β‖
(

N
1
2 + M + a

1
2 M

1
2 N− 1

2

)
(aM )ε .(2.18)

Applying (2.17) if M ≥ N and (2.18) ifM < N , we get (1.4). Note that the
factor τ (a) is not needed becauseτ (a) � aε and the estimate (1.4) is trivial if
a > (MN )2.

Remarks.We expect, but cannot prove, that the normV (M ,N ) of the linear
operator given by the matrix

(
e
(
a m

n

))
with (m,n) = 1, M < m ≤ 2M , N <

n ≤ 2N is bounded by (M + N )(aMN)ε, that is

(2.19) C (M ,N ;β) � ‖β‖2(M + N )(aMN)ε

for any complex numbersβn. Hence, by (1.14), one could get

(2.20) B (M ,N ) � ‖α‖ ‖β‖(M + N )
1
2 (aMN)ε.

This estimate seems to be out of reach of present methods.
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3. Proofs of Theorems 2 and H

By virtue of (1.13), to prove Theorem 2, it suffices to prove

Theorem 6. For any positive integer a and any complex numbersβn, we have

(3.1) C (M ,N ;β) � ‖β‖2(a + MN )
3
4 (M + N )

11
24 (MN )ε

where the implied constant depends only onε.

For this purpose we consider a slightly more general sum

(3.2) C ∗(M ,N ;β) =
∑

(m,b)=1

∣∣∣ ∑
(n,m)=1

βne

(
am
bn

)∣∣∣2

for which we prove:

Theorem 6[. For any positive co-prime integers a, b and any complexβn sup-
ported on squarefree numbers, we have

(3.3) C ∗(M ,N ;β) � ‖β‖2(a + bMN)
1
2 (M + N )

19
24 N

1
8 (bMN)ε

where the implied constant depends only onε.

First notice we can assume thatβn is supported on numbers co-prime withab
by pulling out the highest common factor (ab,n) and using Cauchy’s inequality.

We introduce toC ∗(M ,N ;β) characters to modulusm as follows:
(3.4)

D (M ,L,N ) =
∑

(m,b)=1

1
ϕ(m)

∑
χ (mod m)

∣∣∣∑
`

χ(`)λ`

∣∣∣2 ∣∣∣∑
n

χ(n)βne

(
am
bn

) ∣∣∣2

where the range of summation isM < m ≤ 2M , L < `≤ 2L, N < n ≤ 2N , where
L ≤ 3MN , andλ` are complex numbers to be chosen suitably to amplify the
contribution of the principal characterχ0 (mod m). This operation is somewhat
wasteful and it looks artificial, nevertheless it is vital. The losses will be recov-
ered completely due to the orthogonality of characters and we shall gain some
flexibility in the resulting sums.

We choose

λ` =

{
1 if ` is prime

0 otherwise

because it yields a good bound
(3.5)∑

`

χ0(`)λ` ≥
1

log 2L

∑
L<` ≤ 2L

χ0(`) log`≥
1

log 2L
(
∑

L<` ≤ 2L

log`− logM ) � L
log L

(providedL > 2 log M ) while simultaneously the requirement that` be prime
substantially simplifies the technical details. This choice is assumed from now
on. By (3.5) we get
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(3.6) C ∗(M ,N ;β) � ML−2(log L)2D (M ,L,N ).

By the orthogonality of characters we obtain

(3.7) D (M ,L,N ) =
∑∑∑∑∑

(m,b`1`2n1n2)=1
`1n1≡`2n2 (mod m)

βn1βn2
e

(
am
bn1

− am
bn2

)

where the range of summation is as before and`1, `2 run over primes.
Let D ′ denote the partial sum ofD (M ,L,N ) restricted by either of the

following two conditions:`1 | b`2n1n2 or `2 | b`1n1n2. Estimating trivially, we
get

(3.8) D ′ � ‖β‖2(M + N )L logbN.

The remaining terms yield

(3.9) D ∗ =
∑∑

`1/=`2

∑∑∑
(bn1n2,m`1`2)=1

`1n1≡`2n2 (mod m)

βn1βn2
e

(
am
bn1

− am
bn2

)
.

