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ASYMPTOTIC DISTRIBUTION OF TRACES OF SINGULAR MODULI

NICKOLAS ANDERSEN AND WILLIAM DUKE

Abstract. We determine the asymptotic behavior of twisted traces of singular moduli with
a power-saving error term in both the discriminant and the order of the pole at i∞. Using this
asymptotic formula, we obtain an exact formula for these traces involving the class number
and a finite sum involving the exponential function evaluated at CM points.

1. Introduction

The modular j-function

j(z) = q−1
∞
∏

n=1

(1− qn)−24
(

1 + 240
∞
∑

n=1

∑

m|n

m3qn
)3

= q−1 + 744 + 196884q + . . . =
∞
∑

n=−1

c(n)qn, q = e(z) = e2πiz ,

is of fundamental importance in number theory. These Fourier coefficients c(n) are integral
linear combinations of the dimensions of the irreducible representations of the monster group1

and its values at imaginary quadratic irrationalities are algebraic integers with well-known
properties in class field theory.

In the 1930s, Petersson [19] and Rademacher [21] independently discovered the formula

c(n) = 2πn− 1
2

∞
∑

c=1

K(n, c)

c
I1

(

4π
√
n

c

)

, (1.1)

where Iν is the I-Bessel function and K(n, c) is the ordinary Kloosterman sum

K(n, c) =
∑

d mod c
(c,d)=1

e

(

d+ nd

c

)

, dd ≡ 1 (mod c).

In his paper, Rademacher remarked that without (1.1), the c(n) “can be found. . . by trouble-
some computations, which for higher n are practically inexecutable.”2 The convergence of
(1.1) is quite slow. However, (in principle, at least) the formula can be used to compute c(n)
using a finite number of terms of the series since one knows a priori that c(n) ∈ Z. The Weil
bound |K(n, c)| ≤ σ0(c)

√
c, where σ0 is the sum of divisors function, is enough to show that

C
√
n terms suffice as long as n is large enough compared to C.
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1For a comprehensive survey of this and related results, see [12] and the many references therein.
2He also commented that the coefficients “do not seem to have attracted much attention before.” Certainly

the state of the subject has changed somewhat in the intervening years.
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Also of great interest are certain special values of j. For each negative fundamental discrim-
inant d, let zd be the point in the complex upper half-plane H given by

zd =

{

1
2

√
d if d ≡ 0 (mod 4),

−1
2
+ 1

2

√
d if d ≡ 1 (mod 4).

From the classical theory of complex multiplication we know that the singular moduli j1(zd),

where j1 = j − 744, are algebraic integers of degree h(d), the class number of Q(
√
d). In

particular, the algebraic trace Tr j1(zd), i.e. the sum of the Galois conjugates of j1(zd), is an
integer.

Kaneko [14, 15] expressed the coefficients c(n) in terms of the traces Tr j1(zd) using a result of
Zagier [24], who showed that the traces appear as coefficients of weakly holomorphic modular
forms of half-integral weight. Zagier’s results sparked significant interest in traces of singular
moduli which has led to numerous papers on the subject (of which we will only mention a few).
Bruinier, Jenkins, and Ono [6] proved a formula like (1.1) for the traces involving half-integral
weight Kloosterman sums, and computations led them to conjecture the limit

lim
d→−∞

1

h(d)



Tr j1(zd)−
∑

zQ∈R(1)

e(−zQ)



 = −24, (1.2)

where R(Y ) is the rectangle

R(Y ) =
{

z = x+ iy ∈ H : −1
2
≤ x < 1

2
and y > Y

}

.

Their conjecture was confirmed by the second author in [9]. The limit (1.2) converges very
slowly. We will see in Corollary 2.3 below that by modifying and lengthening the exponential
sum we can obtain a more quickly convergent limit; in particular for any ε > 0, the trace
Tr j1(zd) is the nearest integer to the quantity

−24h(d) +
∑

zQ∈R(|d|−1+ǫ)

(e(−zQ)− e(−zQ)) (1.3)

as long as |d| is sufficiently large with respect to ε. For example, when d = −303, we have
h(d) = 10 and

Tr j1(z−303) = −561 766 949 784 377 042 888 940,

while (1.3) with ε = 1
100

equals

−561 766 949 784 377 042 888 939.643 . . . .

In our main theorems we treat traces of any weakly holmorphic modular form with integer
coefficients and give estimates that are uniform in the order of its pole at i∞. We also allow
twists by genus characters. The main series from which these results originate ((3.3) below)
resembles (1.1), except that it involves half-integral weight Kloosterman sums. However, for
our results it is not enough to use the Weil bound for Kloosterman sums to prove either (1.2)
or our improved results. The proof of (1.2) in [9] uses the uniform distribution of CM points
[8], but to obtain stronger estimates it is essential to measure the cancellation among the
Kloosterman sums directly.



