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W. DUKE

Abstract. The classical invariant theory of binary forms and pairs of binary forms is applied
to some problems about the representation of integers by certain binary quartic forms.

1. Introduction

A venerable problem in number theory is to describe the integers that are represented by
an integral binary form. Much more is known here in the quadratic case than in higher
degree cases, as is reflected in the well-known relationship between binary quadratic forms
and (proper) ideals in orders of quadratic fields. A general tool that may be applied to this
problem is the arithmetic invariant theory of forms and pairs of forms. In this paper I will
provide illustrations where invariant theory yields results about binary quartic forms that are
parallel to some classical results about binary quadratic forms.

The following results were discovered early in the study of representations by the integral
binary quadratic form

F (x, y) = ax2 + bxy + cy2

with discriminant DF = b2 − 4ac.

Theorem 1. Suppose that F (x, y) is primitive with DF 6= 0.

i) There exists a primitive binary quadratic form G with DG = DF that properly represents
the square of each integer prime to DF that F properly represents.

ii) If F can be written in the form

F (x, y) = (b2 − ac)x2 + (bc− ad)xy + (c2 − bd)y2

with integers a, b, c, d then in i) we may take G = F.

Part i) is a well-known consequence of the composition of quadratic forms. Roughly speak-
ing, part ii) reflects Eisenstein’s observation (c.f. [4]) that (negatives of) Hessians of binary
cubics are of order three in the class group, using that a binary quadratic form and its inverse
with respect to composition represent the same integers.

The simplest example to illustrate Theorem 1 is when

F (x, y) = x2 + y2

with DF = −4, where G = F and the result follows easily from the duplication formula

(1.1) F (2xy, x2 − y2) = F 2(x, y).

Note that x2 + y2 does not represent 4 properly although 2 = 12 + 12; the theorem is not true
if we drop the assumption that the represented integer be prime to the discriminant. Part ii)
applies here since we can write F in the required form by using (a, b, c, d) = (1, 0,−1, 0). The
general duplication formula for forms of the type in ii) is given in (3.6).
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Consider now a binary quartic form F with integral coefficients that is even in that it has
the form

F (x, y) = ax4 + 2bx3y + cx2y2 + 2dxy3 + ey4,

for integers a, b, c, d, e and is properly primitive, which we will shorten to “primitive”, meaning
that gcd(a, 2b, c, 2d, e) = 1. The set of primitive even F is preserved under the usual action of
Γ = SL(2,Z) and there are two independent integral invariants, namely

(1.2) AF = 12ae− 12bd+ c2 and BF = 36ace+ 18bcd− 54b2e− 54d2a− c3.
The discriminant of F normalized for even forms is defined by

DF = 1
2233

(A3
F −B2

F ).(1.3)

Given such a form F with DF 6= 0, it is not in general possible to find another integral binary
quartic form G, even one with a different (non-zero) discriminant, that properly represents
the square of every integer that is properly represented by F and is prime to DF . This can be
seen already when

F (x, y) = 4x4 + y4,

which has DF = 210. It follows from [5, Theorem 1] that the number of odd integers ≤ T
1
2

properly represented by F is� T
1
4 for T ≥ 1. Here we use symmetry to show that enough odd

integers are represented. Suppose that there were a G with DG 6= 0 that represented properly
the square of every odd integer ≤ T

1
2 properly represented by F . Then G would properly

represent � T
1
4 squares less than T , i.e. the equation

z2 = G(x, y)

would have � T
1
4 solutions with gcd(x, y) = 1 and |z| ≤ T. But it is known by Mordell’s

theorem for nonsingular curves of genus one defined over Q that this number is �ε T
ε, for

any ε > 0.
Our first new result shows that a weaker statement does hold for certain F .

Theorem 2. Suppose that F (x, y) is a primitive even binary quartic form with AF = P 2 for
some P ∈ Z and with DF 6= 0. There exists a primitive even binary quartic form G with
DG = m2DF for some positive m ∈ Q with the following property. The form G properly
represents some nonzero multiple of the square of each integer prime to 3DF that F properly
represents.

