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1. Introduction

Among the arithmetically most interesting L-functions are those of Artin
associated to Galois representations. Unfortunately, they are also among
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the least understood analytically. Given a Galois extension of number fields
L/K with Galois group G and a complex representation ρ of G the Artin
L-function L(s, ρ) of ρ is a product over primes of K of local factors which,
at unramified primes p of K , have the form

det
(
1− ρ(φp)N(p)−s

)−1

whereφp is any Frobenius element over p. The complete L-functionΛ(s, ρ),
which includes gamma factors from the infinite places, is known to be
meromorphic and satisfy the functional equation

Λ(1− s, ρ̄) = εDs− 1
2Λ(s, ρ)

where ρ̄ is the contragredient of the representation ρ, D is a positive
integer (the conductor) and |ε| = 1. The degree of L(s, ρ) is given by
n = dim(ρ)[K : Q] and, using induced characters, L(s, ρ) may always be
realized over Q by a representation of dimension n. In this case the deter-
minant character det(ρ) induces, via class field theory, a Dirichlet character
χ defined modulo D.

Artin’s conjecture that L(s, ρ) is entire unless ρ contains the trivial rep-
resentation, is known only in special cases. Assuming its truth, the convexity
principle of Phragmen-Lindelöf gives the bound

L(s, ρ)�ε,s D
1
4+ε

for Re(s) = 1
2 , while the Lindelöf hypothesis, itself a consequence of the

GRH for L(s, ρ), would replace the 1
4 by 0. The subconvexity problem for

L(s, ρ) of interest here is to replace 1
4 by 1

4 − δ for some absolute constant
δ > 0.

Artin L-functions of degree one over Q are Dirichlet L -functions mod-
ulo D (by the Kronecker-Weber Theorem) and the subconvexity problem
was solved by Burgess in 1962. Direct arithmetic applications involve prop-
erties of the group (Z/DZ)∗ for large D, a notable example being to estimate
the smallest primitive root modulo D, when D is prime. In this paper we
shall obtain subconvexity estimates for those Artin L-functions of degree
two overQwhich are known to be entire, provided that the conductors of the
representation and its determinant coincide. After Artin, Hecke, Langlands
and Tunnell, degree two Artin L-functions are known to be entire except
possibly for icosahedral ρ. By class field theory, those L(s, ρ)with dihedral
ρ overQ are Hecke L–functions of a quadratic field. In particular, we solve
the subconvexity problem for Hecke L-functions associated to class group
characters of quadratic fields. In analogy to the degree one case we give
applications to the class group, including the distribution of generators of
small index cyclic subgroups.

It was conjectured by Langlands that every Artin L-function of degree
n comes from an automorphic representation of GL(n). For degree two L-
functions this is known except in the icosahedral case and forms the basis for
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our approach, which is to apply the amplification method and take advantage
of the orthogonality of neighboring automorphic forms. Our analysis makes
use of the whole spectrum and we simultaneously obtain subconvexity
estimates for all associated automorphic L-functions. In particular, the use of
neighboring Maass forms appears to be indispensable for obtaining general
subconvexity estimates for Hecke L-functions of a quadratic field, at least
using presently known techniques. For a survey with references on the
general subconvexity problem for L-functions see [IS].

We first succeeded in obtaining a subconvexity bound for Hecke L–
functions associated to class group characters of imaginary quadratic fields
in [DFI4] but not for every discriminant. For example, we were able to
give results when the discriminant has no large prime factors. The method
involves the consideration of weighted averages over the characters of the
class group. If the class group is small then there are few of these and it
should be expected to be difficult to average over them. Actually the class
number is never small, but ineffectively so, as shown by Siegel, and the
problem remains difficult. In the method of [DFI4] it manifests itself in that
we require the existence of many small splitting primes, a problem closely
related to the class number problem but even more poorly understood.

The class group L–functions for imaginary quadratic fields correspond to
automorphic forms of weight one. In general, if the weight exceeds one, the
space of holomorphic cusp forms is isolated from the rest of the spectrum and
is sufficiently large that we were able to carry out our arguments within this
space. This was accomplished in [DFI3] for forms with trivial nebentypus
and in the more difficult case of primitive nebentypus, real or complex, in
[DFI7]. The space for weight one is much smaller and it is expected only to
be essentially the same size as the class group itself (see the conjecture of
Serre [Se], and also [Du]). Fortunately, when considered within the space of
all Maass forms, it again becomes part of a much larger family. Furthermore,
we may also seamlessly treat the real quadratic Hecke L-functions, which
also correspond to the bottom of the continuous spectrum but for weight
zero, as well as treating other Artin L-functions. Note that for real quadratic
fields the class number is expected to frequently be small so for these an
extension of the earlier method of [DFI4] seems hopeless.

Among the new difficulties that arise in treating the problem in the
context of automorphic L–functions, two of these appeared to be quite
serious and merit specific mention here. The first of these is related to
a counting problem for a determinant equation with general integer entries
and this in turn requires the estimation of exponential sums of Kloosterman
type. These results, which were given in [DFI6], [DFI5], were completely
motivated by the current project (although they do have other applications).

In addition to the above-resolved difficulty, we are faced with the ap-
pearance of the Eisenstein series (because we are at the bottom of the con-
tinuous spectrum). The starting point is a summation formula of Petersson-
Kuznetsov type which relates sums of Fourier coefficients of automorphic
forms over the spectrum with sums of Kloosterman sums on the other side.
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Our problem reduces eventually to deducing from the formula that the con-
tribution from the cuspidal spectrum is small. We are hampered in this by
the large contribution now coming from the continuous spectrum. Of course
another large contribution must occur on the Kloosterman sum side of the
formula. Indeed we were able to identify such a contribution as coming from
the determinant equation in the singular case. However, to show that these
large contributions match and therefore cancel (up to an admissible error)
proved to be a considerable difficulty. This matching is not of a precise
combinatorial nature but occurs in Sect. 13 only after both sides are trans-
formed, in Sects. 11 and 12 respectively, by means of harmonic analysis on
the relevant character sums.

