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1. Introduction

Kloosterman sums have in recent years played an increasingly important role in
the study of many problems in analytic number theory. The Kloosterman sum
with charactery (modc) is

N _ ax + bx
(1.1) S(abic)y= > X(x)e( . )

x (mod c)

wheree(t) = €™ andxx = 1 (modc). If y is the principal character this is the
classical Kloosterman sum andyifx) = (%) is the Jacobi symbol then this is the
Salié sum. In applications we usually need estimates for incomplete sums of the

form B

> xe (%)

xel ¢
wherel is a segment of an arithmetic progression. A standard method of bounding
such a sum is to express it in terms of the complete s8y(e, b; c) by a Fourier
technique and then apply Weil's bound for the latter; see Lemma 8. Wietoo
small this method gives nothing, and we are fortunate that for many applications
it suffices to bound these sums on average over the modulus

In this paper we consider general bilinear forms of the type

(1.2) AMN) =SS amphe (a r:)

(m,n)=1

wherea is a fixed (but possibly large) positive integer amg, 5, are arbitrary
complex numbers foM < m<2M, N < n<2N, respectively andnm = 1
(modn). A trivial bound for this is
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(1.3) | AM,N)| <2[a| [|B]I(MN)?

where|| - || denotes thé,-norm. Our aim is to obtain non-trivial improvements
which are needed for a nhumber of applications; some of these are mentioned
below.

Our first result is

Theorem 1. For any positive integer a we have
) a\:z .
(14 20N < ol 151 {0 +N)? + (1 21 ) mind, )|

where the implied constant depends only=on

We prove (1.4) in Sect. 2 in the slightly stronger form (2.17) and (2.18). The
argument is elementary and has some features in common with the work [FV]
of Forti and Viola (on the large sieve) about which we learned years ago in con-
versations with Bombieri. A sharp bound expected.f6(M, N) is conjectured
in (2.20).

Theorem 1 provides non-trivial bounds except in the case when one of the
rangesM, N is much larger than the other and in the case when they are nearly
equal. The former case is of less interest and in general it is not possible to obtain
non-trivial bounds. By contrast the case whdnandN are nearly equal is very
important for applications. Our second theorem provides, by more sophisticated
techniques (see the remarks following (3.4)), a non-trivial bound in this case.
Specifically, we have

Theorem 2. For any positive integer a we have

(1.5) AM,N) < [a] [|B]@+MN)3M +N)s*

the implied constant depending only &n

In casea < MN, a condition usually satisfied in applications, the above result
improves the trivial bound (1.3) provided > M £ andM > Né&*e. Combining
Theorem 1 and Theorem 2, we obtain a non-trivial estimate wheri¢verM ¢
andM > N¢. More precisely, applying (1.4) ia + MN < (M + N)3¥30 and

(1.5) otherwise, we deduce

Theorem 3. For any positive integer a and any complex numbegs G,, we
have

(16) AM,N) < |la]| [|5](@+MN)EM +N)s*

where the implied constant depends onlyson
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With applications in mind we establish bounds for the more general weighted
sum

; _ m
(1.7) Se(M,N) = %:n)zlz omfBne (a . ) F(m,n)
whereF (m, n) is a smooth function whose partial derivatives satisfy
(1.8) FOOmM, n) < 7 ™*m7n=k,
for 0 <j,k <2 and some) > 1.

Corollary. The boundg1.4), (1.5), (1.6) for .2(M, N) hold also for.%= (M, N),
provided that, in each case the right hand side is multipliedyhy

For applications to Saisums it is natural to consider the hermitian sum

_ m n
(1.9) FEMN) =" " ampae <an —am>.

(m,n)=1

Theorem H. The boundg1.4), (1.5), (1.6) for .2(M,N) hold as stated also for
FE(M,N).

Since for the Saéi sum we have (see Lemma 5 of [I])

(1.10) S(a,a;c) = ecc? (:) d e (Zar;1 —2a ;)

mn=c
(m,n)=1

if (c,2a) =1 wheree; = 1 ori according toc = 1 or 3 (mod 4) we deduce

Theorem 4. For positive integers a, r witl8|r and b with(b,r) = 1 we have
(1.11)
_1 N _2 1 A7 35,

Z c2S (a,a;c) = 24r " “epd(a)y(ar)ak(x/2a)+0O (r 5(a+ X)1BX5 )
c<x,(c,a)=1
c=b (modr)
where the implied constant depends onlysoand we definé(a) = 1ifa is a
square and zero otherwise,

w@) =[] (1 + Fl)) 71, E(y) = ./Oy e(—1/t)dt.

pla

Note thatE(y) =y +O(log(y +1)) so, ifa is a square the main term in (1.11)
is

127 2ep1p(ar) {x +0 (a log (1 + g))} .