Note that the summation conditions imply (`1`2,m) = 1 and `1n1 /= `2n2, the
latter sayingD ∗ has no diagonal terms. First we estimate the partial sum ofD ∗

restricted by (n1,n2) = 1 which is

(3.10) D ∗
1 =

∑∑
(n1,n2)=1

βn1βn2

∑
(m,b)=1

∑∑
`1/=`2

(`1`2,bn1n2)=1
`1n1≡`2n2 (mod m)

e

(
am
bn1

− am
bn2

)
.

Note that the summation conditions inD ∗
1 imply (m,n1n2) = 1.

Next we split the summation overm into primitive residue classes to modulus
b, say

(3.11) m ≡ c (mod b) with (c,b) = 1.

Then we replacem by the complementary divisord of `1n1 − `2n2 where

(3.12) `1n1 − `2n2 = dm.

Note that the summation conditions inD ∗
1 imply (d, `1`2n1n2) = 1. If m is large

|d| is small. Precisely, the inequalitiesM < m ≤ 2M translate into

(3.13) M < (`1n1 − `2n2)d−1 ≤ 2M

whence 0< |d| < D for D = 3LNM−1. Moreover, (3.11) together with (3.12)
can be interpreted as one congruence

(3.14) `1n1 − `2n2 ≡ cd (mod b|d|)
andm (mod bn1n2) is determined as the solution to the following system:
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m ≡ c (mod b)

m ≡ −d`2n2 (mod n1)(3.15)

m ≡ d`1n1 (mod n2).

Sinceb, n1, n2 are pairwise co-prime, we deduce from the system of congruences
(3.15) that

e

(
am
bn1

− am
bn2

)
= e

(
ac

(
n1

b
− n2

b

)
− ad

(
b`1n1

n2
+

b`2n2

n1

))
.

Having interpreted each occurrence ofm in terms ofd, we are ready to estimate
D ∗

1 as follows:

|D ∗
1 | ≤

∑∗

c (mod b)

∑
0<|d|<D

∑∑
(n1,n2)=1

|βn1βn2|
∣∣∣∑∑

`1/=`2

∣∣∣
where

(3.16)
∑∑

`1/=`2

=
∑∑

`1/=`2
( ... )

e

(
ad

(
b`1n1

n2
+

b`2n2

n1

))
.

Here the three dots remind us that the summation is restricted to prime numbers
`1, `2 in the intervalL < `1, `2 ≤ 2L which satisfy the inequalities (3.13) and
the congruence (3.14) in addition to (`1`2,bdn1n2) = 1. One could put|d| into
the inner summation to obtain a stronger result (due to a longer diagonal) but
we have chosen not to do so for simplicity. By Cauchy’s inequality

(3.17) |D ∗
1 |2 ≤ ‖β‖42bD

∑
0<|d|<D

E (d)

where

E (d) =
∑∑
(n1,n2)=1

(n1n2,abd)=1

∑
c (mod b)

∣∣∣∑∑
`1/=`2

∣∣∣2.
Note that we have dropped, by positivity, the condition (c,b) = 1. Squaring out
and changing the order of summation, we arrange that

(3.18) E (d) =
∑∑∑∑

`1/=`2,`
′
1/=`′

2

(`1`2`
′
1`

′
2,bd)=1

Ed(`1, `2; `′1, `
′
2)

with

(3.19) Ed(`1, `2; `′1, `
′
2)=
∑∑
(n1,n2)=1

(∗∗∗)

e

(
ad(`′1 − `1)

b`′1`1n1

n2
+ ad(`′2 − `2)

b`′2`2n2

n1

)

where the three stars denote the six conditions:
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(3.20)
N < n1,n2 ≤ 2N

M < (`1n1 − `2n2)d−1 ≤ 2M
M < (`′1n1 − `′2n2)d−1 ≤ 2M

and

(3.21)
(n1n2,abd`1`2`

′
1`

′
2) = 1

`1n1 ≡ `2n2 (mod |d|)
(`′1 − `1)n1 ≡ (`′2 − `2)n2 (mod b|d|).