This paper completes a project which has stretched over several years.
During this time we have benefited on many occasions from helpful con-
versations with and encouragement from P. Michel and P. Sarnak. We are
happy to acknowledge them here.

2. Statement of results

Now we proceed to a description of the main theorems. The first of these,
from which the rest will follow, may sound a little technical but we wish to
describe precisely what we have proved.

Our principal target is the L–function

L j(s) =
∞∑
1

λ j(n)n
−s =

∏
p

(
1− λ j(p)p

−s + χ(p2)p−2s
)−1

(see Sect. 8) associated to a Hecke–Maass cusp form u j(z) (see Sects. 4
and 6).

We begin by defining

σF(n, χ) =
∑

n1n2=n

F(n1, n2)χ(n2) (2.1)

where F is a smooth function, see (11.1). We shall refer to F as a bit
function and think of σF as the multiplicity of terms in the Dirichlet series
for |L j(s)|2. Therefore |L j(s)|2 is built out of pieces of type

Nj =
∑

n

λ j(n)σF(n, χ) (2.2)

where the pieces which are significant for breaking the convexity bound
come from those ranges in which n is near

√
D.

Theorem 2.1. Let k � 0 and χ an arbitrary primitive character of conduc-
tor D with χ(−1) = (−1)k. Let {u j} be the complete system of Hecke-Maass
cusp forms of weight k, level D, and character χ with corresponding Hecke
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eigenvalues λ j(n) and Laplace eigenvalue λ j = 1
4 + t2

j . Let � � 1 be an
integer and T � k + 1. We have

∑
|t j |�T

λ j(�)
∣∣ Nj

∣∣2� DX1 X2√
�

P10T 17{1+ �4 X10−θD−5}Xε (2.3)

for any ε > 0 and the implied constant depends on k and ε. Here θ = 1
1152 ,

P, X1, X2 are defined in (11.1) and X = X1 + X2 +
√

D .

The above should, in view of the previous comment, be thought of as
representative of an upper bound for the more natural sum∑

|t j |�T

λ j(�)
∣∣ L j(s)

∣∣4 .
In fact a result of this type could have been derived but the complications
would be even greater and the result would be of no extra value for our
purpose.

The key feature in (2.3) is that the variation in sign of λ j(�) produces
a cancellation �− 1

2 which is best possible. By means of the best possible
bound for the simpler sum

∑ |L j(s)|4 one would obtain the convexity bound
and nothing better.

Out of the λ j(�) we build our amplifier.

Theorem 2.2. For any complex numbers c�, 1 � � � L, we have∑
|t j |�T

∣∣ ∑
��L

c�λ j(�)
∣∣2 ∣∣ Nj

∣∣2
� DX1 X2 P10T 17

(
1+ L4 D−5 X10−θ) ‖c‖2 Xε

(2.4)

where ‖c‖ is the �2–norm of {c�}.
As before this may be thought of as representing an upper bound for the

corresponding sum with the fourth power of |L j(s)|. In this case however,
because of positivity, such a result can be given without much extra work
at all. Since we do not apply this result we omit the proof. For Re s = 1

2 we
have ∑

|t j |�T

∣∣ ∑
��L

c�λ j(�)
∣∣2 ∣∣ L j(s)

∣∣4

� ‖c‖2|s|20T 37(1+ L4 D−
θ
2
)
D1+ε .

(2.5)

From an appropriate choice of the amplification coefficients c�, see
Sect. 21, we derive from Theorem 2.2 a bound for the individual sums Nj
with general bit function F.
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Theorem 2.3. For any F satisfying (11.1) we have

Nj � P5(|t j | + 1)9(DX1 X2)
1
2+ε

{
D−

1
2 (X1 + X2)

1− θ
10 + D−5(X1 + X2)

10−θ + D−
θ
20
} 1

2

where the implied constant depends on k and ε.

Using the approximation formula (9.7) for L j(s) we derive our main
result.

Theorem 2.4. Let k � 0 be an integer and χ(modD) an arbitrary primi-
tive character with χ(−1) = (−1)k. Let u j(z) be a Hecke-Maass cusp form
of weight k for the group Γ0(D), character χ and with Laplace eigenvalue
λ j = 1

4 + t2
j . Then the associated L–function satisfies

L j(s)�
(|t j | + |s|

)10
D

1
4− 1

23041

for Re s = 1
2 , where the implied constant depends only on k.

This result, apart from the smaller saving in the exponent, contains the
corresponding bounds from both [DFI4] and [DFI7].

After Artin, Hecke, Langlands and Tunnell, degree two Artin L-functions
are known to be automorphic, hence entire, except possibly for icosahe-
dral ρ. Taking k = 0 or 1 and λ j = 1

4 we infer the following.

Theorem 2.5. Let L(s, ρ) be an Artin L-function of degree two over Q not
of icosahedral type with conductor D such that the determinant character
χ is primitive modulo D. Then L(s, ρ) satisfies for Re s = 1

2

L(s, ρ)� |s|10 D
1
4− 1

23041 ,

where the implied constant is absolute.

It is conjectured that the icosahedral Artin L-functions are automorphic,
in which case this estimate holds for them as well. Note that for reducible
ρ a better estimate follows since the L-function then factors as a product of
two Dirichlet L-functions (Kronecker’s decomposition).

Let K be a quadratic field with discriminant d. Let Cl(K ) be the (narrow)
class group of K and ψ be a character of Cl(K ). It is known that the
determinant character corresponding toψ is the quadratic field character χd
with conductor |d|whose values are given by the Kronecker symbolχd (a) =
(d/a) (see [Se], p. 239.). We deduce from Theorem 2.5 the following result.

Theorem 2.6. Let ψ be a character of Cl(K ) and

L K (s, ψ) =
∑
a

ψ(a)N(a)−s
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the corresponding L–function. We have for Re s = 1
2

L K (s, ψ)� |s|10|d| 1
4− 1

23041 ,

the implied constant being absolute.

