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Abstract

Let E be an elliptic curve defined over Q. Suppose that f(x) is any positive function
tending to infinity with x. It is shown (under GRH) that for almost all p, the group of
Fp-points of the reduction of E mod p contains a cyclic group of order at least p/f(p).

Presque toutes les réductions mod p d’une courbe elliptique sur Q ont un groupe de points qui
est presque cyclique.

Abstract

Soit E une courbe elliptique sur Q. Soit f(x) une fonction réelle positive tendant vers
l’infini. Nous montrons (sous GRH) que, pour presque tout p, le groupe des Fp-points de la
réduction de E mod p contient un groupe cyclique d’ordre au moins p/f(p).

Introduction

Let E be an elliptic curve defined over Q. For a prime p of good reduction for E the reduction
of E modulo p is an elliptic curve Ep defined over the finite field Fp with p elements. The finite
abelian group Ep(Fp) of Fp-rational points of Ep has size

#Ep(Fp) = p + 1− ap, (1)

where |ap| < 2
√

p, and structure

Ep(Fp) ' (Z/dpZ)⊕ (Z/epZ), (2)

for uniquely determined positive integers dp, ep with dp|ep. Here ep is the size of the maximal
cyclic subgroup of Ep(Fp), called the exponent of Ep.

Schoof [Sc] initiated the study of ep as a function of p. It is immediate from (1) and (2) that√
p � ep � p. If E has no complex multiplication (CM) he showed by an elegant argument that

ep �
log p

log log p

√
p.
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He also observed that this is likely to be false if E has CM. For example, for a prime of the
form p = (4n)2 + 1 the CM curve E given by y2 = x3 − x has ep = dp = 4n =

√
p− 1. It is

conjectured that there are infinitely many such p, but of course these anomalous primes may
only occur rarely.

In this note I will show that ep is much larger for almost all p. Recall that a statement holds
for almost all primes if the number of exceptional primes p ≤ x for which it does not hold is
o(π(x)) as x →∞. As usual, π(x) is the number of all primes ≤ x. To obtain the optimal result
in the non-CM case we assume the generalized Riemann hypothesis (GRH) for Dedekind zeta
functions.

Theorem 1 Let E be an elliptic curve defined over Q. If E does not have CM assume GRH.
Let f(x) be any positive function on [2,∞) that tends to infinity with x. Then the exponent ep

of Ep satisfies ep > p/f(p) for almost all p.

This result is optimal in the sense that it is not true for bounded f (see the statement below
(10)). Unconditionally we are able to show that

ep > p3/4/ log p (3)

for almost all p (see the discussion above (9)).
For the proof of Theorem 1 we exploit the obvious fact that for any sequence of positive

integers dp the number of primes p ≤ x with dp > y is bounded from above by
∑

n>y πn(x),
where

πn(x) = #{p ≤ x : dp ≡ 0 (modn)}. (4)

For dp defined in (2), πn(x) counts split primes in the n-th division field of E and we are reduced
to estimating the number of such primes from above in various ranges of n. For large enough
n this is done using known properties of the Frobenius automorphism for a division field. For
CM curves we also handle small n unconditionally using the Brun-Titchmarsh theorem in the
associated quadratic field. To treat small n for non-CM curves we apply a strong version of the
Chebotarev theorem that is conditional on GRH.

Reduction

From now on assume that p denotes a prime > 3 of good reduction for a fixed elliptic curve E
defined over Q. In order to prove Theorem 1 it is sufficient to show that as x → ∞ we have
#{p ≤ x : dp > f(p)/3} = o(π(x)), where dp is defined in (2). For this it is enough to prove that
as x →∞

#{x/ log x ≤ p ≤ x : dp > g(x)} = o(x/ log x),

where g(x) = 1
3 inf{f(y) : x/ log x ≤ y ≤ x}. Clearly g(x) →∞ as x →∞. Set for x ≥ 3

S(x) =
∑

g(x)<n≤2
√

x

πn(x), (5)

where πn(x) is defined in (4). Obviously #{x/ log x ≤ p ≤ x : dp > g(x)} ≤ S(x) and so it is
sufficient to prove that S(x) = o(x/ log x) as x →∞.