The estimate (1.11) is non-trivial, i.e. the error term improves updn, if
X > (af‘TZsr3 +r1%%)as, the main point here being that the exponentaaf less
than one.
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Bilinear forms of type#? (M, N) with special coefficients arise in many prob-
lems, and our results, especially Theorem 2, have quite a number of applications.
One such is to the estimation of the Fourier coefficients of forms automorphic
with respect to a theta multiplier. Thus Theorem 4 gives a new and simpler
derivation of a sufficiently strong bound for these coefficients. See [l], [D], and
[DFI1-2] for the earlier ones. Our original motivation for this work, however,
comes from the application of these theorems to the problem of improving the
convexity bounds for thé-functions attached to the class group characters of
an imaginary quadratic field, and more generally to Attifunctions of degree
two. In [DFI4] we apply our results to considerably strengthen the results given
in [DFI3]. Some further applications, given in [DFI5], deal with the humber of
solutions of determinant equations and new mean value theorems for Dirichlet
L-functions and Dirichlet polynomials. There are also applications to sums of the
type occurring in the works [BFI] on the distribution of divisor functions and of
primes in arithmetic progressions.

It is a simple matter to reduce the proof of Theorem 2 to estimates for
incomplete Kloosterman sums; however, these are over intervals too short to be
estimated by any known method. There are conjectured bounds for such short
sums (see C. Hooley [H]) which would more than suffice. Of course we prefer
to avoid any unproven hypothesis in this work. We find we are able to adapt the
amplification method developed in the earlier works in this series [FI], [DFI1,2,3]
although its use in the current paper is considerably different.

The proof of Theorem 2 applies almost without change to the twisted sum

(1.12) M N =3 anbn (r:)e (a f:)

(m,n)=1

where (') is the Jacobi symbol. We discuss this in Sect. 4.
Our methods begin by applying Cauchy’s inequality

(1.13) L ABM,N)| < [la]| 2 (M,N; 5)?

where

vzl . — m 2
(1.14) ZUOEED DY ﬁne(an)‘,

M<m<2M N<n<2N
(n,m)=1
and we actually establish non-trivial estimates (M, N; 5); see Theorems 5
and 6.
In several places, in order to simplify both statements and proofs, we have
refrained from trying to obtain the sharpest exponents within the reach of the
methods.

AcknowledgementWe thank MSRI and IAS for providing us with comfortable conditions for work-
ing on this project in August and the fall of 1995. We are grateful to Martin Huxley for a useful
conversation and to the referee for a thorough reading of the paper.
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2. Proof of Theorem 1

First we establish the following

Theorem 5. For any positive integer a and complex numbggswe have
(21) 7 (M,N:5) < [|5]*r(@)(M +N?)N*

where the implied constant depends onlyson

This bound can be obtained, rather more quickly than we do here, by squaring
out, changing the order of summation, and then applying the well-known estimate
for incomplete Kloosterman sums derived (see Lemma 8) from the Weil bound
[W] for complete sums. We take the opportunity, however, to show how these
results follow, with not too much extra effort, from an elementary argument
which avoids the appeal to Weil's bound.

We begin by assuming that th& are supported on integersprime toa.

At the end of the proof we remove this restriction. We write for every

> re(en)= I welw) 3 we(eh)

whereq is a prime number, to be selected later, from the inteRrat g < 2P,
and

@22) = {ﬁ” ran

0 otherwise.

Hence

m) |2 pm) |2 , m) |2
> mefag ) <2X| X me(aaTT) [+ X dre(ay)]
(n,m)=1 p (n,gpm=1 (n,m)=1

wherep runs over all primes in the interv&® < p <2P. Summing ovem in
the intervalM < m < 2M we obtain

(23) Z(M,N;8) <27 (P,M,N; 8) + 22 (M, N; 3)

where

(2.4) Z(P,M,N:j) = ZZ‘ 3 ﬁne<aq)‘
m  (n,gpm)=1

Regarding = pm as a single variable which occurs with multiplicity log ¢
in the intervalL < ¢<4L for L = PM, we find that

(2.5) 7 (P.M,N; ﬁ)<Zf(£)‘ 3 ﬁne<aq )‘

(n,q0)=1
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wheref () is a smooth function supported drl < ¢ <8L such thatf O)(¢) <
L~ log L for all j >0. Squaring out and changing the order of summation, we
obtain

(2.6) SN BB, Y. f(e)e(aq(nz—nl)nfm)+0(||ﬁZL).

ni#ny (£,mnz)=1
(nnz,q)=1

We shall chooseP sufficiently large so that the sum ovér= L = PM is
essentially a Ramanujan sum. More precisely, by Poisson summation we have

@27 =3 (h) S(aq(n; — ny), h; nany)
14

N1y - niny

whereS(b, h; c) is the Kloosterman sum. Fdr = 0 this is the Ramanujan sum
which is bounded by
|S(b, 0;c)| < (b, c).