A similar estimate also holds for a general Hecke L-function with a ray
class character on K , provided that the associated determinant character is
primitive.

We now turn to some applications of Theorem 2.6 to the class group. The
first one is best introduced using the language of integral binary quadratic
forms Q(x, y) = ax2 + bxy + cy2. It is classical that if Q is primitive with
discriminant d = b2 − 4ac then Q represents a positive integer � |d| 1

2

with an absolute constant. This is in general best possible for both negative
and positive d. For negative d one considers the forms nx2 + (n + 1)y2

while for positive d the Markoff forms [M] only represent positive integers
> 1

3 |d|
1
2 for an infinite set of d > 0. A. Baker and A. Schinzel [BS] treated

the problem of improving the estimate when one considers genera of forms
instead of classes. They were able to show that every genus of primitive
forms represents a positive integer �ε |d| 3

8+ε for all ε > 0. The implied
constant is ineffective since Siegel’s theorem is employed. Genera may be
analyzed using real characters and the proof of this estimate relies on the
Burgess GL(1) subconvexity bounds (the exponent 3

8 was subsequently
reduced to 1

4 in [H-B]).
This problem can be considered as a special case of a more general

question which asks for a non-trivial upper bound for the smallest positive
integer represented by every coset of an arbitrary quotient group of the class
group, provided that the quotient group is not too large. The quotient of
genera is very small, having size which is� |d|ε for any ε > 0.Theorem 2.7
below provides a non-trivial upper bound provided that the quotient group
has size� |d| 1

23041 . For this result the full GL(2) theory is needed.
It is more convenient to use the language of ideals and we shall in fact

give a slightly more refined result which is interesting also for the coset
containing the principal class. Recall that an ideal a of K is primitive if it
is not divisible by any rational integer > 1. Let G be a quotient group of
Cl(K ) of size |G|. Our first application shows that sufficiently large cosets
of the class group will always contain primitive ideals of small norm.

Theorem 2.7. Every element of a quotient group G of C l(K ) contains prim-
itive ideals having norm> 1 and� |G|2|d| 1

2− 1
11521 . The implied constant is

ineffective.

Turning now to questions about the structure of Cl(K ), it follows easily
along the same lines as the proof of Theorem 2.7 that Cl(K ) is generated by
all of the primes of K with norm � |d| 1

2− 1
11521 since every nontrivial class

character ψ must satisfy ψ(a) �= 1 for some N(a) � |d| 1
2− 1

11521 , again with
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an ineffective constant. A more refined application may be given which is
somewhat analogous to bounding the smallest primitive root. It concerns
the distribution of generators of a cyclic subgroup of Cl(K )which has small
index in Cl(K ).

Theorem 2.8. Every cyclic subgroup of Cl(K ) of index k may be generated
by an ideal of norm � k2|d| 1

2− 1
11521 , the implied constant being ineffective.

After Gauss, Art. 306 of [Ga], a discriminant d is said to be regular if
the principal genus of Cl(K ) is cyclic. It follows from Theorem 2.8 that the
principal genus of a regular discriminant d may be generated by an ideal
of norm � |d| 1

2− 1
11522 .

These results are most interesting if Cl(K ) is large. For negative d this is
always the case. For positive d this seems not to be the case (though proofs
are lacking) but certainly it is true for many d. Some extreme examples
are provided by certain quadratic sequences such as the squarefree d of
the form 4n2 + 1 in which case this “class number” satisfies |Cl(K )| �
d

1
2−ε. Although the existence of infinitely many regular discriminants is not

known, the numerical evidence supports the existence of a large positive
proportion of regular discriminants among the negative discriminants [Bue].
In fact, it has been conjectured in [Ge] that the proportion of regular to all
negative discriminants is (ζ(6)

∏
n�4 ζ(n))

−1 ≈ .8469.

3. Structure of the paper

Now we describe the structure of the paper. In Sect. 4 we give a fairly
extensive review of the spectral theory of automorphic forms in the gen-
erality that is required for this work. This theory in full generality is due
to Maass and Selberg and their original papers [Ma1], [Ma2], [S1], [S2]
are still valuable references where many proofs can be found. The papers
[Ro] are also recommended as are the books [He], [I2], [I3]. In our case
we restrict to the Hecke congruence group Γ0(D) and automorphic forms
with multiplier given by a primitive Dirichlet character χ mod D. The fact
that the conductor of the character coincides with the level of the group
makes the theory particularly elegant and yet still allows us to treat the
most interesting Artin L-functions, namely those associated to class group
characters. For needed background on the theory of Artin L-functions we
refer to [Se].

In Sect. 5 we present the summation formula of Petersson-Kuznetsov
type which is our starting point. Since there is no easy reference for the
formula that is needed (see however the preprint [Pr]), we present complete
details.

It is essential for our amplification method that the Fourier coefficients of
the automorphic forms be multiplicative. Hence we need to choose the basis
of primitive forms (newforms in the terminology of Atkin-Lehner [AL]).
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The requisite theory of Hecke operators is presented in Sect. 6. That in turn
leads us to a reformulation, in Proposition 6.1, of the summation formula
in which the Fourier coefficients are replaced by Hecke eigenvalues.

The Hecke eigenvalues of Maass cusp forms are very poorly understood.
On the other hand the corresponding eigenvalues of Eisenstein series can
be explicitly computed. In Sect. 7 we provide such computations. The fact
that we can do so is essential to the work because we need to match the
dominant contribution of these series to the summation formula. By contrast
the contribution to this formula from the cusp forms is small, as we shall
prove, so luckily we don’t require the analogous computations for these. The
Fourier coefficients of the Eisenstein series are proportional to the Hecke
eigenvalues. This constant of proportionality must also be evaluated; see
Proposition 7.1.

We shall also require a result for the analogous proportionality factor
between the Fourier coefficients and the Hecke eigenvalues of the cusp
forms. This turns out to be given in terms of the symmetric square L–
functions. It suffices to have a lower bound (7.16) for the former and as
a result we need an upper bound for the latter. The proofs of these are
postponed to Sect. 19 just before their application is required.