Let E[n] denote the group of n-division points of E and Ln := Q(E[n]) be the nth division
field of E. Then Ln/Q is a finite Galois extension whose Galois group Gn is a subgroup of
Aut(E[n]) ∼= GL2(Z/nZ). It is clear that p splits completely in Ln exactly when dp ≡ 0 (modn).
The ring of endomorphisms EndFp(Ep) of Ep over Fp is an order in the imaginary quadratic field
Q((a2

p − 4p)
1
2 ) of discriminant ∆p. Define bp ∈ Z+ by

4p = a2
p −∆pb

2
p (6)
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and consider the (integral) matrix

σp =

(
ap+bpδp

2 bp
bp(∆p−δp)

4
ap−bpδp

2

)
, (7)

where δp is 0 or 1 according to whether ∆p ≡ 0 or 1 (mod 4). Then, as shown in [DT], for an
integer n such that p - n, the matrix σp reduced modulo n represents the class of the Frobenius
over p for Ln. In particular, if p splits in Ln then bp ≡ 0(modn) and ap ≡ 2(modn). We then
have immediately from (6) that for n ≤ 2

√
x

πn(x) � x3/2n−3. (8)

In fact, this estimate may be improved a little by applying the Brun-Titchmarsh theorem, but
we will not need this improvement here.

Let h(x) = 1
4 (x log3 x)1/4. Summing (8) over the range h(x) ≤ n ≤ 2

√
x shows that, with the

possible exception of at most O(x log−3/2 x) values of p, Ep(Fp) contains points of order at least
p3/4/ log p, thus justifying the second statement after Theorem 1 above.1 Toward the proof of
Theorem 1, we also derive for S(x) from (5) that

S(x) =
∑

g(x)<n<h(x)

πn(x) + O(x log−3/2 x). (9)

This leads us to the problem of estimating πn(x) for smaller values of n, where we must distinguish
between the CM and non-CM cases.

CM

We now complete the proof of Theorem 1 in the CM case.
Suppose that E has CM by an order O of discriminant ∆ = m2∆K in the imaginary quadratic

field K = Q(
√

∆K) of discriminant ∆K . If p is supersingular, so ap = 0, then either dp = 1 or
dp = 2. Otherwise we have that ∆p = ∆ and from (6)

4p = a2
p −∆b2

p = a2
p −∆K(mbp)2.

It follows easily from (7) and the discussion following it (or from the classical theory of complex
multiplication) that for n > 2

πn(x) ≤ #{p ≤ x : p = N(ρ) for some ρ ∈ OK with ρ ≡ 1 (modn)}.

The Brun-Titchmarsh theorem is readily generalized to the fixed number field K and its ray class
group modn, which has size

#(OK/nOK)× = n2
∏
p|n

(1− p−1)(1− χK(p)p−1) ≥ φ(n)2,

where χK is the quadratic character of K and φ is the Euler function. This is carried out in [HL]
and gives, in particular when n < h(x) = 1

4 (x log3 x)1/4, that

πn(x) � x

φ(n)2 log x
.

1After seeing a previous version of this note, I. Shparlinski pointed out to me that an immediate extension of
the proof of (8) yields the estimate #{p ≤ x : there exists a curve over Fp with dp ≡ 0 (mod n)} � x3/2n−3. This
shows that, for almost all p, the group of Fp-points of every elliptic curve defined over Fp contains points of order
at least p3/4/ log p.
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This finishes the proof of Theorem 1 in the CM case since in (9)∑
g(x)<n<h(x)

πn(x) � g(x)−1+ε(x/ log x) = o(x/ log x)

for any ε > 0, as x →∞.

Non-CM

In the non-CM case we must at this point apply the (conditional) Chebotarev theorem in order
to bound πn(x) in the range g(x) < n < h(x). The ordinary Chebotarev theorem applied to the
Galois extension Ln/Q implies that

πn(x) ∼ 1
|Gn|π(x) (10)

as x → ∞. This is certainly enough to conclude that for any fixed n ∈ Z+ we have ep ≤ (2/n)p
for a positive proportion of p, justifying the first statement after Theorem 1 above.

To obtain a strong uniform estimate we assume GRH for the Dedekind zeta functions for Ln.
Assuming this, we have the following useful conditional version (see (20R) p.134. of [Se2]):

πn(x) = 1
|Gn|π(x) + O(x

1
2 log(xnN)),

where the implied constant is absolute and N is the conductor of E. It follows that to finish the
proof of Theorem 1 it is sufficient to show that∑

g(x)<n<h(x)

|Gn|−1 = o(1)

as x → ∞. This is deduced immediately from Serre’s result [Se1] that in the non-CM case the
index of Gn in GL2(Z/nZ) is bounded in n and the well known formula

# GL2(Z/nZ) = n4
∏
`|n

` prime

(1− `−1)(1− `−2).
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H. E. S., no. 54 (1981), 123–201, also in Collected papers, volume III, Springer-Verlag, 1985.

4