Observe that (3.21) implies

(3.22) `′2`1 ≡ `2`
′
1 (mod |d|).

Put

(3.23) ∆ = `′1`1(`′2 − `2) − `′2`2(`′1 − `1)

and note that∆ = 0 if and only if `1 = `′1 and`2 = `′2.
If ∆ = 0 we use the trivial bound

(3.24)
Ed(`1, `2; `′1, `

′
2) � #{(n1,n2) : (n1n2, `1`2) = 1, `1n1 ≡ `2n2 (mod |d|)}.

Summing this over̀ 1 = `′1 /= `2 = `′2 we deduce that the terms with∆ = 0
contribute toE (d) at most

(3.25) E0(d) � |d|−1L2N 2 logN .

If ∆ /= 0 we reduce the problem to the estimation of incomplete Kloosterman
sums. First we write

b`′1`1n1

n2
≡ − bn2

`′1`1n1
− `′1`1n1n2

b
+

1
b`′1`1n1n2

(mod 1)

whence the exponential in (3.19) is equal to

(3.26) e

(
ad∆

b`′2`2n2

`′1`1n1
− ad(`′1 − `1)

`′1`1n1n2

b
+

ad(`′1 − `1)
b`′1`1n1n2

)
.

Here the middle term can be transformed using (3.21) into

e

(
ad(`′2 − `2)

`′1`1n2
1

b

)

which renders visible its independence ofn2. By the above transformations we
obtain

(3.27) |Ed(`1, `2; `′1, `
′
2)| ≤

∑
n1

∣∣∣∣ ∑
(n2,n1)=1

(∗∗∗)

e

(
ad∆

b`′2`2n2

`′1`1n1
− ad(`′1 − `1)

b`′1`1n1n2

)∣∣∣∣.
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The double sum on the right-hand side of (3.27) is a bilinear form of type (1.2)
however with special coefficients. One could attempt to apply results [DI] from
the spectral theory of automorphic forms but this would be very complicated and
it is not clear how good the estimate would be, given the extremely large level
of the relevant groupΓ0(b`1`2`

′
1`

′
2).

Therefore we choose the simpler route of bounding the sum over the single
variablen2. This is an incomplete Kloosterman sum with congruence conditions
(3.21) and small perturbation,

(3.28)
ad(`′1 − `1)
b`′1`1n1n2

� aD
bLN2

� a
bMN

.

From Lemma 8 we deduce that

(3.29)
∑

n2

�
(

1 +
a

bMN

)
(ad∆, `′1`1n1)

1
2 LN

1
2 +ε.

Summing this overn1 we get

(3.30) Ed(`1, `2; `′1, `
′
2) �

(
1 +

a
bMN

)
(a, `′1`1)

1
2 LN

3
2 +ε.

Next summing this over̀1, `2, `
′
1, `

′
2 subject to (3.22) we deduce that the terms

with ∆ /= 0 contribute toE (d) at most

(3.31) E1(d) � |d|−1
(

1 +
a

bMN

)
L5N

3
2 +ε

using the fact that̀′2`1 ≡ `′1`2 (mod |d|) but `′2`1 /= `′1`2. Adding (3.31) to (3.25)
we get

(3.32) E (d) � |d|−1
(

1 +
a

bMN

)(
L2N 2 + L5N

3
2

)
Nε.

Hence, by (3.17)

(3.33) D ∗
1 � ‖β‖2

(
b +

a
MN

) 1
2

(
LN
M

) 1
2 (

LN + L
5
2 N

3
4

)
Nε.

The same bound (3.33) holds true forD ∗; to see this pull out the greatest
common divisorν = (n1,n2), apply (3.33) withbν, Nν−1 in place ofb, N and
then sum overν.

Adding (3.33) forD ∗ to (3.8) for D ′ we obtain
(3.34)

D (M ,L,N ) � ‖β‖2
(

b +
a

MN

) 1
2

L

{
M + N +

(
LN
M

) 1
2 (

N + L
3
2 N

3
4

)}
(bN)ε.