In Sects. 8 and 9 we introduce various L–functions associated with
Maass forms and derive some of their basic properties, in particular their
functional equations and the resultant approximation formulae (referred to
in the literature as approximate functional equations). These formulae allow
us to reduce the L–function to partial sums of length � D

1
2+ε.

At this point we have a spectral summation formula for each pair of
Hecke operators Tm , Tn. However we are not able to separate out the main
terms in the formula and see that they match. Indeed although on the spectral
side we do know that the cusps at ∞ and 0 are clear suspects, on the
Kloosterman sum side we cannot even see a likely candidate. In fact it is
only after Fourier analysis with respect to one of the variables, say n, that
such a candidate will emerge.

In Sect. 10 we consider an average of our summation formula over the
variable n, followed by an application of Poisson-Voronoi summation. We
don’t have an immediate gain from this operation because the resulting dual
variable, say n′, is more or less in the same range as n. However the Klooster-
man sums Sχ(m, n; c) collapse to Gauss-Ramanujan sums Sχ(m − n′, 0; c).
Now it is possible to point out the main contribution which will come from
the singular term n′ = m. It is worthwhile to emphasize that this collapse
of the Kloosterman sum does not occur in general but rather because we
have weighted the summation over n by a special arithmetic function (see
(10.1)) which is relevant to the main goal. On the spectral side, by the same
summation over n we obtain, without any transformation, sums Nj , Na(t)
(see (10.2), (10.3)) which correspond to the cusp forms and Eisenstein series
respectively.

In Sect. 11 we evaluate asymptotically Na(t) for each singular cusp a.
We find that Na(t) is small unless a ∼ ∞ or 0 and in those two cases
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we get an equal contribution; see (11.5). In obtaining these results the
Burgess subconvexity bound [B2] for Dirichlet L–functions is required. The
contribution of the Eisenstein series associated to cusps other than∞ and 0
is shown to be negligible by means of the Burgess bound whereas for these
two cusps the bound is again required, now to separate out a manageable
main term which occurs in the form of a definite integral in several variables.

Having completed the computation of N∞(t), N0(t) (and hence of the
spectral side) we turn in Sect. 12 to the analogous evaluation of the singular
determinant contribution, see (12.1). Here the Gauss-Ramanujan sum col-
lapses further to the Euler function ϕ(c). We need to perform the summation
over this modulus c in order to make the asymptotic evaluation. To this end
we apply the Euler-Maclaurin formula. Once again, as on the other side of
the formula, the Burgess subconvexity bound is required since, in separat-
ing out the leading term from the singular determinant contribution, short
character sums need to be estimated. This leading term, given by (12.9),
also occurs as a definite integral in several variables but there is no clear
similarity between the two.

In Sect. 13 we finally prove that the main terms from Sects. 11 and 12
coincide, without ever evaluating either one.

In Sect. 14 we input the above results into the summation formula
freeing the latter from the main terms. The new formula contains, apart
from error terms, cuspidal terms on the one side and non-singular Gauss-
Ramanujan sums on the other. At this point it closely resembles in structure
the Petersson formula for the subspace of holomorphic cusp forms and as
a result our arguments from now on are close to those in [DFI7]. In that paper
we assumed k � 3. In order to avoid that assumption here, we integrate our
formula over a certain parameter r which yields better test functions and
hence improves the rate of convergence in the sum over the modulus c. This
integrated version of the summation formula is stated in Proposition 14.2.

The formula in Proposition 14.2 is still valid for each individual m � 1.
In Sect. 15 we sum over m in the same way that we summed over n so long
ago. The result is stated in Proposition 15.1 but it will take several sections
to complete its proof.

The main remaining ingredient in this proof is the determinant problem
considered in Sect. 16 which we take largely unchanged from Sect. 8 of
[DFI7]. In turn that was derived from the two papers [DFI5], [DFI6]. It
is worthwhile to note that the fundamental idea in [DFI5] is an unusual
application of the amplification method which is thus occurring not only in
our main bound but also three different times in subsidiary roles.

There are some difficulties in verifying the applicability to our problem
of the result as stated in Sect. 16. These verifications are carried out in
Sect. 17.

In Sect. 18 we combine our estimates, optimize the free parameters and
complete the proof of Proposition 15.1.

In Sect. 19 we study some properties of the Rankin–Selberg and sym-
metric square L–functions. This equips us to give proofs of two results,
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(7.16) and Proposition 19.6, on the size of the Fourier coefficients of cusp
forms, which will be needed to complete the proofs of the main theorems.

In Sect. 20 we prepare for the application of the amplification method.
This involves some computations with Hecke eigenvalues which exploit
their multiplicativity thus allowing us to separate out the amplification
variable. It is in this section that we complete the proof of Theorem 2.1.

In Sect. 21 we perform the amplification itself and derive bounds for the
individual Nj , thereby proving Theorems 2.2 and 2.3. Along the way we
have a slight problem in the non-holomorphic case due to the lack of the
Ramanujan conjectures. As a result we require Proposition 19.6. Now we
have non-trivial bounds for the sums Nj which are the building blocks for
our L–functions. We combine these with the partition in Proposition 9.7 to
deduce bounds for the L–functions themselves. As a result we complete the
proof of Theorem 2.4.

Finally, in Sect. 22, we give the proofs of the applications.

4. Background on Maass forms

In this section we collect those basic facts about Maass forms (real-analytic
automorphic forms) which are needed in this paper. Most of these are
standard and can be found in the original sources [Ma1], [Ma2], [Ro], [S1],
[S2].

The group SL2(R) acts on the upper half-planeH = {z = x + iy; x ∈ R,
y ∈ R+} by the linear-fractional transformations

γz = az + b

cz + d
, if γ =

(
a b
c d

)
.