As an example let

F (x, y) = x4 + x2y2 − 6xy3 + 2y4,

which has AF = 52 and DF = −2 · 52 · 29. The proof of Theorem 2 shows that we may take

G(x, y) = 4x4 − 28x3y + 37x2y2 − 26xy3 + 5y4,

for which AG = −52 · 23 and DG = 26 · 52DF . As particular instances of representations of
multiples of squares provided by the proof of Theorem 2 we have

F (0, 1) = 1 and G(1, 1) = −8 · 12,

F (1, 2) = −11 and G(13, 3) = −188 · (−11)2,

F (5, 14) = 37 and G(5417, 979) = −750668 · 372

F (3,−2) = 293 and G(33, 71) = −508 · 2932.

Our next result is an analogue of part ii) of Theorem 1.



SOME ARITHMETIC APPLICATIONS OF INVARIANT THEORY 3

Theorem 3. Suppose that F (x, y) is a primitive even binary quartic form that can be written
in the form

F (x, y) = (b2 − ac)x4 + 2(bc− ad)x3y + (3c2 − ae− 2bd)x2y2 + 2(cd− be)xy3 + (d2 − ce)y4

for integers a, b, c, d, e, and that therefore has AF = (ae− 4bd+ 3c2)2.
Assume that AF = 0 and DF 6= 0. If a and e are not both even, then we may take for G in

Theorem 2 the form

(1.4) G(x, y) = ax4 + 4bx3y + 6cx2y2 + 4dxy3 + ey4,

for which D2
G = −28 33DF . If both a and e are even we may take

G(x, y) = 1
2
ax4 + 2bx3y + 3cx2y2 + 2dxy3 + 1

2
ey4,

for which D2
G = −2−4 33DF .

We will give a proof of Theorem 1 that serves as a model for those of Theorems 2 and
3, that of Theorem 2 being necessarily more intricate. The proof of Theorem 1 uses what
is essentially Gaussian duplication (see Proposition 1), while those of Theorems 2 and 3 use
a higher composition law, one that does not amount to the multiplication of norm forms.
Here an even binary quartic is composed with itself and with another even binary quartic, a
covariant. This composition law is given in Proposition 2.

To illustrate Theorem 3 consider

F (x, y) = x4 + 6x2y2 − 3y4,

which has AF = 0 and DF = −28 33 and is of the form required when we choose (a, b, c, d, e) =
(1, 0,−1, 0,−3). We may take

G(x, y) = x4 − 6x2y2 − 3y4,

which satisfies DG = DF . These F and G are connected by an elegant quartic analogue of the
duplication formula (1.1):

G(3x2y + 3y3, x3 − 3xy2) = −3G(x, y)F 2(x, y).

This identity yields the conclusion of Theorem 2 explicitly in this simple case.
We cannot apply Theorem 2 directly to the even binary quartic

F (x, y) = (ax2 + bxy + cy2)2 = a2x4 + 2abx3y + (b2 + 2ac)x2y2 + 2bcxy3 + c2y4,

for which AF = (b2 − 4ac)2 but DF = 0. Nevertheless, it is possible to modify the proof of
Theorem 2 to show that in part i) of Theorem 1 we can replace the word “square” by “cube”,
at least for forms with a square-free discriminant. In this way we can get a proof of such a
result that does not use the class group, at least directly. See the Remark at the end of the
paper for a related example.

Of course, much more can be said about such questions in the quadratic case by using
the above-mentioned correspondence between classes of forms and ideal classes and applying
algebraic number theory. My purpose here is to illustrate the use of tools that are also
applicable to basic representation problems by higher degree binary forms.
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2. Preliminaries

First we set notation, make some definitions and record some facts from the invariant theory
of binary forms and pairs of binary forms. Let

F (x, y) =
m∑
n=0

anx
m−nyn

where a0, . . . , am ∈ Z be an integral binary form of degree m. We will use the abbreviation

(2.1) F (x, y) = [a0, . . . , am].

Such an F is acted on by g = ( a bc d ) ∈ Γ = SL(2,Z) through

(2.2) F 7→ F |g = F (ax+ by, cx+ dy).

For each pair of non-negative integers m,n fix cm,n ∈ Z+ such that cm,0 = 1 and cm,n = cm,m−n.
Define F to be the set of all F that can be written in the form

(2.3) F (x, y) =
m∑
n=0

cm,nanx
m−nyn a0, . . . , am ∈ Z.