Inserting this in (3.6) we get

C ∗(M ,N ;β) � ‖β‖2(a+bMN)
1
2

{
(M + N )M

1
2 N− 1

2 L−1 + NL− 1
2 + N

3
4 L
}

(bN)ε.
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This holds for allL > 0; the former assumptionL > 2 logM is not needed here
because the result is trivial otherwise. We chooseL = (M + N )

1
2 M

1
4 N− 5

8 + N
1
6

getting

(M +N )M
1
2 N− 1

2 L−1 +NL− 1
2 +N

3
4 L ≤ 2(M +N )

1
2 M

1
4 N

1
8 +2N

11
12 ≤ 4M

3
4 N

1
8 +4N

11
12

which is rather stronger than (3.3). This completes the proof of Theorem 6[.
It remains to derive Theorem 6 from Theorem 6[. To this end we write

n = bn′ whereb is squarefull,n′ is squarefree, and (b,n′) = 1. Note that∣∣∣∑
n

βn

(
am
n

)∣∣∣2 ≤
(∑

b

b−1/2
)(∑

b

b1/2
∣∣∣∑

n′
β′

n′e

(
am
bn′

)∣∣∣2)

whereβ′
n′ = βbn′ and ∑

b

b−1/2 � logN .

We apply (3.3) for eachb ≤ B and the trivial bound∣∣∣∑
n′
β′

n′e

(
am
bn′

)∣∣∣2 ≤
2N
b

∑
n′

|βbn′ |2

for eachb > B (the use instead of Theorem 5 would do a bit better). Hence we
get

C (M ,N ;β) � (a + MN )
1
2 (M + N )

19
24 N

1
8

∑
b<B

b
1
2

∑
n′

|βbn′ |2(bMN)ε

+MN logN
∑
b>B

b− 1
2

∑
n′

|βbn′ |2

� (a + MN )
1
2 (M + N )

19
24 N

1
8 (MN )ε‖β‖2B

1
2 + ‖β‖2B− 1

2 MN 1+ε

for any B > 0. We choose

B = (a + MN )
1
2 (M + N )−

19
24 N− 1

8

getting
C (M ,N ;β) � ‖β‖2(a + MN )

3
4 (M + N )

19
48 N

1
16 (MN )ε

which is slightly better than the bound (3.1) required for Theorem 2.
As indicated in the Introduction, Theorem 3 follows at once from Theo-

rems 1 and 2. We conclude this section with the proofs of the Corollary and of
Theorem H.

To obtain the Corollary we note first that the sum in (1.7) is unaltered if
the functionF (m,n) is replaced byG(m,n) = ψ(m,n)F (m,n) whereψ(m,n)
is a smooth function supported on [1

2M ,3M ] × [ 1
2N ,3N ] and equal to one on

[M ,2M ]×[N ,2N ]. The functionψ may be chosen so thatG(j ,k) � ηj +kM −j N−k

whence its Fourier transform has anL1 norm which is bounded byO(η2). The
Corollary now follows from Theorems 1, 2, 3 after a Fourier inversion.
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To obtain Theorem H we do not apply Theorems 1 and 2 directly but rather,
in order to avoid losing a factorη2 which would be harmful for Theorem 4, we
modify their proofs to show that these bounds hold precisely as stated also for
the hermitian sum (1.9). From these (1.6) follows as before.

To obtain (1.4) forH (M ,N ) we apply (2.14) withgn(m) = −a/2mn so that

(3.35) a
m
n

+ gn(m) =
a
2

(
m
n

− n
m

)

by (2.15). This gives the bound (2.18) and also the same bound withM andN
interchanged. Although the latter is slightly weaker than (2.17) it clearly suffices
for the proof of (1.4).

To get (1.5) forH (M ,N ) it suffices to have the bound of Theorem 6 but for
Cg(M ,N ;β) given by (2.11) with the choice (3.35). This version of Theorem 6
follows (and by the same argument) once we have the bound of Theorem 6[

with the sumC ∗ of (3.2) modified by the insertion of an additional factor
e(−a/2bmn) in the inner sum. To obtain the latter we follow the same argument
as before and are led in (3.27) to the same perturbed incomplete Kloosterman
sum but now with the additional perturbation

ad
2b

(
1
n2

− 1
n1

)(
1

`1n1 − `2n2
− 1
`′1n1 − `′2n2

)
.