ASYMPTOTIC DISTRIBUTION OF TRACES OF SINGULAR MODULI 3

2. Statement of Results

Our results improve and generalize the limit formula (1.2). We begin by fixing notation
and explaining the more general setting. Each conjugate of j1(zd) is of the form j1(zQ), where
Q = [a, b, c] is a positive definite integral binary quadratic form of discriminant d = b2 − 4ac,
and

zQ =
−b+

√
d

2a
.

In fact, we can choose zQ ∈ F , where

F =
{

z ∈ H : −1
2
≤ Re(z) ≤ 0 and |z| ≥ 1

}

∪
{

z ∈ H : 0 < Re(z) < 1
2
and |z| > 1

}

is the usual fundamental domain for the action of PSL2(Z) on H. This point of view leads to a
straightforward generalization to non-fundamental discriminants d ≡ 0, 1 (mod 4) by defining

Tr j1(zd) =
∑′

zQ∈F

j1(zQ),

where Q runs over all positive definite integral binary quadratic forms of discriminant d with
zQ ∈ F . The primed sum indicates that terms are weighted by 1/ωQ, where ωQ = 1 unless Q
is PSL2(Z)-equivalent to [a, 0, a] or [a, a, a], in which case it equals 2 or 3, respectively.

The main result of [9] determines the asymptotic behavior of Tr f(zd) for any f ∈ C[j]. A
convenient basis for C[j] is given by the functions jm = Pm(j), where Pm(x) are the Faber
polynomials defined by the property that jm = q−m + O(q). The first few basis elements are
j0 = 1, j1 = j − 744, and

j2 = j2 − 1488j + 159768

j3 = j3 − 2232j2 + 1069956j − 36866976.

We generalize the results of [9] by considering sums twisted by genus characters. For any
factorization D = dd′ of the negative discriminant D, where d is a (positive or negative)
fundamental discriminant and d′ is a discriminant, there is an associated character

χd(Q) =

{

(

d
n

)

if (a, b, c, d) = 1 and Q represents n and (d, n) = 1,

0 if (a, b, c, d) > 1.

We say that Q represents n if n = ax2 + bxy + cy2 for some x, y ∈ Z. We define the twisted
traces of jm by

Trd jm(zD) =
∑′

zQ∈F

χd(Q)ω−1
Q jm(zQ).

Let δ1 = 1 and δd = 0 otherwise, and let σ1(m) denote the sum of the divisors of m. Finally,
let θ ∈ [0, 7

64
] be an admissible exponent toward the Ramanujan conjecture for Maass cusp

forms of integral weight.

Theorem 2.1. For each negative discriminant D, let d be any fundamental discriminant

dividing D. Then for each m ≥ 1 we have

Trd jm(zD)−
∑

zQ∈R( 1
m
)

χd(Q)e(−mzQ) = −24δdσ1(m)h(D) +O(|D| 1736+εm
5
6
+ θ

3
+ε). (2.1)

In Theorem 2.1 we have subtracted the quantity
∑

χd(Q)e(−mzQ) to provide an easier
comparison with (1.2), but our methods are optimized for the following modification.
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Theorem 2.2. Let D, d, and m be as in Theorem 2.1. Then for 0 < Y ≪ 1
m

we have

Trd jm(zD)−
∑

zQ∈R(Y )

χd(Q)(e(−mzQ)− e(−mzQ))

= −24δdσ1(m)h(D) +O
(

m|D| 13Y 1
2

(

Y − 1
6 + |D| 5

36m
1
3
(1+θ)

)

(m|D|/Y )ε
)

.

Choosing Y small enough that the error term tends to zero, we obtain the following.

Corollary 2.3. Let D, d and m be as in Theorem 2.1 and let Y = Cm−A|D|−B, where A > 3,
B > 1, and C > 0 are constants. Then Trd jm(zD) is the nearest integer to

−24δdσ1(m)h(D) +
∑

zQ∈R(Y )

χd(Q)(e(−mzQ)− e(−mzQ))

provided m|D| is sufficiently large compared to C.

We prove Theorem 2.2 by obtaining a hybrid estimate for sums of half-integral weight
Kloosterman sums associated with the Kohnen plus space on Γ0(4). Much of the heavy lifting
that leads to this estimate was done in the authors’ recent work [2] studying real quadratic
analogues of traces of singular moduli. In that paper, we obtained asymptotic formulas for
averages of two types of real quadratic geometric invariants: integrals of jm over modular
surfaces and contour integrals of jm along the boundaries of the surfaces. Essential here and
in [2] is a variant of Kuznetsov’s formula relating Kloosterman sums to products ρj(d)ρj(d

′)
of coefficients of Maass forms in Kohen’s plus space, where D = dd′. The main significant
difference is that here d and d′ have opposite sign, while in the real quadratic case d and d′

have the same sign.