Say that F is admissible if it is preserved under (2.2) and if, for F ∈ F as given in (2.3),
gcd(a0, . . . , am) is left invariant under (2.2). In addition to the set F1 of ordinary integral
forms where cm,n = 1 for all m,n, another admissible set is the set of Gaussian forms F3 with
cm,n =

(
m
n

)
. We abbreviate a Gaussian form by using open parentheses, e.g.

ax2 + 2xy + cy2 = (a, b, c).

The set F2 of even forms, with cm,1 = cm,m−1 = 2 for m even and cm,n = 1 otherwise, is also
admissible. Note that admissibility is easily checked by expanding F (x+ y, y) and F (−y, x).
Clearly F3 ⊂ F2 ⊂ F. For an admissible F the form F ∈ F given by (2.3) is classically called
primitive (for F) if gcd(a0, . . . , am) = 1 and properly primitive if

gcd(cm,0a0, . . . , cm,mam) = 1.

As mentioned before, in this paper we will use “primitive” for “properly primitive” unless
otherwise specified.

An (arithmetic) covariant for F ∈ F1 is a binary form PF whose coefficients are integral
polynomials of the coefficients of F that satisfies

PF |g = PF |g

for all g ∈ Γ. If PF |g = PF for all g ∈ Γ then PF gives an invariant of F . The discriminant
DF = discx,y(F ) is an invariant of F . The Hessian of F

HF (x, y) = det
(
Fxx Fxy

Fyx Fyy

)
(2.4)

is a covariant of F . The Jacobian of two forms F,G is given by

(2.5) JF,G(x, y) := det
(
Fx Fy

Gx Gy

)
.

We have that JF,HF
(x, y) is a covariant of F . The discriminant form of two forms F,G of the

same degree is given by

DF,G(x, y) = discu,v(xF (u, v) + yG(u, v)).

If F and HF have the same degree, DF,HF
(x, y) is an invariant of F .
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A pair (f1, f2) of binary forms of the same degree, each in some F, is acted on in two ways
by g ∈ Γ. One action is through

(2.6) (f1, f2) 7→ (f1, f2)|g = (f1|g, f2|g)

and the second through

(2.7) (f1, f2) 7→ (f1, f2)g = (af1 + cf2, bf1 + df2).

Invariants and covariants of pairs of forms with a given action are defined similarly to the case
of a single form.

The Jacobian Jf1,f2(x, y) is an invariant of (f1, f2) with respect to (2.7) and a covariant of
(f1, f2) with respect to (2.6). The discriminant form Df1,f2(x, y) is an invariant of (f1, f2) with
respect to (2.6) and a covariant of (f1, f2) with respect to (2.7).

In what follows we will normalize DF , HF , JF,G and DF,G by multiplying each by a constant,
depending on the nature of F and G. For simplicity we will retain the notation DF , HF , JF,G
and DF,G after we specify the normalization.

3. Pairs of binary quadratic forms

The proof of Theorem 1 makes use of the invariant theory of pairs of binary (Gaussian)
quadratic forms, whose theory we will now review. For f1 = (a1, b1, c1) and f2 = (a2, b2, c2)
we have the normalized discriminant form

(3.1) Df1,f2(x, y) = [b21 − a1c1, 2b1b2 − a1c2 − a2c1, b22 − a2c2].
The normalized Jacobian is given by

(3.2) Jf1,f2(x, y) = [(a1 b2), (a1 c2), (b1 c2)],

where we are using the convenient notation from [10]:

(3.3) (ai bj) = aibj − ajbi.
A direct calculation verifies the following identity (“syzygy”):

Proposition 1. For any pair (f1, f2) of Gaussian binary quadratic forms with discriminant
form Df1,f2 we have the identity

(3.4) Df1,f2(−f2(x, y), f1(x, y)) = J2
f1,f2

(x, y).

Proof of Theorem 1. i) Suppose that F (x, y) = [a, b, c] is a primitive binary quadratic form with
integer coefficients and non-zero discriminant DF . First we show that F may be represented
as the Jacobian, normalized as in (3.2), of two binary quadratic forms of Gaussian type. This
is an immediate consequence of [6, art. 279]. An easy way to see this directly is to complete
(a, b, c) to a matrix A ∈ SL(3,Z), which is possible since gcd(a, b, c) = 1, and extract the
coefficients of f1 = (a1, b1, c1) and f2 = (a2, b2, c2) from the entries of A−1. Thus we have

F (x, y) = Jf1,f2(x, y).