For any γ ∈ SL2(R) we define jγ : H→ C by

jγ (z) = cz + d

|cz + d| = ei arg(cz+d) . (4.1)

Throughout k is an integer. For any γ ∈ SL2(R) we introduce the linear
operator R(k)γ defined on functions f : H→ C by(

R(k)γ f
)
(z) = jγ (z)

−k f(γz) . (4.2)

These operators satisfy R(k)γ1γ2
= R(k)γ1

R(k)γ2
for all γ1, γ2 ∈ SL2(R). A linear

operator L is said to be invariant of weight k if L commutes with R(k)γ for
every γ ∈ SL2(R).

Following Maass [Ma2] we consider two first order differential operators

Kk = k

2
+ y

(
i
∂

∂x
+ ∂

∂y

)
= k

2
+ (z − z̄)

∂

∂z
(4.3)

Λk = k

2
+ y

(
i
∂

∂x
− ∂

∂y

)
= k

2
+ (z − z̄)

∂

∂ z̄
(4.4)



500 W. Duke et al.

where ∂/∂z, ∂/∂ z̄ are the complex partial derivatives

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂ z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
.

The Maass operators of weight k are not exactly invariant, but they satisfy
the following rules

Kk R(k)γ = R(k+2)
γ Kk (4.5)

Λk R(k)γ = R(k−2)
γ Λk . (4.6)

In other words the operators Kk and Λk have effect of changing the weight
by 2 up and down respectively.

The Laplace operator of weight k is defined by

∆k = y2

(
∂2

∂x2
+ ∂2

∂y2

)
− iky

∂

∂x

= −(z − z̄)2
∂2

∂z∂ z̄
− k

2
(z − z̄)

(
∂

∂z
+ ∂

∂ z̄

)
.

(4.7)

This can be expressed in terms of Maass operators in two ways;

∆k = −Kk−2Λk − λ
(k

2

)
, (4.8)

∆k = −Λk+2 Kk − λ
(−k

2

)
, (4.9)

where

λ(s) = s(1− s) . (4.10)

Hence one derives the following commutation rules

Kk∆k = ∆k+2 Kk (4.11)
Λk∆k = ∆k−2Λk , (4.12)

and that ∆k commutes with R(k)γ for all γ ∈ SL2(R); i.e. ∆k is an invariant
operator of weight k.

A smooth function f : H→ C is an eigenfunction of∆k with eigenvalue
λ ∈ C if

(∆k + λ) f = 0 . (4.13)

We shall write the eigenvalues in the form (4.10), where s = 1
2 + it is

a complex number, and so is t. Note that λ(s) = λ(1 − s) so the map
s �→ λ(s) covers C twice except for λ

(
1
2

) = 1
4 .

Since∆k is an elliptic operator its eigenfunctions are real-analytic. Sup-
pose f is an eigenfunction of ∆k with eigenvalue λ. Then
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– Kk f is an eigenfunction of ∆k+2 with eigenvalue λ,
– Λk f is an eigenfunction of ∆k−2 with eigenvalue λ.

For a smooth function f on H we have the following facts:

– Kk f = 0 if and only if yk/2 f̄ (z) is holomorphic in z. In this case f is an
eigenfunction of ∆k with eigenvalue λ(−k/2),

– Λk f = 0 if and only if y−k/2 f(z) is holomorphic in z. In this case f is
an eigenfunction of ∆k with eigenvalue λ(k/2).

There is a vast variety of eigenfunctions of ∆k with eigenvalue λ. Some
of them which satisfy special transformation rules can be solved by the sep-
aration of variables method. The results, of course, depend on the coordinate
system being used. For Fourier analysis of automorphic forms the rectangu-
lar coordinates z = x + iy are most suitable. For example, if we seek f(z)
which depends only on y we find two linearly independent solutions

f +(z, s) = 1

2

(
ys + y1−s

)
(4.14)

f −(z, s) = 1

2s − 1

(
ys − y1−s

)
(4.15)

(for s = 1
2 these solutions are

√
y and

√
y log y respectively). If we want

f(z) to be periodic in x of period 1 we may set f(z) = e(±x)W(2πy) and
find that W(y) satisfies the ordinary differential equation

W ′′(y)+ (λy−2 ± ky−1 − 1
)

W(y) = 0 . (4.16)

There are two linearly independent solutions, the first of which decays
exponentially while the second one grows exponentially as y → ∞. The
first solution is given by the Whittaker function Wα,β(2y) with α = ± k

2 and
β = s − 1

2 , the corresponding Laplace eigenfunction being

f +k (z, s) = W k
2 ,s− 1

2
(4πy)e(x), (4.17)

f −k (z, s) = W− k
2 ,s− 1

2
(4πy)e(−x) . (4.18)

For any α, β ∈ C the Whittaker function Wα,β(y) satisfies

Wα,β(y) ∼ yαe−y/2 if y →∞ .

We have

e−y/2Wα,β(y) = 1

2πi

∫
(σ)

Γ(u − β)Γ(u + β)
Γ
(
u − α+ 1

2

) y
1
2−udu (4.19)

where σ > |Reβ|. Notice that Wα,β(y) is holomorphic in both of the
parameters α, β and is even in β. For Re

(
β − α+ 1

2

)
> 0 we have the

integral representation

Wα,β(y) = yαe−y/2

Γ
(
β − α+ 1

2

) ∫ ∞

0
e−t tβ−α+

1
2

(
1+ t

y

)β+α− 1
2
dt . (4.20)
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In particular for β = α− 1
2 we get

Wα,α− 1
2
(y) = yαe−y/2 . (4.21)

Hence we obtain by (4.17) and (4.18)

f +k
(

z,
k

2

)
= y

k
2 e(z), (4.22)

f −k
(

z,−k

2

)
= y−

k
2 e(−z̄), (4.23)

which are eigenfunctions of ∆k for eigenvalues λ
(

k
2

)
and λ

(− k
2

)
respec-

tively.
For any α, β ∈ C the Whittaker functions satisfy the differential recur-

sion formulae (see (9.234) of [GR])

yW ′
α,β(y) =

(
α− 1

2 y
)

Wα,β(y)

+
(
α− β − 1

2

)(
α+ β − 1

2

)
Wα−1,β(y)

= −
(
α− 1

2 y
)

Wα,β(y)−Wα+1,β(y) .