For h # 0 we can afford to use the trivial bound
|S(b,h;c)| <c

because the Fourier transform is very small; namely, by partial integration

-/ h lhiLy A
(2.8) f(nlnz> < <1+NZ> L logL

for any A > 1. Hence
.( h L\

Z‘f — ‘<< 1+— ) NZ?loglL.

NNy N2
h#0
AssumingL > N2**, we chooseA = 3! and infer that

Z < (n2 — ng, nny)LN 2,
4

Hence

C(P,M,N;B) < LN"2Y " (8, Bn, (N2 — M), munz) + || 3L

n1¢ﬂ2

Since, for giverny,

D (=, mng) = > (e —my,nd)<2 > (n,nf) <2N7(nf),

npFm npFm 0<n<N

this gives
Z(P,M,N;B) < ||B]°L.

Hence we conclude by (2.3) that
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(2.9) ¢ (M,N;B) <22 (M,N;3")+0(||5]I°L),

where s’ was defined in (2.2).

Let V(M,N) denote the norm of the linear operator given by the matrix
(e(@™) with M < m < 2M, N < n<2N, (n,am) = 1 so €(M,N;f)
<|1Bl1?V (M, N) for any complex numbers,. Our inequality (2.9) asserts that

7 (M.N;8) <282V (M, N) +O(||5]°L).
Now we choosey in P < q < 2P such that
18117 < ||8]>P~*log N

which we can do for every intervalP( 2P] since this holds on average for primes
in such an interval. Therefore we have established that

7 (M,N; 8) < |8V (M,N)P~tlog N +L)
for all complex numberg, with (n,a) = 1. In other words,
V(M,N) < V(M,N)Ptlog N +L.
ChoosingP = (1 +N2M ~1)N¢, we obtain
V(M,N) < L=PM = (M +N?)N*
which gives
(2.10) Z(M,N) < ||B]I2(M +N?)NE.

This is (2.1) without the factor(a). Now, at the cost of re-inserting this factor,
we remove the restriction om prime toa. To this end we note

) ;ﬁne <a I:) ‘2 < T(a)CdZ:a ’ (n;):lﬂme (d f:) ‘2

and for eactd apply (2.10) getting Theorem 5.
The same method works for slightly perturbed sums of the type

(2.11) M N B = ) > Bae (ar:+gn(m)> ]2
M<m<2M (n,m)=1

whereg, is a smooth function with small derivatives, precisely
(2.12) gV <« oM

for all j >0 with somef>1 and the implied constant depending only jan
This perturbation term appears in (2.4) @§pm/q) and in (2.5) in the form
gn(¢/q). Then we have in (2.6) the facter(gn,(¢/d) — gn,(¢/)). The formula
(2.7) remains valid but witrﬁ(h/nlnz) replaced by



30 W. Duke et al.

ht t t
(2.13) /f(t)e (nlnz + g, (q) — 9n, (q)) dt.

This integral satisfies the same bound (2.8) providedPM > 6N 2*¢. Therefore
the remaining arguments are exactly the same except that we dAcusaewhat
larger, namelyP = (1 +N?M ~1)N¢ soL = PM = (M +ON?)N=. This yields

Theorem 5. For any positive integer a, any complex numbggsand any func-
tions g, satisfying (2.12) witt¥ > 1 we have

(2.14) Zo(M,N; 5) < [|B]>r(2)(M +ON?)N®
where the implied constant depends onlyson

If we apply (2.14) forgn(m) = —a/mn, so (2.12) holds wittd =1 +a/MN,
and apply the reciprocity formula

1

(2.15) —

+

(mod 1)

S13
313

we obtain

(216) > ] > Be (a:]> ]2<< I18]12r(@)(M +N2+aNM~HN*.