Now we claim that we may take

G(x, y) = Df1,f2(x, y) = (b21 − a1c1)x2 + (2b1b2 − a1c2 − c1a2)xy + (b22 − a2c2)y2.(3.5)

The discriminant of G(x, y) is given by

DG = (2b1b2 − a1c2 − c1a2)2 − 4(b21 − a1c1)(b22 − a2c2)
= (a1 c2)

2 − 4(a1 b2)(b1 c2) = DF
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by (3.2). Now F (x, y)2 is primitive by the Gauss lemma. Thus by (3.4) it follows that G is
primitive.

The resultant of f1 and f2 is given by

result(f1, f2) = (a1 c2)
2 − 4(a1 b2)(b1 c2) = DF .

Thus for a prime p, if p|f1(x, y) and p|f2(x, y) for gcd(x, y) = 1 then p|DF . Combining this
with (3.4) of Proposition 1 proves i) of Theorem 1. �

ii) For F as in ii) the identity (3.4) reduces to

(3.6) F (−b1x2 − 2c1xy − d1y2, a1x2 + 2b1xy + c1y
2) = F 2(x, y),

from which the result follows as before. �

4. Pairs of binary cubic forms

The proofs of Theorems 2 and 3 make use of the invariant theory of pairs of binary Gaussian
cubic forms. We review this next. A good reference for the theory over C is [10, p.204–218].

A pair (f1, f2) of Gaussian binary cubic forms has the normalized discriminant form1

Df1,f2(x, y) = [δ0, δ1, δ2, δ3, δ4],

an invariant binary quartic under (2.6). The normalization is determined by setting for f1 =
(a1, b1, c1, d1) and f2 = (a2, b2, c2, d2) the values

δ0 =Df1 = −a21d21 + 6a1b1c1d1 + 3b21c
2
1 − 4a1c

3
1 − 4d1b

3
1,(4.1)

δ1 =2 (3b1b2c
2
1 − 2a2c

3
1 + 3b21c1c2 − 6a1c

2
1c2 − 6b21b2d1 + 3a2b1c1d1

+ 3a1b2c1d1 + 3a1b1c2d1 − a1a2d21 − 2b31d2 + 3a1b1c1d2 − a21d1d2),
δ2 =3b22c

2
1 + 12b1b2c1c2 − 12a2c

2
1c2 + 3b21c

2
2 − 12a1c1c

2
2

− 12b1b
2
2d1 + 6a2b2c1d1 + 6a2b1c2d1 + 6a1b2c2d1 − a22d21 − 12b21b2d2

+ 6a2b1c1d2 + 6a1b2c1d2 + 6a1b1c2d2 − 4a1a2d1d2 − a21d22,
δ3 =2 (3b22c1c2 + 3b1b2c

2
2 − 6a2c1c

2
2 − 2a1c

3
2 − 2b32d1 + 3a2b2c2d1 − 6b1b

2
2d2

+ 3a2b2c1d2 + 3a2b1c2d2 + 3a1b2c2d2 − a22d1d2 − a1a2d22),
δ4 =Df2 .

A full set of (scalar) invariants of the pair (f1, f2) is provided by δ0, δ1, δ2, δ3, δ4 together
with P and Q, which are given by (recall the convention (3.3))

P = Pf1,f2 = (a1 d2)− 3(b1 c2)(4.2)

Q = Qf1,f2 =− (b1 c2)
3 − (c1 a2)

2(c1 d2)− (a1 b2)(b1 d2)
2 + (b1 c2)

2(a1 d2)(4.3)

+ 3(a1 b2)(b1 c2)(c1 d2) + (a1 d2)(a1 b2)(c1 d2).

Note that Df1,f2(x, y) is even. It follows by direct calculation2 that for AD, BD from (1.2) we
have

(4.4) AD = P (P 3 − 24Q) and BD = −P 6 + 36P 3Q− 216Q2.

1An analysis of the representations of a given binary quartic form as a discriminant form over C is given in
[7]. Such a discriminant form may be interpreted as the Cayley hyperdeterminant of a linear combination of
two symmetric 2× 2× 2 tensors.