Using (3.20) we see that this perturbation also satisfies the bound (3.28) and
hence we get (3.29). The rest is unchanged.

4. The twisted bilinear form

In this section we describe the (minor) modifications of the arguments in the
previous section to give

Theorem 7. The bound (1.5) of Theorem 2 holds whenB (M ,N ) is replaced by

A(M ,N ) =
∑∑
(m,n)=1

αmβn

(
m
n

)
e

(
a

m
n

)
.

We first introduce in the definition ofC (M ,N ;β) the Jacobi symbol
(

m
n

)
inside the inner summation. It then appears in (3.4) and, in the form

(
m

n1n2

)
, in

(3.7), (3.9) and (3.10). Using (3.12) we rewrite this as(
m

n1n2

)
=

(−n2

n1

)(
n1

n2

)(
d

n1n2

)(
`2

n1

)(
`1

n2

)
.

Consequently in (3.16) we get the additional factor
(
`2
n1

)(
`1
n2

)
. This appears again

in (3.19). Finally in (3.27) we get the additional factor
(
`1
n2

)
. For the resulting

twisted sum overn2 we get the same bound (3.29) by virtue of Lemma 8. The
remainder of the proof is verbatim.



38 W. Duke et al.

5. Proof of Theorem 4

By the quadratic reciprocity law
(

a
c

)(
c
a

)
depends only on the residue class ofc

modulo 8 so forc ≡ b (mod r ) we have(
a
c

)(
c
a

)
=

(
a
b

)(
b
a

)

andεc = εb. Therefore by (1.10) we find that the sum of Salié sums in (1.11) is
equal to

S = εb

(
a
b

)(
b
a

) ∑∑
mn≤ x,(m,n)=1
mn≡b (mod r )

(
mn
a

)
e

(
2a

m
n

− 2a
n
m

)
.

We split the above double sum intoS1 + S1 + S2 + S2 + S3 − S4 where

S1 =
∑∑

n ≤ y

, S2 =
∑∑
y<n ≤ z

, S3 =
∑∑

m,n>z

and

(5.1) S4 =
∑∑
m,n ≤ z

� z2 .

For S3 we apply (1.5) of Theorem H getting

(5.2) S3 � (a + x)
3
8 (x/z)

11
48 x

1
2 +ε

and toS2 we apply (1.4) of Theorem H getting

(5.3) S2 �
{

(x/y)
1
2 + (1 + a/x)

1
2 z
}

x
1
2 +ε.

To be precise (5.2) and (5.3) do not follow immediately but rather after a few
technical arrangements. First we split the summation into� (logx)2 dyadic
boxes. Next, to separate the variablesm andn we need to detect the constraints
mn ≡ b (mod r ) and mn ≤ x. The first is achieved by splitting each ofm, n
into residue classesµ and ν modulo r with µν ≡ b, or alternatively by using
Dirichlet characters modulor . To achieve the latter we apply Lemma 9. Having
done this we apply the bounds (1.5) and (1.4) of Theorem H to each resulting
hermitian sum. Note that in our case we have|αm| ≤ 1, |βn| ≤ 1 and, after
insertion of these trivial bounds, the exponents ofM andN in (1.4) (in addition
to those of (1.5)) are non-negative. Thus the worst bounds occur for largeM and
N . Integrating and summing these bounds over the relevant residue classes and
dyadic boxes we arrive at (5.2) and (5.3).

We choosez to balance the bounds (5.2), (5.3), namely

(5.4) z = (a + x)−
6

59 x
35
59

getting
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(5.5) S3 � (a + x)
47
118x

35
59+ε.

It remains to estimateS1 and choosey. We write

(5.6) S1 =
∑
n≤y

(n,r )=1

(
n
a

)
S1(n)

where by (2.15)

S1(n) =
∑

m≤x/n
mn≡b (mod r )

(
m
a

)
e

(
4a

m
n

− 2a
mn

)
.