M<m<2M (n,m)=1

Now we are ready to prove Theorem 1. Using (1.13), we derive by (2.1) and
(2.16) two estimates

217)  BMN) < [la] 3] (M?+N) @aN)*
2.18)  .2M,N) < ||la] 8] (N% +M +a%M%N—%) @M):.
Applying (2.17) if M >N and (2.18) ifM < N, we get (1.4). Note that the

factor 7(a) is not needed becausé¢a) < a® and the estimate (1.4) is trivial if
a > (MN)?,

Remarks.We expect, but cannot prove, that the no¥hfM,N) of the linear
operator given by the matrixe (a 7)) with (m,n) = 1,M < m<2M, N <
n < 2N is bounded by + N)(@MN)=, that is

(219) Z(M,N; B) < [|BI(M +N)(@MN)*

for any complex numbers,. Hence, by (1.14), one could get

(2.20) ZM,N) < [lo] [|B][(M +N)2(@MN)-.

This estimate seems to be out of reach of present methods.
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3. Proofs of Theorems 2 and H

By virtue of (1.13), to prove Theorem 2, it suffices to prove

Theorem 6. For any positive integer a and any complex humbgyswe have
(3.1) 7 (M,N; 8) < [|B]°(@+MN)F(M +N)Z(MN)*

where the implied constant depends only=on

For this purpose we consider a slightly more general sum

ox . - am |2
(3.2) AUREED DY ﬁne(m)‘

(m,b)=1 (n,m)=1
for which we prove:

Theorem &. For any positive co-prime integers a, b and any complgxsup-
ported on squarefree numbers, we have

(33) Z*(M,N; 8) < [|5](@+bMN)#(M +N)ZN & (bMN)®
where the implied constant depends onlyzon

First notice we can assume thtis supported on numbers co-prime wih
by pulling out the highest common factaly(, n) and using Cauchy’s inequality.
We introduce toZz"*(M, N; 5) characters to modulus as follows:
(3.4)

IM,LN)= Y ﬁ > ’ZWWF ’ZX(n)B“e(?:) ‘2

(m,b)=1 x (modm) ¢

where the range of summation < m<2M,L < /<2L, N < n<2N, where
L < 3MN, and )\, are complex numbers to be chosen suitably to amplify the
contribution of the principal charactery (mod m). This operation is somewhat
wasteful and it looks artificial, nevertheless it is vital. The losses will be recov-
ered completely due to the orthogonality of characters and we shall gain some
flexibility in the resulting sums.

We choose

), = 1 if £is prime
¢ 0 otherwise

because it yields a good bound
(3.5)

1 1 L
;Xo(@)\zzm > xolO)loglz s (D logl—logM) > o

log L
L<l<2l L<f<2L 9

(providedL > 2 log M) while simultaneously the requirement thiabe prime
substantially simplifies the technical details. This choice is assumed from now
on. By (3.5) we get
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(3.6) Z*(M,N; 3) < ML™2(log L>Z (M, L,N).

By the orthogonality of characters we obtain

@7 IMLN)=DDN NN Bubne (bn a:;)

(m bélegnlng) 1
Lim={on; (mod m)

where the range of summation is as before &nd, run over primes.

Let &’ denote the partial sum o7 (M, L,N) restricted by either of the
following two conditions:¢; | bfanin, or ¢ | béynin,. Estimating trivially, we
get

(3.8) 7" < ||B]IA(M +N)LlogbN.
The remaining terms yield

(3.9) =00 2.2 Oubue (bn1 Zg)

€1¢€2 (bn1n2 mflfz) 1
Lim=£ny (mod m)

Note that the summation conditions imply1{>, m) = 1 and/¢in; # ¢ony, the
latter sayingZ * has no diagonal terms. First we estimate the partial sufw bf
restricted by i1, nz) = 1 which is

ok _ - am am
@10 F=YYmh Y LY e(f-m)-

(n,m)=1 (m,b)=1 53223
(€142,bmnz)=1
Lim=l2n, (mod m)

Note that the summation conditions A" imply (m,nny) =1
Next we split the summation oven into primitive residue classes to modulus
b, say

(3.12) m=c (modb) with (c,b)=1
Then we replacen by the complementary divisat of /;n; — £>n, where
(3.12) l1ng — dony = dm.

Note that the summation conditions &4,* imply (d, £1£,nmnp) = 1. If mis large
|d| is small. Precisely, the inequaliti® < m<2M translate into

(3.13) M < (fam — fonp)d~t < 2M

whence 0< |d| < D for D = 3LNM 1. Moreover, (3.11) together with (3.12)
can be interpreted as one congruence

(3.14) i — np = cd - (mod bld])

andm (modbmnn,) is determined as the solution to the following system:
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m = c¢ (modb)
(3.15) m = —dén, (modny)
m = dfim (modny).