3. From traces to quadratic Weyl sums

We begin by relating the twisted traces of singular moduli to the quadratic Weyl sums

Tm(d, d
′; c) =

∑

b mod c
b2≡D(c)

χd

([

c
4
, b, b2−D

c

])

e
(

2mb

c

)

, (3.1)

where, as in the introduction, D = dd′. In [11, (4.10)–(4.11)] the function jm(z) is expressed
in terms of (the analytic continuation of) a Poincaré series G−m(z, s) evaluated at s = 1:

jm(z) = G−m(z, 1)− 24σ1(m).

Thus by Proposition 4 of [11] we have3

Trd jm(zD) = −24δdσ1(m)h(D) + π(2m)
1
2 |D| 14 lim

s→1+

∑

4|c

Tm(d, d′; c)√
c

Is− 1
2

(

4πm

c
|D| 12

)

, (3.2)

where Iν is the I-Bessel function. In Section 4 we will prove the following estimate for averages
of the Weyl sums Tm(d, d

′; c).

3In [11] the Weyl sums are denoted Sm(d, d′; c) but we have used the notation Tm(d, d′; c) to avoid confusion
with the Kloosterman sums in the next section.
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Theorem 3.1. Suppose that D = dd′ is a negative discriminant and that d is a fundamental

discriminant. Then for any m ≥ 1 we have

∑

4|c≤x

Tm(d, d
′; c)√

c
≪
(

x
1
6 + |D| 29m 1

3
(1+θ)

)

(m|D|x)ε.

Theorem 3.1 and [7, (10.29.1) and (10.30.1)] together justify exchanging the sum and the
limit in (3.2), so we conclude that

Trd jm(zD) = −24δdσ1(m)h(D) +
∑

4|c

Tm(d, d
′; c) sinh

(

4πm

c
|D| 12

)

. (3.3)

This formula generalizes [9, (12)]. Suppose that x ≫ m|D|1/2. For the tail of the c-sum in
(3.3) we have, by partial summation,

∑

4|c≥x

Tm(d, d
′; c) sinh

(

4πm

c
|D| 12

)

≪ m|D| 12x− 1
2

(

x
1
6 + |D| 29m 1

3
(1+θ)

)

(m|D|x)ε. (3.4)

Setting x = 2
Y
|D|1/2, Theorem 2.2 will follow after we relate the terms c < x in (3.3) to the

CM points zQ ∈ R(Y ).

Lemma 3.2. For any Y > 0 and ξ ∈ {−1, 1} we have

1

2

∑

4|c< 2
Y
|D|1/2

Tm(d, d
′; c) exp

(

ξ
4πm

c
|D| 12

)

=
∑

zQ∈R(Y )

χd(Q)e(−mzQ,ξ), (3.5)

where zQ,ξ = zQ when ξ = 1 and zQ,ξ = zQ when ξ = −1.

Proof. Let x = 2
Y
|D|1/2. Replacing c by 4c and using the definition (3.1) we have

1

2

∑

c<x
4

Tm(d, d
′; 4c) exp

(

ξ
πm

c
|D| 12

)

=
∑

c<x
4

∑

b mod 2c
b2≡D(4c)

χd

([

c, b,
b2 −D

4c

])

e

(

−m(−b+ iξ
√

|D|)
2c

)

,

where we have used that the b-summands are unchanged by replacing b by b+2c. The quadratic
forms Q of discriminant D with −1

2
≤ Re(zQ) <

1
2
are in one-to-one correspondence with pairs

of integers (b, c) for which −c < b ≤ c and b2−D
4c

∈ Z. Furthermore, Im(zQ) =
1
2c
|D|1/2, so the

condition c < x
4
is equivalent to Im(zQ) >

2
x
|D|1/2. Thus the left-hand side of (3.5) equals

∑

zQ∈R( 2
x
|D|1/2)

χd(Q)e(−mzQ,ξ),

from which the lemma follows after replacing x by 2
Y
|D|1/2. �

Proof of Theorem 2.2. By (3.3), Lemma 3.2, and (3.4) with x = 2
Y
|D|1/2, we find that

Trd jm(zD) = −24δdσ1(m)h(D) +
∑

zQ∈R(Y )

χd(Q)(e(−mzQ)− e(−mzQ))

+O
(

m|D| 13Y 1
2

(

Y − 1
6 + |D| 5

36m
1
3
(1+θ)

)

(m|D|/Y )ε
)

,

as desired. �
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Proof of Theorem 2.1. Setting Y = 1/m in Theorem 2.2, we obtain (2.1) with e(−mzQ) re-
placed by e(−mzQ)− e(−mzQ). By Lemma 3.2 it remains to estimate the sum