(4.24)

Hence we deduce that the Maass operators (4.3), (4.4) act on the eigenfunc-
tions (4.17), (4.18) as follows:

Kk f +k (z, s) = − f +k+2(z, s), (4.25)

Kk f −k (z, s) =
(

s + k

2

)(
1− s + k

2

)
f −k+2(z, s), (4.26)

and

Λk f +k (z, s) = −
(

s − k

2

)(
1− s − k

2

)
f +k−2(z, s), (4.27)

Λk f −k (z, s) = f −k−2(z, s) . (4.28)

The same equations hold if one replaces z by az for any constant a > 0.
Also notice that

Kk ys =
(k

2
+ s

)
ys, (4.29)

Λk ys =
(k

2
− s

)
ys . (4.30)

One may write the factors in (4.26) and (4.27) in terms of the corresponding
eigenvalues as follows:(

s + k

2

)(
1− s + k

2

)
= λ(s)− λ

(
−k

2

)
,

−
(

s − k

2

)(
1− s − k

2

)
= λ

(k

2

)
− λ(s) .
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In this survey we consider automorphic forms with respect to the Hecke
congruence group Γ = Γ0(D) of level D � 3. This group has index

ν(D) = [Γ0(1) : Γ0(D)] = D
∏
p|D

(
1+ 1

p

)
. (4.31)

Let χ (mod D) be a primitive character such that

χ(−1) = (−1)k . (4.32)

This gives rise to a character on Γ by means of

χ(γ) = χ(d) = χ(a) (4.33)

for γ =
(

a b
c d

)
∈ Γ . A function f : H→ C which transforms by

f(γz) = χ(γ) jγ (z)
k f(z) (4.34)

for all γ ∈ Γ is called automorphic of weight k and character χ (in other
words f is an eigenfunction of R(k)γ with eigenvalue χ(γ)). We denote
Ak(Γ, χ) the linear space of such functions.

A smooth function f ∈ Ak(Γ, χ)which satisfies (4.13) is called a Maass
form. Let Ak(Γ, χ; s) denote the linear space of Maass forms with eigen-
value λ(s) = s(1− s) which also satisfy the growth condition

f(z)� yσ + y1−σ (4.35)

for z = x + iy ∈ H with some σ . These forms have the following Fourier
expansion

f(z) = ρ+ f +(z, s)+ ρ− f −(z, s)

+
∞∑

n=1

(
ρ(n) f +k (nz, s)+ ρ(−n) f −k (nz, s)

) (4.36)

where f ±(z, s), f ±k (z, s) are basic eigenfunctions of ∆k given in (4.14),
(4.15), (4.17), (4.18) and ρ+, ρ−, ρ(n), ρ(−n) are complex numbers, which
we shall call the Fourier coefficients of f(z).

By (4.5), (4.6), (4.11), (4.12) it is clear that the Maass operators Kk and
Λk map Ak(Γ, χ; s) into Ak+2(Γ, χ; s) and Ak−2(Γ, χ; s), respectively.

Let Lk(Γ, χ) be the L2–space of automorphic functions of weight k with
respect to the inner product

〈 f, g 〉 =
∫
Γ \H

f(z)ḡ(z)dµz (4.37)

where dµz = y−2dx dy is the hyperbolic measure (the SL2(R) invari-
ant measure). Let Bk(Γ, χ) be the linear space of smooth functions f ∈
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Ak(Γ, χ) such that f and ∆k f are both bounded on H. Then Bk(Γ, χ) is
a dense subspace of Lk(Γ, χ), and we take it as an initial domain for spectral
resolution of ∆k.

Clearly the Maass operators Kk and Λk map the space Bk(Γ, χ) into
Lk+2(Γ, χ) and Lk−2(Γ, χ) respectively (see (4.5) and (4.6)). Moreover, by
Green’s theorem one derives two formulas

〈 f,−∆kg 〉 = 〈 Kk f, Kkg 〉 + λ
(
−k

2

)
〈 f, g 〉

= 〈Λk f,Λkg 〉 + λ
(k

2

)
〈 f, g 〉

(4.38)

for every f, g ∈ Bk(Γ, χ). Either formula shows that ∆k is symmetric on
Bk(Γ, χ), that is

〈∆k f, g 〉 = 〈 f,∆kg 〉 . (4.39)

Moreover from both formulas one sees that−∆k is bounded from below by
λ
( |k|

2

)
, that is

〈 f,−∆k f 〉 � λ
( |k|

2

)
〈 f, f 〉 (4.40)

for every f ∈ Bk(Γ, χ). Therefore by a theorem of Friedrichs the operator
−∆k admits a self-adjoint extension (which we also denote by −∆k), and
by a theorem of von Neumann the space Lk(Γ, χ) has a complete spectral
resolution with respect to −∆k.

We proceed to a description of the spectral theory in practical terms
which is due to Maass and Selberg. It is illuminating to begin with the
Eisenstein series. Let a be a cusp for Γ = Γ0(D) and

Γa = {γ ∈ Γ ; γa = a} (4.41)

the stability group. There exists σa ∈ SL2(R), unique up to translation on
the right, such that

σa∞ = a , σ−1
a Γaσa = Γ∞ (4.42)

where Γ∞ =
{
±
(

1 b
1

)
; b ∈ Z

}
is the stability group for the cusp at ∞.

The group Γa is generated by two parabolic elements ±γa where

γa = σa
(

1 1
1

)
σ−1
a .

The cusp a is said to be singular with respect to χ if

χ(γa) = 1 , or χ(−γa) = 1 . (4.43)
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Since χ (mod D) is primitive every singular cusp a for Γ = Γ0(D) is
equivalent to exactly one of type 1

v
with vw = D, (v,w) = 1 (the com-

plementary divisor w appears to be the width of the cusp 1
v
). Therefore the

number of inequivalent singular cusps equals 2t where t is the number of
distinct prime divisors of D (see Sect. 7 for further details).