2Use a computer or, as is done in [10, p. 211], proceed by hand after reducing to canonical forms. The
second formula of (4.4) corrects the sign of BD given in the published version of this paper.
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The normalized Jacobian of (f1, f2) is the even form given by

(4.5) Jf1,f2(x, y) = [(a1 b2), 2(a1 c2), (a1 d2) + 3(b1 c2), 2(b1 d2), (c1 d2)].

Write
F = Jf1,f2 = [a, 2b, c, 2d, e]

and let

(4.6) HF (x, y) = [2ac− 3b2, 12ad− 2bc, 12ae+ 6bd− c2, 12be− 2cd, 2ce− 3d2]

be its normalized Hessian. By another direct calculation we have

(4.7) AF = P 2 and BF = 54Q− P 3.

Define the covariant quartic

(4.8) L(x, y) = Lf1,f2(x, y) = −2PF (x, y)−HF (x, y) = (3a21c
2
2 + · · · )x4 + · · · .

Once more, a computation justifies the following higher composition law for binary quartic
forms.

Proposition 2. Notation as above, for any pair (f1, f2) of Gaussian binary cubic forms with
discriminant form Df1,f2, we have the syzygy

Df1,f2(−f2(x, y), f1(x, y)) = L(x, y)F 2(x, y),

where F is defined below (4.5) and L is defined in (4.8).

Proof of Theorem 2. For

F (x, y) = ax4 + 2bx3y + cx2y2 + 2dxy3 + ey4,

where AF = P 2, we first show that there exist f1 = (a1, b1, c1, d1) and f2 = (a2, b2, c2, d2) such
that

F (x, y) = Jf1,f2(x, y)(4.9)

as normalized in (4.5). Since by (1.2) we have

(4.10) P 2 = 12ae− 12bd+ c2,

we may choose the sign of P so that P ≡ c (mod 6). Here we use that P − c and P + c have
the same parity. In view of (4.5) we must show that (a1, b1, c1, d1) and (a2, b2, c2, d2) exist so
that

a = (a1 b2), b = (a1 c2),
1
2
(c+ P ) = (a1 d2),

1
6
(c− P ) = (b1 c2), d = (b1 d2), e = (c1 d2).

We have the necessary condition that ae − bd + 1
12

(c2 − P 2) = 0 from (4.10). As before,
the needed existence is due to Gauss, who proved a similar result in his treatment of the
composition of two binary quadratic forms. The exact statement we need was given by Arndt
[1]; an English version of his proof appears in [3, p. 65]. A different proof can be found in [11,
p. 380].

Since F is primitive, by the Gauss lemma we deduce from Proposition 2 that

(4.11) D∗f1,f2(−f2(x, y), f1(x, y)) = L1(x, y)F 2(x, y),

where L1 is integral and D∗f1,f2(x, y) is the primitive form obtained of dividing Df1,f2(x, y) by
the gcd of its coefficients. Let

G(x, y) = D∗f1,f2(x, y).

By (1.3) and (4.7) we have

(4.12) DF = Q(P 3 − 27Q)
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and from (4.4) and (1.3)

(4.13) DDf1,f2
= (4Q)2DF ,

so we see that G has a nonzero discriminant since F does and that DG = m2DF for a positive
m ∈ Q.

Now the resultant of f1 and f2 is by [10, p. 205] or a direct calculation

(4.14) result(f1, f2) = P 3 − 27Q.

Suppose that F (x, y) = n for gcd(x, y) = 1 and gcd(n, 3DF ) = 1. If a prime p is such that p|r
where r = gcd(f1(x, y), f2(x, y)), then by (4.14) and (4.12) we know that p|Df . By (4.11) we
must have that r4|L1(x, y) since gcd(r, n) = 1 and we get that

G(−1
r
f2(x, y), 1

r
f1(x, y)) = 1

r4
L1(x, y)n2,

where 1
r4
L1(x, y) ∈ Z. This gives the desired representation by G of a nonzero multiple of n2

unless L1(x, y) = 0, hence L(x, y) = 0. In that case we need the following lemma.