∑

c≤2m|D|1/2

Tm(d, d
′; c) exp

(

−4πm

c
|D| 12

)

. (3.6)

A straightforward argument involving Theorem 3.1 and partial summation shows that the

sum in (3.6) is ≪ |D| 1736+εm
5
6
+ θ

3
+ε. �

4. Plus-space Kuznetsov trace formula with opposite signs

The estimate in Theorem 3.1 will follow from an estimate for sums of Kloosterman sums of
half-integral weight associated to Kohnen’s plus space on Γ0(4). For additional background
see Section 3 of [2]. Let k = ±1

2
= λ + 1

2
and suppose that (−1)λm, (−1)λn ≡ 0, 1 (mod 4).

The plus-space Kloosterman sums are

S+
k (m,n; c) = e

(

−k

4

)

∑

d mod c

( c

d

)

ε2kd e

(

md+ nd

c

)

×
{

1 if 8 | c,
2 if 4 || c,

where dd ≡ 1 (mod c) and εd = 1 or i according to d ≡ 1 or 3 (mod 4), respectively. These
are related to the quadratic Weyl sums via Kohnen’s identity (Lemma 8 of [16])

Tm(d, d
′; c) =

∑

n|(m, c
4
)

(

d

c

)

√

2n

c
S+

1
2

(

d′,
m2

n2
d;

c

n

)

. (4.1)

Furthermore, we have the relation

S+
k (m,n; c) = S+

k (n,m; c) = S+
−k(−m,−n; c). (4.2)

Theorem 3.1 follows in a straightforward way from (4.1), (4.2), and the following theorem.

Theorem 4.1. Let k, λ,m, n be as above, with the additional assumption that m > 0, n < 0,
and (−1)λm = dv2, (−1)λn = d′w2, with d, d′ fundamental discriminants. Then

∑

4|c≤x

S+
k (m,n; c)

c
≪
(

x
1
6 + |dd′| 29 (vw) 1

3
(1+θ)

)

(|mn|x)ε.

Individually, the Kloosterman sums satisfy the Weil bound

|S+
k (m,n, c)| ≤ 2σ0(c) gcd(m,n, c)

1
2
√
c, (4.3)

see Lemma 6.1 of [10]. Thus the sum in Theorem 4.1 is trivially bounded above by x1/2|mnx|ε.
To prove Theorem 4.1 we will use a version of Kuznetsov’s formula relating the Kloosterman

sums S+
k (m,n; c) to Fourier coefficients of Maass cusp forms residing in the Kohnen plus-

space. Let ϑ(z) =
∑

n∈Z e(n
2z) denote the usual Jacobi theta function, and let νϑ denote the

associated multiplier system. Let Γ = Γ0(4) and (k, ν) = (1
2
, νϑ) or (−1

2
, νϑ). The plus-space

V+
k of Maass cusp forms of weight k for Γ is spanned by functions u : H → C satisfying

• (∆k +
1
4
+ r2)u = 0, where ∆k = y2(∂2

x + ∂2
y)− iky∂x is the hyperbolic Laplacian,

• u(γz) = ν(γ)j(γ, z)ku(z) for all γ ∈ Γ, where j(( a b
c d ), z) =

cz+d
|cz+d|

,

• the Fourier coefficients of u(z) are supported on exponents ≡ 0, (−1)λ (mod 4),
• ‖u‖ < ∞, where ‖·‖ is the Petersson norm.
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The quantity r is called the spectral parameter.
Once and for all we fix a spectrally normalized (‖u‖ = 1) orthonormal basis {uj}∞j=0 of V+

k

consisting of eigenforms for the Hecke operators, ordered by eigenvalue 1
4
+ r2j . The spectral

parameter r0 = i
4
corresponds to u0 = y1/4ϑ(z) or its conjugate. In either case, the product

of the m-th and n-th Fourier coefficients of u0 vanishes whenever mn < 0. Thus u0 does not
contribute to the Kuznetsov formula. For j ≥ 1, Theorem 1.2 of [4] shows that there is a
unique normalized Maass cusp form vj of weight 0 with spectral parameter 2rj which is even
if k = 1

2
and odd if k = −1

2
, and such that the Hecke eigenvalues of uj and vj agree. Since

each spectral parameter in weight 0 on SL2(Z) is positive we find that r1 > 0. For j ≥ 1 we
normalize the Fourier coefficients ρj of uj by

uj(z) =
∑

n 6=0

ρj(n)W k
2
sgn(n),irj

(4π|n|y)e(nx),

where Wµ,ν is the W -Whittaker function.
Kuznetsov proved his formula in [17] in the setting of integral weight on SL2(Z). Later