We split the summation into residue classes modulorn getting

(5.7) S1(n) =
∑∗

β (mod rn)

e

(
4a

β

n

) ∑
m≤x/n

m≡β (mod rn)

(
m
a

)
e

(−2a
mn

)
.

We write a = a1a2 where (a1, r ) = 1 anda2 | r ∞. Therefore

(5.8)

(
m
a

)
=

(
m
a1

)(
β

a2

)
.

Now, (5.8) indicates that the case wherea1 is a square is different because there
is no cancellation in the sum overm. By the Polya-Vinogradov inequality

(5.9) M(t) =
∑
m≤t

m≡β (mod rn)

(
m
a1

)
= δ(a1)

ϕ(a1)t
a1rn

+ O
(

a
1
2

1 log 2a1

)

since rn is co-prime toa1. By partial summation we attach to this the factor
e(−2a/mn) getting for the sum overm in (5.7)∑

m
=
∑

m>T
+
∑

m≤T

=
∫ x/n

T e(−2a/tn)dM(t) + O(1 + T/rn)

= δ(a1)ϕ(a1)
a1rn

∫ x/n
T e(−2a/tn)dt

+O
((

1 +
∫∞

T an−1t−2dt
)

a
1
2 log 2a + T/rn

)
= 2δ(a1)ϕ(a1)a2

rn2 E(x/2a) + O
(

a
1
2 log 2a + T−1n−1a

3
2 log 2a + T(rn)−1

)
= 2δ(a1)ϕ(a1)a2

rn2 E(x/2a) + O
(

a
1
2 log 2a + r − 1

2 n−1a
3
4 log 2a

)
.

Summing this overβ we get by (5.7) and

(5.10)
∑∗

β (mod rn)

(
β

a2

)
e

(
4a

β

n

)
= µ(n)ϕ(r )δ(a2)

that
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(5.11) S1(n) = 2δ(a)ϕ(a1)a2
ϕ(r )

r
µ(n)
n2

E(x/2a)+O
(

rna
1
2 log 2a+r

1
2 a

3
4 log 2a

)
.

Note that the main term exists only ifa is a square. Summing this overn we
get by (5.6) and

(5.12)
∑
n≤y

(n,r )=1

µ(n)

(
n
a

)
n−2 = ζ(2)−1

∏
p|ar

(1 − p−2)−1 + O(y−1)

that

(5.13)
S1 = 12π−2 δ(a)ϕ(a1)a2

∏
p|r

(
1 − 1

p

) ∏
p|ar

(1 − p−2)−1E(x/2a)

+O
(

xy−1 + ry2a
1
2 log 2a + r

1
2 ya

3
4 log 2a

)
.

Now we balance (5.13) with (5.3) with respect toy choosing

(5.14) y = min
{

r − 2
5 a− 1

5 x
2
5 , r − 1

3 a− 1
2 x

2
3

}
.

By (5.13) and (5.14) the error term in (5.13) is bounded by

(5.15) O
(

r
1
5 a

1
10 x

4
5 log 2a + r

1
6 a

1
4 x

2
3 log 2a

)
.

Combining this with (5.1), (5.3), (5.4), (5.5), (5.14) and (5.15) we obtain that the
error term inS is bounded by

(5.16) O
(

r
1
5 (a + x)

47
118x

35
59+ε
)

and the main term is equal to 24π−2εbδ(a)ψ(ar)aE(x/2a). This completes the
proof of Theorem 4.

6. Appendix 1

In this section we sketch the proof of a bound for incomplete Kloosterman sums
in the form we have applied in the proofs of Theorem 2 and Theorem 7.