For every singular cusp a the Eisenstein series Ea(z, s) is defined by

Ea(z, s) =
∑

γ∈Γa\Γ
χ(γ) jσ−1

a γ (z)
−k
(
Im σ−1

a γz
)s
. (4.44)

This definition is independent of the choice of a in its equivalence class
and also of the choice of σa. The series (4.44) converges absolutely for
Re s > 1 and, as proved by Selberg [S1], the function Ea(z, s) has analytic
continuation to the whole complex s–plane without poles in Re s � 1

2 . If s
is not a pole then Ea(z, s) is a Maass form with eigenvalue λ(s), but it is
not in Lk(Γ, χ).

Let ψ(y) be a smooth compactly supported function on R+. Then the
so-called incomplete Eisenstein series

Ea(z|ψ) =
∑

γ∈Γa\Γ
χ(γ) jσ−1

a γ (z)
−kψ

(
Im σ−1

a γz
)

(4.45)

is in Lk(Γ, χ), but it fails to be a Maass form (ψ(y) is not an eigenfunction
of ∆k). Nevertheless the incomplete Eisenstein series are spanned by the
Eisenstein series in the sense of continuous spectrum, this means

Ea(z|ψ) =
∑
b

1

4π

∫ ∞

−∞

〈
Ea(∗|ψ), Eb

(
z, 1

2 + it
) 〉

Eb
(
z, 1

2 + it
)
dt

where b runs over all the singular cusps. Here the integral converges abso-
lutely and uniformly on compacta.

Note that one needs all the Eisenstein series Eb
(
z, 1

2 + it
)

to represent
one incomplete Eisenstein series Ea(z|ψ). This representation extends by
linearity to the whole space of all incomplete Eisenstein series, which we
denote by E k(Γ, χ). Clearly ∆k acts on E k(Γ, χ).

Proposition 4.1. The Laplace operator∆k has purely continuous spectrum
in E k(Γ, χ) which covers

[
1
4 ,∞

)
with multiplicity equal to the number

of inequivalent singular cusps. The eigenpacket of continuous spectrum
consists of the Eisenstein series Ea

(
z, 1

2 + it
)

for singular cusps a and real t,
the spectral measure being (4π)−1dt. This means that every f ∈ E k(Γ, χ)
has the expansion

f(z) =
∑
a

1

4π

∫ ∞

−∞

〈
f, Ea

(∗, 1
2 + it

) 〉
Ea
(
z, 1

2 + it
)
dt . (4.46)
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Applying the Maass operators Kk,Λk to the Eisenstein series of weight
k (see (4.44)) one can verify term-by-term the following relations

Kk E(k)a (z, s) =
(k

2
+ s

)
E(k+2)
a (z, s) (4.47)

Λk E(k)a (z, s) =
(k

2
− s

)
E(k−2)
a (z, s) (4.48)

where the superscript displays the weight. Hence Kk : E k(Γ, χ) →
E k+2(Γ, χ) and Λk : E k(Γ, χ)→ E k−2(Γ, χ) are bijective maps.

The space E k(Γ, χ) is a rather small subspace of Lk(Γ, χ). The orth-
ogonal complement Ck(Γ, χ) consists of functions f whose zero coefficient
in the Fourier expansion at every singular cusp a vanishes, i.e. f satisfies

∫ 1

0

(
R(k)σa f

)
(z)dx = 0 . (4.49)

The Laplace operator ∆k maps Ck(Γ, χ) into itself (to be precise∆k acts on
smooth functions). An eigenfunction of ∆k which satisfies (4.49) for every
singular cusp a is called a Maass cusp form. From the Fourier expansion
one can see that a cusp form decays exponentially to zero at every cusp (not
only those which are singular). As shown by Selberg [S1] ∆k has purely
point (discrete) spectrum on Ck(Γ, χ), in other words Ck(Γ, χ) is spanned
by Maass cusp forms.

Proposition 4.2. The spectrum of ∆k on Ck(Γ, χ) is discrete and infinite,
but of finite multiplicity. Let

{
u j(z)

}∞
j=1 be a complete orthonormal system

of Maass cusp forms of weight k, the group Γ and character χ. Then every
f ∈ Ck(Γ, χ) has the spectral expansion

f(z) =
∞∑
j=1

〈 f, u j 〉 u j(z) . (4.50)

Combining Proposition 4.1 and Proposition 4.2 one obtains a complete
spectral resolution of Lk(Γ, χ) with respect to ∆k.

Let Ck(Γ, χ; s) be the linear space of Maass cusp forms of weight
k and eigenvalue λ(s). Clearly Kk : Ck(Γ, χ; s) → Ck+2(Γ, χ; s) and
Λk : Ck(Γ, χ; s) → Ck−2(Γ, χ; s). It follows from (4.38) that for f, g in
Ck(Γ, χ; s)

〈 Kk f, Kkg 〉 =
(
λ(s)− λ

(−k

2

))
〈 f, g 〉 (4.51)

〈Λk f,Λkg 〉 =
(
λ(s)− λ

(k

2

))
〈 f, g 〉 . (4.52)
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Hence Kk f = 0 ⇔ λ(s) = λ
(− k

2

) ⇔ y
k
2 f̄ (z) is holomorphic in z.