Proskurin [20] generalized Kuznetsov’s formula to arbitrary weight and for Fuchsian groups of
the first kind, but only when both inputs m,n are positive. Blomer [5, Proposition 2] proved
a version of the Kuznetsov formula for ν ∈ {νϑ, νϑ} with mn < 0. Using Blomer’s result, and
following the exact same procedure4 as in Section 5 of [2], we obtain the plus-space version for
opposite signs, Theorem 4.2 below. We first fix some notation. Given a smooth test function
ϕ : [0,∞) → R satisfying

ϕ(0) = ϕ′(0) = 0 and ϕ(j)(x) ≪ x−2−ε for j = 0, 1, 2, 3, (4.4)

define the integral transform

ϕ̌(r) = 2 cosh(πr)

∫ ∞

0

K2ir(x)ϕ(x)
dx

x
,

where K2ir is the K-Bessel function. If d is a fundamental discriminant, let χd =
(

d
·

)

and let
L(s, χd) denote analytic continuation of the Dirichlet L-function

L(s, χd) =

∞
∑

n=1

χd(n)

ns
.

Finally, we define

Sd(w, s) =
∑

ℓ|w

µ(ℓ)
χd(ℓ)√

ℓ

∑

abℓ=w

(a

b

)s

.

Theorem 4.2. Let ϕ : [0,∞) → R be a smooth test function satisfying (4.4). Let k = ±1
2
=

λ+ 1
2
. Suppose that m > 0, n < 0 with (−1)λm, (−1)λn ≡ 0, 1 (mod 4), and write

(−1)λm = v2d′, (−1)λn = w2d, with d, d′ fundamental discriminants.

4The most difficult part of the argument in [2] is the proof of Proposition 5.6, but that result already holds
for all m,n ≡ 0, 1 (mod 4) with no sign restrictions.
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Fix an orthonormal basis of Maass cusp forms {uj} ⊂ V+
k with associated spectral parameters

rj and coefficients ρj(n). Then

∑

4|c>0

S+
k (m,n, c)

c
ϕ

(

4π
√

|mn|
c

)

= 6
√

|mn|
∑

j≥1

ρj(m)ρj(n)

cosh πrj
ϕ̌(rj)

+
1

2

∫ ∞

−∞

∣

∣

∣

∣

d

d′

∣

∣

∣

∣

irL(1
2
− 2ir, χd′)L(

1
2
+ 2ir, χd)Sd′(v, 2ir)Sd(w, 2ir)

|ζ(1 + 4ir)|2 cosh πr|Γ(1−k
2

+ ir)Γ(1+k
2

− ir)| ϕ̌(r) dr.

5. Proof of Theorem 4.1

Let a = 4π
√

|mn| and x ≥ 3 and let 1 ≤ T ≤ x/3 be a free parameter to be chosen later.
Following [22], we fix a test function ϕ = ϕa,x,T : [0,∞) → [0, 1] satisfying

(i) ϕ(t) = 1 for
a

2x
≤ t ≤ a

x
,

(ii) ϕ(t) = 0 for t ≤ a

2x+ 2T
and t ≥ a

x− T
,

(iii) ϕ′(t) ≪
(

a

x− T
− a

x

)−1

≪ x2

aT
, and

(iv) ϕ and ϕ′ are piecewise monotonic on a fixed number of intervals (whose number is
independent of a, x, T ).

We apply the plus space Kuznetsov formula in Theorem 4.2 with this test function and we
estimate each of the terms on the right-hand side. For this, we require an estimate for the
integral transform ϕ̌(r). All but the first estimate in the following theorem are proved in [1,
Section 6]. There are some minor errors in that proof, and we have provided the corrections,
along with the proof of the first estimate, in Appendix A.

Theorem 5.1. Suppose that a, x, T , and ϕ = ϕa,x,T are as above. Then

ϕ̌(r) ≪































r−
3
2 if r ≤ 1,

e−
1
2
r if 1 ≤ r ≤ a

8x
,

r−1 if max
( a

8x
, 1
)

≤ r ≤ a

x
,

r−
3
2 min

(

1,
x

rT

)

if r ≥ max
(a

x
, 1
)

.

We first give two estimates for the contribution from the Maass cusp forms

Km =
√

|mn|
∑

j≥1

ρj(m)ρj(n)

cosh πrj
ϕ̌(rj).

The first estimate is Theorem 5.2 below, which we quote directly from [2, Section 6]. This
estimate uses Young’s [23] Weyl-type hybrid subconvexity estimate for central values of L-
functions of Maass cusp forms of integral weight for SL2(Z) twisted by Dirichlet characters
(see also Appendix A of [2]).