Sinceb, ng, n, are pairwise co-prime, we deduce from the system of congruences
(3.15) that

am amy _ (M N bl/iny  béon,
e(m‘m)‘e(“(b‘b)‘ad( 2 *nl)>'

Having interpreted each occurrencenofin terms ofd, we are ready to estimate
;¢ as follows:

1zl S S bl

>3

¢ (modb) 0<|d|<D (ng,m)=1 L1702
where
bZlnl bgznz
3.16 = + .
G L= Ye(ad(Pm R
0470, 421#)2

Here the three dots remind us that the summation is restricted to prime numbers
{1, £ in the intervalL < /1,4, < 2L which satisfy the inequalities (3.13) and

the congruence (3.14) in addition té;{2, bdmn,) = 1. One could putd| into

the inner summation to obtain a stronger result (due to a longer diagonal) but
we have chosen not to do so for simplicity. By Cauchy’s inequality

(3.17)

DrP<|p)*20D > #£(d)

0<|d|<D

where

ZCED DI I I ¥

(m,m)=1 ¢ (modb) {176,
(nnp,abd)=1
Note that we have dropped, by positivity, the conditienb) = 1. Squaring out
and changing the order of summation, we arrange that

(3.18) ) =D DN Salta, o 44, 85)

070,070,
(£162€}05,bdl)=1

with

byl byl
“m+w%—@)2mﬁ

17 ]

(3.19) &y(la, l2; 0}, £5) :ZZe<ad(€’l — 1)
(n(l,nz))=1

where the three stars denote the six conditions:
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N < Ny, Np < 2N
(3.20) M < (£ — £np)d L < 2M
M < (E’lnl — ’an)d‘l <2M

and

(ninp, abdl1620105) = 1
(3.21) £1n; = £ony (mod |d])
(¢} — tr)ng = (¢ — L2)ny (mod b|d]).

Observe that (3.21) implies

(3.22) L0 = 60, (mod|d]).
Put
(3.23) A = 0504(ly — L) — Lyla(ly — £h)

and note thatA = 0 if and only if ¢; = ¢} and /¢, = £5.
If A =0 we use the trivial bound
(3.24)
(Cfd(gl,gz; /1> /2) < #{(nl, n2) . (n1n2,€1€2) = 1, €1n1 = Kznz (mod |d|)}

Summing this over; = ¢; # ¢, = ¢, we deduce that the terms with = 0
contribute to# (d) at most

(3.25) “o(d) < |d]"*L°N?logN.

If A # 0 we reduce the problem to the estimation of incomplete Kloosterman
sums. First we write

bE’lélnl B m B E’lflnlng + 1
7] £’1£1n1 b bﬁ’lélnlnz

(mod 1)

whence the exponential in (3.19) is equal to

—
(3.26) e (adA bl ade — 1)

8’1€1n1n2 + ad(ﬂ& — 61)
E’lélnl ’

b b€’1€1n1n2

Here the middle term can be transformed using (3.21) into
! 2
e <ad(€’2 —0) gl%'ﬁ)

which renders visible its independencersf By the above transformations we
obtain

(327) |Za(la, bai 14, 15)| < >

ny

T e (a o Plene _ad(t; —z1)> ‘

(n2,ng)=1 61 bei¢1mny

(k)
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The double sum on the right-hand side of (3.27) is a bilinear form of type (1.2)
however with special coefficients. One could attempt to apply results [DI] from
the spectral theory of automorphic forms but this would be very complicated and
it is not clear how good the estimate would be, given the extremely large level
of the relevant grougdp(b?1020105).

Therefore we choose the simpler route of bounding the sum over the single
variablen,. This is an incomplete Kloosterman sum with congruence conditions
(3.21) and small perturbation,
ad(¢y — 41) abD a

bfjtimn, — BLNZ < bMN -

(3.28)

From Lemma 8 we deduce that

a / TN e
(3.29) %: < (1 + m) (@dA, ¢,6:ny)FLN B+
Summing this oven; we get
o2 ool a / 1 34+e
(3.30) Za(ly, b2 0}, 1) < (1 + M) (a, ,01) LN 3%,

Next summing this ovefs, ¢, ¢1, ¢, subject to (3.22) we deduce that the terms
with A # 0 contribute to# (d) at most

a
bMN

using the fact that5¢; = ¢1¢, (mod [d]) but ¢5¢; # ¢} ¢>. Adding (3.31) to (3.25)
we get

(3.31) “(d) < |d| (1 + ) LSN 3+

(3.32) Z(d) < |d| 2 (1+ b,\‘;‘N) (L2N2+L5N%) NE.