Lemma 8. Let I be a segment of an arithmetic progression

(6.1) I = {x : X ′ < x ≤ X ′ + X, x ≡ ` (mod k)},

χ a Dirichlet character to modulus c with(c, k) = 1 and a, b integers. Then we
have

(6.2)
∣∣∣∑

x∈I

χ(x)e

(
ax + bx

c

)∣∣∣≤
( X

ck
+ 2 log 3c

)
(a, c)

1
2 c

1
2 τ (c).
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Proof. We begin with the well-known estimate for the complete sum in the form

(6.3) |Sχ(a,b; c)| ≤ (a, c)
1
2 c

1
2 τ (c)

which for c prime is due to A. Weil [W] and in the general case can be deduced
therefrom by elementary techniques, cf. T. Estermann [E]. We combine this with
the Erd̈os-Tuŕan inequality
(6.4)∣∣∣ ∑

X′<x≤X′+X

f (x)
∣∣∣ ≤ X + 1

c

∣∣∣ ∑
x (mod c)

f (x)
∣∣∣ +

∑
1≤|h| ≤ c

2

|h|−1
∣∣∣ ∑
x (mod c)

f (x)e

(
hx
c

)∣∣∣
where f (x) is any periodic function of periodc. In this form (6.4) follows for
instance from two applications of (3.14) of [I]. Takingx = `+ ky we derive from
(6.4) the following formula:

(6.5)
∣∣∣∑

x∈I

f (x)
∣∣∣≤

X + k
ck

∣∣∣ ∑
x (mod c)

f (x)
∣∣∣ +

∑
1≤|h| ≤ c

2

|h|−1
∣∣∣ ∑
x (mod c)

f (x)e

(
hkx

c

)∣∣∣.
We apply this forf (x) = χ(x)e((ax + bx)/c) showing that the sum in (6.2) is

≤ X+k
ck |Sχ(a,b; c)| +

∑
1≤|h| ≤ c

2

|h|−1|Sχ(a,b + hk; c)|

≤
(

X+k
ck +

∑
1≤|h|≤ c

2

|h|−1
)

(a, c)
1
2 c

1
2 τ (c)

giving (6.2).

7. Appendix 2

In this section we give a result which is useful for separating integral variables
m, n constrained by an inequality of typemn≤ x. Put

f (u) = min{u,1, [x] + 1 − u}
on 0≤ u ≤ [x] + 1 and equal to zero elsewhere. Therefore, for a positive integer
k we have

f (k) =

{
1 if k ≤ x

0 otherwise .

On the other handf (u) is given by the inverse Mellin transform

f (u) =
1

2πi

∫
(0)
g(s)u−sds

with
g(s) =

∫∞
0 f (u)us−1du

= 1
s

(∫ [x+1]
[x] usdu − ∫ 1

0 usdu
)

= 1
s(s+1)([x + 1]s+1 − [x]s+1 − 1).
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These three expressions show that on Res = 0,

|g(s)| ≤ min

{
1 + logx,

2
|s| ,

2(x + 1)
|s(s + 1)|

}
.

Hence
1

2π

∫
(0)

|g(s)ds| < log 6x.

To see this integrate separately over the intervals [0,1), [1, x), [x,∞) getting

1 + logx + 2 logx + 2(x + 1)x−1 ≤ 5 + 3 logx < π log 6x.

This yields

Lemma 9. For x ≥ 1 there exists a function h(t) such that

(7.1)
∫ ∞

−∞
|h(t)|dt < log 6x

and for every positive integer k

(7.2)
∫ ∞

−∞
h(t)kit dt =

{
1 if k ≤ x

0 otherwise .

Similar arguments apply to the separation of positive integral variablesm, n
constrained by an inequality of the typem

n ≤ y. Supposen ≤ N so the distinct
points m

n are spaced by≥ N−2. Therefore the conditionmn ≤ y is equivalent to
m
n ≤ u for anyu ∈ [x, x +N−2) with x = sup

{
m
n ≤ y : n ≤ N

}
. Hence we deduce

Lemma 9′. For any y> 0 and N ≥ y−1/2 there exists a function h(t) such that

(7.3)
∫ ∞

−∞
|h(t)|dt < log(6yN2)

and for all positive integers m, n with n≤ N

(7.4)
∫ ∞

−∞
h(t)

(
m
n

)it

dt =

{
1 if m

n ≤ y

0 otherwise .

In fact Lemma 9′ contains Lemma 9; putN = 1 andy = x. The main point to
these variants of well-known lemmas such as Perron’s formula is that (7.2) and
(7.4) contain no error terms.
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