Theorem 5.2. Let k = ±1
2
= λ + 1

2
. Suppose that m > 0, n < 0 and write (−1)λm = v2d′

and (−1)λn = w2d with d, d′ fundamental discriminants. Then

√

|mn|
∑

rj≤X

|ρj(m)ρj(n)|
cosh πrj

≪ |dd′| 16 (vw)θX2(|mn|X)ε.
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Our second estimate comes from Section 4 of [2].

Theorem 5.3. Suppose that (k, ν) = (1
2
, νϑ) or (−1

2
, νϑ). Then for all n 6= 0 we have

n
∑

X≤rj≤2X

|ρj(n)|2e−πrj ≪ X−k sgn(n)
(

X2 + |n| 12+ε
)

Xε.

The estimation of the Maass cusp form contribution follows the general structure of the
proof of Proposition 5 of [22] and the proof of Theorem 9.1 of [1]. We split the sum Km into
three ranges

Km
1 =

∑

1≤rj≪
a
x

, Km
2 =

∑

rj≍
a
x

, Km
3 =

∑

rj≫
a
x

,

corresponding to the second, third, and fourth ranges in Theorem 5.1. Recall that a ≍
√

|mn|.
For the first range we use Theorem 5.2 to obtain

Km
1 ≪

√

|mn|
∑

rj≥1

|ρj(m)ρj(n)|
cosh πrj

e−rj/2

≪
√

|mn|
∞
∑

T=1

e−T/2
∑

T≤rj≤T+1

|ρj(m)ρj(n)|
cosh πrj

≪ |dd′| 16 (vw)θ|mn|ε.

In the second range, again using Theorem 5.2 we have

Km
2 ≪

√

|mn|
∑

rj≍
a
x

|ρj(m)ρj(n)|
cosh πrj

r−1
j ≪ x

∑

rj≍
a
x

|ρj(m)ρj(n)|
cosh πrj

≪ |dd′| 23 (vw)1+θx−1(|mn|x)ε.

To estimate Km
3 we consider the dyadic sums

Km(A) =
√

|mn|
∑

A≤rj<2A

ρj(m)ρj(n)

cosh πrj
ϕ̌(rj)

for A ≥ 1. Applying Cauchy-Schwarz and Theorem 5.3 we obtain the estimate:
√

|mn|
∑

rj≤A

|ρj(m)ρj(n)|
cosh πrj

≪
(

A2 + |mn| 14A
)

(|mn|A)ε.

Together with Theorem 5.2, this implies that
√

|mn|
∑

A≤rj<2A

|ρj(m)ρj(n)|
cosh πrj

≪ min
(

A2 + |mn| 14A, |dd′| 16 (vw)θA2
)

(|mn|A)ε

≪
(

A2 + |dd′| 5
24 (vw)

1
4
+ 1

2
θA

3
2

)

(|mn|A)ε,

where we have used that min(y, z) ≤ (yz)1/2. By Theorem 5.1 it follows that

Km(A) ≪ min
(

1,
x

AT

)(

A
1
2 + |dd′| 5

24 (vw)
1
4
+ 1

2
θ
)

(|mn|A)ε,

so by summing the dyadic pieces we obtain

Km
3 ≪

(

x
1
2T− 1

2 + |dd′| 5
24 (vw)

1
4
+ 1

2
θ
)

(|mn|x)ε.
In total,

Km ≪
(

|dd′| 23 (vw)1+θx−1 + x
1
2T− 1

2 + |dd′| 5
24 (vw)

1
4
+ 1

2
θ
)

(|mn|x)ε. (5.1)
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We turn to the estimate of the integral

Ke =

∫ ∞

−∞

∣

∣

∣

∣

d

d′

∣

∣

∣

∣

ir
Ld′(−r)Ld(r)Sd′(v, 2ir)Sd(w, 2ir)

|ζ(1 + 4ir)|2 cosh πr|Γ(1−k
2

+ ir)Γ(1+k
2

− ir)|
ϕ̌(r) dr,

where, for brevity, we have written L(1
2
+2ir, χd) = Ld(r). By symmetry it suffices to estimate

the integrals Ke
0 =

∫ 1

0
and Ke

1 =
∫∞

1
. Estimating the divisor sums trivially we find that

|Sd(w, s)| ≤ σ0(w)
2 ≪ wε. For r ∈ (0, 1] we have

|ζ(1 + 4ir)|2 ≫ r−2 and cosh πr|Γ(1−k
2

+ ir)Γ(1+k
2

− ir)| ≫ 1,

so by Theorem 5.1 we have the estimate

Ke
0 ≪ (vw)ε

∫ 1

0

|Ld′(r)Ld(r)| dr.

Since cosh πr|Γ(1−k
2

+ ir)Γ(1+k
2

− ir)| ∼ π and |ζ(1 + 4ir)|−1 ≪ rε for large r we have by
Theorem 5.1 that

Ke
1 ≪ (vw)ε

∫ ∞

1

∣

∣Ld′(r)Ld(r)
∣

∣

dr

r3/2−ε
+ (vw)ε

∫ a/x

a/(8x)

|Ld′(r)Ld(r)|
dr

r1−ε .