Hence, by (3.17)

a7 < 1812 (b+ 2-) ¢ (N INE) NG
(3.33) g < |8 (b+MN) (M) (LN +LEN )N .
The same bound (3.33) holds true for*; to see this pull out the greatest
common divisorv = (ny, ny), apply (3.33) withbr, Nv~1 in place ofb, N and
then sum ovew.
Adding (3.33) forz™* to (3.8) for Z’ we obtain
(3.34)

ZM,LN) < |8]* (b+%)2 L{M +N + (';\'/I\')Z (N +L§N3)}(bN)5.

Inserting this in (3.6) we get

Z*(M,N; B) < ||8]I2(@+bMN)? {(M +N)MENTZLTH+NL2 +N %L} (BN)®.
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This holds for allL > 0; the former assumptiob > 2logM is not needed here
because the result is trivial otherwise. We chobse (M + N):M iN~8 + N
getting

(M+N)MZN"ZL L4+NL 2 +NiL<2(M +N)ZMiN¢+2N T < 4M iN & +4N

which is rather stronger than (3.3). This completes the proof of Theofem 6
It remains to derive Theorem 6 from Theorer Go this end we write
n = bn’ whereb is squarefull,n’ is squarefree, and(n’) = 1. Note that

S (T = (o) (S Sae(57)))

where ], = Bpv and
> b2 < logN .
b

We apply (3.3) for eacly <B and the trivial bound
o (@M 22N 2
‘;5“"9 <bn’>’ *b Z [Borr|

for eachb > B (the use instead of Theorem 5 would do a bit better). Hence we
get

Z(M,N;3) < (a+MN)i(M +N)#N: Zb% > 1Bow [ A(bMN)?
b<B n’

+MNIogN > b7 Y |G
—

b>B
< (@+MN)3(M +N)#EN3(MN)?||5]2B? +||5]?B~tMN 1+

for anyB > 0. We choose
B = (a+MN)%(M +N)‘%N_%

getting
7 (M,N; 8) < [|B[X@a+MN)i(M +N)EN % (MN)°

which is slightly better than the bound (3.1) required for Theorem 2.

As indicated in the Introduction, Theorem 3 follows at once from Theo-
rems 1 and 2. We conclude this section with the proofs of the Corollary and of
Theorem H.

To obtain the Corollary we note first that the sum in (1.7) is unaltered if
the functionF(m,n) is replaced byG(m,n) = ¢(m, n)F(m,n) wherey(m,n)
is a smooth function supported oél\tLSM] X [%N,3N] and equal to one on
[M,2M]x[N, 2N]. The function) may be chosen so th&ti X <« 7i**M ~IN K
whence its Fourier transform has an norm which is bounded b@(5?). The
Corollary now follows from Theorems 1, 2, 3 after a Fourier inversion.
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To obtain Theorem H we do not apply Theorems 1 and 2 directly but rather,
in order to avoid losing a factay? which would be harmful for Theorem 4, we
modify their proofs to show that these bounds hold precisely as stated also for
the hermitian sum (1.9). From these (1.6) follows as before.

To obtain (1.4) for7Z (M, N) we apply (2.14) withy,(m) = —a/2mn so that

m a/m n
(3.35) a ; + gn(m) = > (n m)
by (2.15). This gives the bound (2.18) and also the same boundMvitmd N
interchanged. Although the latter is slightly weaker than (2.17) it clearly suffices
for the proof of (1.4).

To get (1.5) for7Z (M, N) it suffices to have the bound of Theorem 6 but for
Z,(M,N; () given by (2.11) with the choice (3.35). This version of Theorem 6
follows (and by the same argument) once we have the bound of Thedrem 6
with the sum#™ of (3.2) modified by the insertion of an additional factor
e(—a/2bmn) in the inner sum. To obtain the latter we follow the same argument
as before and are led in (3.27) to the same perturbed incomplete Kloosterman
sum but now with the additional perturbation

ad (1 1y(_1 1
2b np ny Elnl — fgnz E’lnl — f’znz '

Using (3.20) we see that this perturbation also satisfies the bound (3.28) and
hence we get (3.29). The rest is unchanged.