Lemma 1. Suppose that F (x, y) = [a, 2b, c, 2d, e] is an even binary quartic form with Hessian
HF (x, y) given by (4.6). If p|gcd(F (x, y), HF (x, y)) for integers x, y with gcd(x, y) = 1 then
p|3DF .

Proof. Since gcd(x, y) = 1 and HF is a covariant of F , by (4.6) we may assume that

p|gcd(a, 2ac− 3b2).

The discriminant of F from (1.3) is given in full by

DF =16a3e3 − 48a2bde2 − 8a2c2e2 + 36a2cd2e− 27a2d4

+ 36ab2ce2 − 6ab2d2e− 20abc2de+ 18abcd3 + ac4e− ac3d2 − 27b4e2

+ b3cde− 16b3d3 − b2c3e+ b2c2d2.

From this we see that p|3DF . �

Assuming that L(x, y) = 0, by Lemma 1 we must have n = ±1 since

L(x, y) = −2PF (x, y)−HF (x, y),

and then the conclusion of Theorem 2 is obvious. �
Before proving Theorem 3, it is instructive to see what can be done under the assumption

that −F is the (Gaussian normalized) Hessian of G in (1.4), so

F (x, y) = (b2 − ac)x4 + 2(bc− ad)x3y + (3c2 − ae− 2bd)x2y2 + 2(cd− be)xy3 + (d2 − ce)y4,

but not necessarily that AF = 0. Note that AF = (ae− 4bd+ 3c2)2. Letting

(4.15) f1(x, y) = (b1, c1, d1, e1) and f2(x, y) = (a1, b1, c1, d1),

a computation using (4.5) shows that

F (x, y) = Jf1,f2(x, y).

Using (4.1) another computation yields the identity

(4.16) Df1,f2(y, x) = 1
12
AGF (x, y) + 1

216
BGG(x, y),

where you should note the (y, x) in the first term. Also we have for L(x, y) from (4.8)

(4.17) L(x, y) = 1
12
AGF (x, y)− 1

72
BGG(x, y).
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Finally, we have the formulas

(4.18) 24 32AF = A2
G and 210 36DF = B2

GDG.

Thus using (4.16) and (4.17), we can derive a more explicit version of the syzygy of Proposition
2 if we assume that −F is a Hessian.

Proof of Theorem 3. Assume now that in addition to −F being the Hessian of G we have
AF = 0. By (4.18) we know that AG = 0 and using (1.3) therefore

D2
G = −28 33DF .

Note that this identity implies that 3|DF . By Proposition 2 we get for f1, f2 from (4.15) the
identity

G(−f1(x, y), f2(x, y)) = −3G(x, y)F 2(x, y),

for we know that BG 6= 0.
Since we are assuming that F is primitive, from (1.4) we see that either G is primitive,

which happens exactly when not both a1 and e1 are even, or the gcd of its coefficients is 2.
This completes the proof. �

Remark. It is interesting to apply the identity of Proposition 2 to the pair of binary cubic
forms (f1, f2), where the first form f1 = (a, b, c, d) has non-zero discriminant D = Df1 (as
computed in (4.1)), but otherwise is arbitrary and the second f2 is the cubic covariant of f1.
Explicitly,

f2 = (−2b3 + 3abc− a2d,−b2c+ 2ac2 − abd, bc2 − 2b2d+ acd, 2c3 − 3bcd+ ad2).

The Hessian of f1 is

Hf1 = [ac− b2, ad− bc, bd− c2].

The discriminant of Hf1 is −D. A calculation shows that

(4.19) Df1,f2(x, y) = DQ2(x, y),

where Q(x, y) = x2 +Dy2. The Jacobian of (f1, f2) is

Jf1,f2 = −2H2
f1
.

Now Proposition 2 and (4.19) give, after computing the Hessian of H2
f1

, the identity

Q(−f2(x, y), f1(x, y))2 = 16Hf1(x, y)6.

By combining this with a single evaluation, we see that the identity of Proposition 2 reduces
to the classical identity of Eisenstein [4, §5, eq. 1 ] and Cayley [2]:

f 2
2 +Df 2

1 = −4H3
f1
.

This identity was used by Mordell [8] [9] to characterize all of the proper representations of
cubes by the principal form x2 +Dy2 when 4|D.

Acknowledgement: I am grateful to the referee for providing some needed corrections.
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