In the first integral we multiply each Dirichlet L-function by r−3/8 and the last factor by r3/4.
Applying Hölder’s inequality in the case 1

6
+ 1

6
+ 2

3
= 1 to both integrals, we obtain

Ke
1 ≪ (vw)ε

(
∫ ∞

1

|Ld′(r)|6
dr

r9/4

)
1
6
(
∫ ∞

1

|Ld(r)|6
dr

r9/4

)
1
6
(
∫ ∞

1

dr

r9/8−ε

)
2
3

+ (vw)ε
∑

a
8x

≤T< a
x

(
∫ T+1

T

|Ld′(r)|6 dr
)

1
6
(
∫ T+1

T

|Ld(r)|6 dr
)

1
6
(
∫ T+1

T

dr

r3/2−ε

)

2
3

. (5.2)

Young [23] proved that
∫ T+1

T

|Ld(r)|6 dr ≪ (|d|(1 + T ))1+ε,

from which it follows that
∫ ∞

1

|Ld(r)|6
dr

r9/4
≤

∞
∑

T=1

1

T 9/4

∫ T+1

T

|Ld(r)|6 dr ≪ |d|1+ε

and

∑

a
8x

≤T< a
x

(
∫ T+1

T

|Ld′(r)|6 dr
)

1
6
(
∫ T+1

T

|Ld(r)|6 dr
)

1
6
(
∫ T+1

T

dr

r3/2−ε

)

2
3

≪ |dd′| 23+ε(vw)1+εx−1+ε.

We also have Ke
0 ≪ (vw)ε|dd′| 16+ε. These estimates, together with (5.2) show that

Ke ≪ |dd′| 23+ε(vw)1+εx−1+ε. (5.3)

Putting (5.1) and (5.3) together, we find that

∑

4|c>0

S+
k (m,n, c)

c
ϕ

(

4π
√

|mn|
c

)

≪
(

|dd′| 23 (vw)1+θx−1 + x
1
2T− 1

2 + |dd′| 5
24 (vw)

1
4
+ 1

2
θ
)

(|mn|x)ε.
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To unsmooth the sum of Kloosterman sums, we argue as in [22, 1] to obtain

∑

4|c>0

S+
k (m,n, c)

c
ϕ

(

4π
√

|mn|
c

)

−
∑

x≤c<2x
4|c

S+
k (m,n, c)

c
≪ T log x√

x
|mn|ε.

Choosing T = x
2
3 we obtain

∑

x≤c<2x

S+
k (m,n, c)

c
≪
(

x
1
6 + |dd′| 23 (vw)1+θx−1 + |dd′| 5

24 (vw)
1
4
+ 1

2
θ
)

(|mn|x)ε. (5.4)

To prove Theorem 4.1 we sum the inital segment c ≤ |dd′|α(vw)β and apply the Weil bound
(4.3), then sum the dyadic pieces for c ≥ |dd′|α(vw)β using (5.4). To balance the resulting
terms we take α = 4

9
and β = 2

3
(1 + θ), which gives the bound

∑

c≤x

S+
k (m,n, c)

c
≪
(

x
1
6 + |dd′| 29 (vw) 1

3
(1+θ)

)

(|mn|x)ε.

This completes the proof. �

Appendix A. Proof of Theorem 5.1

In this section we prove the first estimate of Theorem 5.1 and correct some mistakes in the
proof given in [1, Section 6] for the other three estimates of that theorem. The mistakes in [1]
all stem from a misunderstanding of the choice of branch cut implicit in Balogh’s [3] uniform
asymptotic expansion for the K-Bessel function Kiv(vz) when z ∈ (0, 1). The paper [13]
provides a clear reference for this asymptotic expansion in both regions z < 1 and z > 1. Here
we prove corrected statements of some of the propositions in Section 6 of [1]; the remaining
steps of the proof given in that paper follow with only minor changes and are omitted here.

Balogh [3] (see also [13, Section 4]) gives a uniform asymptotic expansion for Kiv(vz) in
terms of the Airy function Ai and its derivative Ai′. For z ∈ (0, 1) define

w(z) = arccosh
(

1

z

)

−
√
1− z2 and ζ =

[

3

2
w(z)

]
2
3
> 0.