4. The twisted bilinear form

In this section we describe the (minor) modifications of the arguments in the
previous section to give

Theorem 7. The bound (1.5) of Theorem 2 holds whe(M , N) is replaced by

= s (2)oo7)

(m,n)=1

We first introduce in the definition of (M, N; 3) the Jacobi symbo[T)
inside the inner summation. It then appears in (3.4) and, in the (qﬁzp) in
(3.7), (3.9) and (3.10). Using (3.12) we rewrite this as

m _ (M Ny d £ 2
() = () (8) () () ()
Consequently in (3.16) we get the additional faqtﬁr) Zl . This appears again
in (3.19). Finally in (3.27) we get the additional factﬁﬁ@ For the resulting
twisted sum oven, we get the same bound (3.29) by virtue of Lemma 8. The
remainder of the proof is verbatim.
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5. Proof of Theorem 4

By the quadratic reciprocity lav2) (S) depends only on the residue classcof
modulo 8 so forc = b (modr) we have

©E)=6)6)

ande. = ep. Therefore by (1.10) we find that the sum of $adums in (1.11) is

equal to
(), T (Dp(n-nd)

mn < x,(m,n)=1
mn=b (modr)

We split the above double sum ing +S; +S + S, + & — S, where

=)0 %)), S=).)

n<y y<n<z m,n>z
and
(5.1) =) ) <722

mn<z

For S3 we apply (1.5) of Theorem H getting
(5.2) S < (a+X)i(x/z)@x2*e

and toS; we apply (1.4) of Theorem H getting
(5.3) S < {(x/y)% +(1 +a/x)%z}x%+5.

To be precise (5.2) and (5.3) do not follow immediately but rather after a few
technical arrangements. First we split the summation ito(logx)? dyadic
boxes. Next, to separate the variabtesandn we need to detect the constraints
mn = b (modr) andmn < x. The first is achieved by splitting each of, n
into residue classeg and v modulor with yv = b, or alternatively by using
Dirichlet characters modulo. To achieve the latter we apply Lemma 9. Having
done this we apply the bounds (1.5) and (1.4) of Theorem H to each resulting
hermitian sum. Note that in our case we hawg| < 1, |6,] < 1 and, after
insertion of these trivial bounds, the exponentdvbfandN in (1.4) (in addition
to those of (1.5)) are non-negative. Thus the worst bounds occur forNarged
N. Integrating and summing these bounds over the relevant residue classes and
dyadic boxes we arrive at (5.2) and (5.3).

We choose to balance the bounds (5.2), (5.3), namely

(5.4) z=(a+x) ®x%

getting
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(5.5) S < (@a+x)Mmx®H*e.

It remains to estimat&, and choosg. We write

(56) 5= Y (3)sm
n<y

(n,r)=1

where by (2.15)

m m 2a
sm= 3 (F)e(af o)
m<x/n
mn=b (modr)
We split the summation into residue classes modulgetting
B * 3 m\ /[-2a
(5.7) sSmn= > e <4an > 2)el o)
B (modrn) m<x/n
m=43 (mod rn)

We write a = a;a, where @y,r) =1 anday | r*°. Therefore

-

Now, (5.8) indicates that the case whexeis a square is different because there
is no cancellation in the sum over. By the Polya-Vinogradov inequality

, m p(an)t 3
59 A1) = — ] =9 +0 (a? log 2a;
69 0= X (G) =i -0 (al ko)
m=3 (mod rn)
sincern is co-prime toa;. By partial summation we attach to this the factor
e(—2a/mn) getting for the sum ovem in (5.7)
X =ty
m m>T m<T
= [X/" e(=2a/tn)d. Z4(t) + O(L +T /m)
= 6(ay) 22 [X/" e(—2a/tn)dt
+0 ((1 S an*ltfzdt)a% log 2a + T/rn)
= 20(ay) L% E (x /2a) + O Eaﬁ log2a+T-n—ta?log2a+ T(rn)*l)

2

= 20(ay) €82 E (x /2a) + O

2

azlog2a+r—inlailog 2a)

Summing this ovep we get by (5.7) and

(5.10) Z* <5> e <4a ﬁ) = p(n)ep(r)d(az)

B (mod rn) a

that
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o(r) pu(n)

(5.11) Si(n) = 25(@)p(an)ar” T E(x/22)+0 (rna% log 2a+r taf log 2a) .

Note that the main term exists only & is a square. Summing this ovarwe
get by (5.6) and

612 3 un (2) 2= @ [Ja-p?t+oy Y
n<y plar
(n,r)=1

that

S=12r2 s@)p(ae[] (1- 1) [1@-p ) 'E(x/2a)
(5.13) pIr plar

+O (xy*1 +ry2azlog2a +rzyai log 2a) .

Now we balance (5.13) with (5.3) with respectytahoosing
(5.14) y:min{rfga*%xé, r*%a’%xg}.
By (5.13) and (5.14) the error term in (5.13) is bounded by
(5.15) (0] (r%a%xglogZaH%a%x% IogZa).

Combining this with (5.1), (5.3), (5.4), (5.5), (5.14) and (5.15) we obtain that the
error term inS is bounded by

(5.16) 0 (r%(a+x)f%x%3+5)

and the main term is equal to 24%c,6(a)y(ar)aE(x/2a). This completes the
proof of Theorem 4.

6. Appendix 1

In this section we sketch the proof of a bound for incomplete Kloosterman sums
in the form we have applied in the proofs of Theorem 2 and Theorem 7.

Lemma 8. Let | be a segment of an arithmetic progression
(6.1) I ={x: X' <x<X'+X, x=¢ (modk)},

x a Dirichlet character to modulus ¢ witfc,k) = 1 and a, b integers. Then we
have

(6.2) ‘Zy(x)e (ax * bX) ‘ < (% +2log 3:) (a,c)zc27(c).

C
X€El
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Proof. We begin with the well-known estimate for the complete sum in the form
(6.3) IS (a,b; ¢)| < (a,¢)2cir(c)

which for ¢ prime is due to A. Weil [W] and in the general case can be deduced
therefrom by elementary techniques, cf. T. Estermann [E]. We combine this with
the Erdds-Tu@n inequality

(6.4)

‘ 3 f(x)‘g%‘ 3 f(x)‘+ S |h|‘1‘ 3 f(x)e(hcx)‘

X/ <x<X’+X x (mod c) 1<|h| < § X (mod c)

wheref (x) is any periodic function of period. In this form (6.4) follows for
instance from two applications of (3.14) of [I]. Takixg= ¢+ky we derive from
(6.4) the following formula:

X +k hkx
(6.5) ‘Zf(x)‘ < 7‘ S f(x)‘ Y |h|‘1‘ 3 f(x)e(c) ‘
X€l x (mod c) 1<|h[ < § x (mod c)
We apply this forf (x) = x(x)e((ax + bx)/c) showing that the sum in (6.2) is
<X¥|S(a,bic)[+ > [h[THS(a, b +hk;0)

1<thl < 3
<(XE+ ¥ )@ 9icin
1<|h|<$
giving (6.2).
7. Appendix 2

In this section we give a result which is useful for separating integral variables
m, n constrained by an inequality of typan< x. Put

f(u) =min{u,1,[x]+1—u}
on O<u<[x]+1 and equal to zero elsewhere. Therefore, for a positive integer
k we have
1 ifk<
HOEE S
0 otherwise .

On the other handl(u) is given by the inverse Mellin transform
1 —s
f(uy==— [ g(s)u=ds
27T| (0)

with
g(s) =[5 f(uyus~tdu
=1 gf[“” usdu — [1 usdu)
Jr Jo

S X]

— ([X + 1]s+1 _ [X] s+l 1).

~ s(s+1)



42 W. Duke et al.

These three expressions show that onsRe0,

_ 2 2(x+1)
o= min {1 +1og £, LT

Hence
1
2—/ lg(s)ds| < log 6x.
T J(0)
To see this integrate separately over the intervalg)[0[1, x), [x, o) getting
1+logx +2logx + 2(x + 1)x ! < 5+ 3logx < 7log 6x.
This yields

Lemma 9. For x > 1 there exists a function(h) such that

(7.2) / |h(t)|dt < log 6x
and for every positive integer k

0 otherwise .

Similar arguments apply to the separation of positive integral variailea

constrained by an inequality of the tydé<y. Supposen < N so the distinct
points T are spaced by N —2. Therefore the conditiof! <y is equivalent to
T <u for anyu € [x,x+N~2) with x = sup{™ <y: n<N}. Hence we deduce

Lemma 9. For any y> 0 and N > y~'/2 there exists a function(t) such that

(7.3) /OO Ih(t)|dt < log(6yN?)

and for all positive integers m, n with & N

o it em <
(7.4) / h(t)<m> gr={t Tw=Y
J—o0 n 0 otherwise .

In fact Lemma 9 contains Lemma 9; pul = 1 andy = x. The main point to
these variants of well-known lemmas such as Perron’s formula is that (7.2) and
(7.4) contain no error terms.
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