Taking m = 1 in equation (2) of [3] (see also [13, (12)]) we have

e
πv
2 Kiv(vz) =

π
√
2

v
1
3

(

ζ

1− z2

) 1
4
{

Ai
(

−v
2
3 ζ
)

[

1 +
A(z)

v2

]

+
(

2

3

)
1
3
Ai′
(

−v
2
3 ζ
) B(z)

v(vw(z))
1
3

}

+O

(

v−
7
2

(1− z2)
1
4

)

, (A.1)

uniformly for v ∈ [1,∞), where

A(z) =
455

10368w(z)2
− 7(3z2 + 2)

1728(1− z2)
3
2w(z)

− 81z4 + 300z2 + 4

1152(1− z2)3
,

B(z) =
3z2 + 2

24(1− z2)
3
2

− 5

72w(z)
. (A.2)

Both A(z) and B(z) are O(1) for z ∈ (0, 1).
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Proposition A.1. Suppose that z ∈ (0, 3/4] and that v ≥ 1. Then

e
πv
2 Kiv(vz) =

√
2π

v
1
2 (1− z2)

1
4

[

cos
(

vw(z)− π

4

)

+ sin
(

vw(z)− π

4

) 3z2 + 2

24v(1− z2)
3
2

]

+O
(

v−
5
2

)

.

Proof. Let c(v, z) = cos(vw(z) − π/4) and s(v, z) = sin(vw(z) − π/4). By the asymptotic
expansions [7, (9.7.9) and §9.7(iii)] we have

Ai(−v
2
3 ζ) = π− 1

2

(

3

2
vw(z)

)− 1
6

{

c(v, z) +
5s(v, z)

72vw(z)
+O

(

v−2
)

}

, (A.3)

(

2

3

)
1
3 Ai′(−v

2
3 ζ)

(vw(z))
1
3

= π− 1
2

(

3

2
vw(z)

)− 1
6{

s(v, z) +O
(

v−1
)}

. (A.4)

Thus by (A.1) we have

e
πv
2 Kiv(vz) =

√
2π

v
1
2 (1− z2)

1
4

{

c(v, z) +
s(v, z)

v

(

5

72w(z)
+B(z)

)}

+O
(

v−
5
2

)

.

Then (A.2) shows that
5

72w(z)
+B(z) =

3z2 + 2

24(1− z2)
3
2

,

as desired. �

We require some notation for the next proposition. Let Jν(x) and Yν(x) denote the J and
Y -Bessel functions, and define

Mν(x) =
√

J2
ν (x) + Y 2

ν (x).

Proposition A.2. Suppose that c > 0. Suppose that v ≥ 1 and that 3
16

≤ z ≤ 1− cv−
2
3 . Then

e
πv
2 Kiv(vz) = π

w(z)
1
2

(1− z2)
1
4

M 1
3
(vw(z)) sin

(

θ 1
3
(vw(z))

)

+Oc(v
−4/3),

where θ 1
3
(x) is a real-valued continuous function satisfying

θ′1
3
(x) =

2

πxM2
1
3

(x)
.

Proof. By [7, (9.8.1) and (9.8.9)] we have

Ai(−v
2
3 ζ) =

1√
3
v

1
3 ζ

1
2M2

1
3
(vw(z)) sin

[

θ

(

−
(

3

2
vw(z)

)
2
3

)]

,

where θ(x) is given in [7, (9.8.11)]. Letting θ1/3(x) = θ
(

−(3
2
x)2/3

)

we find from [7, (9.8.14)]
that

θ′1
3
(x) = −

(

3

2
x
)− 1

3
θ′
(

−
(

3

2
vw(z)

)
2
3

)

=
2

πM2
1
3

(x)
.

For z ≤ 1 − cv−2/3 we have vw(z) ≫c 1. Thus it follows from (A.3) and (A.4) that after
expanding (A.1), the terms containing A(z) and B(z) are both ≪ v−4/3. The proposition
follows. �

It remains to prove the first estimate of Theorem 5.1.
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Proposition A.3. Let ϕ be as in Theorem 5.1. If r ≤ 1 then

ϕ̌(r) ≪ r−
3
2 .

Proof. We begin by splitting the integral as

ϕ̌(r) = ϕ̌1(r) + ϕ̌2(r),

where

ϕ̌j(r) = cosh πr

∫

Ij

K2ir(u)ϕ(u)
du

u
,

with I1 = [ a
2(x+T )

, a
x−T

] ∩ [0, r] and I2 = [ a
2(x+T )

, a
x−T

] ∩ (r,∞). The second piece ϕ̌2(r) can be

estimated exactly as in the proof of Proposition 6.5 of [1] since u ≥ r. For the first piece we
use [7, (10.27.4) and (10.25.2)] to get

|K2ir(u)| ≤
π cosh(2πr)1/2

sinh(2πr)
I0(u).

From this and the assumption that r ≤ 1 we obtain

ϕ̌1(r) ≪
1

r

∫ a
x−T

a
2(x+T )

du

u
≪ 1

r
,

where in the last inequality we used that T ≤ x/3. This completes the proof. �
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