Similarly Λk f = 0 ⇔ λ(s) = λ
(

k
2

) ⇔ y−
k
2 f(z) is holomorphic in z. If

λ(s) �= λ (− k
2

)
then the map

(
λ(s)− λ

(
−k

2

))− 1
2
Kk : Ck(Γ, χ; s)→ Ck+2(Γ, χ; s)

is a bijective isometry. Similarly if λ(s) �= λ( k
2

)
then the map

(
λ(s)− λ

(k

2

))− 1
2
Λk : Ck(Γ, χ; s)→ Ck−2(Γ, χ; s)

is a bijective isometry.
Let Sk(Γ, χ) denote the space of classical cusp forms of weight k with

respect to group Γ and character χ, i.e. the space of holomorphic functions
F : H→ C which satisfy

F(γz) = χ(γ)(cz + d)k F(z) (4.53)

for every γ =
(

a b
c d

)
∈ Γ , and which vanish at every cusp. From the above

properties of Maass operators one can see that the eigenspace of ∆k with

the lowest eigenvalue λ
(
|k|
2

)
is

Ck

(
Γ, χ;−k

2

)
=
{

y−
k
2 F(z); F ∈ S−k(Γ, χ)

}
(4.54)

if k � 0, and

Ck

(
Γ, χ; k

2

)
=
{

y
k
2 F(z); F ∈ Sk(Γ, χ)

}
(4.55)

if k � 0. Note that for k = 0 we have C0(Γ, χ; 0) = 0, because there
is no holomorphic cusp form of weight zero for a non-trivial character χ
on Γ . Indeed, if F was such a cusp form then K0 F = Λ0 F = 0, hence
∂
∂z F = ∂

∂ z̄ F = 0, F = constant, so F = 0.
In a similar fashion one can determine the other eigenspaces of ∆k in

Ck(Γ, χ) for the eigenvalues λ
(

m
2

)
with m ≡ k (mod 2). They all are derived

from classical cusp forms of various weights by repeated applications of
the Maass operators.

From now on we assume that k � 0.

Proposition 4.3. Choose a system
{
u j(z)

}
of Maass cusp forms of weight k

which is an orthonormal basis of Ck(Γ, χ), the corresponding eigenvalues
being λ(s j). Moreover, choose {Fi(z)} an orthonormal basis of Sk+2(Γ, χ).
Then the collection of functions(

λ(s j)− λ
(
−k

2

))− 1
2
Kku j(z) (4.56)



508 W. Duke et al.

together with y
k+2

2 Fi(z) yield a system of cusp forms of weight k + 2 which
is an orthonormal basis of Ck+2(Γ, χ).

Remarks. Note that λ(s j) � λ
(

k
2

)
> λ

(− k
2

)
(except for k = 0, but there

is no Maass cusp form of weight k = 0 with eigenvalue zero), hence the
normalization factor of Kku j(z) in (4.56) is real. This result shows that the
space of Maass cusp forms Ck(Γ, χ) of weight k � 0 is determined by
C0(Γ, χ) or C1(Γ, χ) according to the parity of k, except for a finite number
of additional classical cusp forms which join the space as soon as k goes
over their weight.

Corollary 4.4. Let κ = 0, 1 and k � κ, k ≡ κ (mod 2). Choose a system{
u jκ(z)

}
of Maass cusp forms of weight κ which is an orthonormal basis

of Cκ(Γ, χ), the corresponding eigenvalues being λ(s j). Moreover, for any
0 < m � k, m ≡ κ (mod 2) choose

{
Fjm(z)

}
an orthonormal basis of

Sm(Γ, χ). Then, an orthonormal basis of Ck(Γ, χ) is given by the following
system of Maass cusp forms of weight k:

u jk(z) =
→∏

κ��<k
�≡κ(2)

(
λ(s j)− λ

(
−�

2

))− 1
2
K�

{
u jκ(z)

}
(4.57)

u jmk(z) =
→∏

m��<k
�≡κ(2)

(
λ
(m

2

)
− λ

(
−�

2

))− 1
2
K�

{
y

m
2 Fjm(z)

}
(4.58)

for all 0 < m � k with m ≡ κ (mod 2). The arrow indicates that the
operators K� are applied in increasing order of �. If κ = k, or m = k, the
above products stand for the identity operator, respectively.

Remarks. All of the points s j are either on the line Re s j = 1
2 or, in case

κ = 0, possibly on the segment 0 < s j < 1 . A conjecture of Selberg [S2]
asserts that the latter case does not occur.

The normalization factors in (4.57) and (4.58) are real numbers and can
be written in terms of the gamma function. Indeed we have

α2(s, k) =
∏
κ��<k
�≡κ(2)

(
λ(s)− λ

(
−�

2

))−1

= Γ
(
s + κ

2

)
Γ
(
1− s + κ

2

)
Γ
(
s + k

2

)
Γ
(
1− s + k

2

)
= (−1)

k−κ
2
Γ
(
s − k

2

)
Γ
(
s + κ

2

)
Γ
(
s + k

2

)
Γ
(
s − κ

2

) ,
(4.59)
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β2(m, k) =
∏

m��<k
�≡κ(2)

(
λ
(m

2

)
− λ

(
−�

2

))−1

= Γ(m)/Γ
(k + m

2

)
Γ
(k − m

2
+ 1

)
.

(4.60)

We have not specified the sign of
(
λ(s) − λ(− �

2

)) 1
2

so the normalization

factors α(s, k), β(m, k) are determined up to sign, however there is no
need to fix these. In the sequel we shall be working with various bases of
Ck(Γ, χ) which are not always of type (4.57), (4.58). Sometimes, however,
it will be convenient (for verification of computations) to refer to the basic
ancestors coming from Cκ(Γ, χ), κ = 0 or 1, κ ≡ k (mod 2), and Sm(Γ, χ),
0 < m � k, m ≡ k (mod 2) via (4.57) and (4.58).

First we consider the eigenspace Ck(Γ, χ; s) having the eigenvalue
λ(s) = s(1− s) where s �= �

2 for any � ≡ k (mod 2), that is the cusp forms
which are not induced from holomorphic forms. Our goal is to construct an
involution on Ck(Γ, χ; s) which acts on Fourier series by interchanging the
positive and negative terms (up to a constant factor which corrects a bad
normalization of the Whittaker function). We begin by applying Λ� succes-
sively in decreasing order of � ≡ k (mod 2) k–times starting from Λk. We
obtain the operator

Pk =
←∏

−k<��k
�≡k(2)

Λ� : Ck(Γ, χ; s)→ C−k(Γ, χ; s) . (4.61)

Note that 〈 Pku, Pku 〉 = γ(s, k) 〈 u, u 〉 on Ck(Γ, χ; s) where

γ(s, k) =
∏

−k<��k
�≡k(2)

(
λ(s)− λ

(k

2

))
= (−1)k

(
Γ
(
s + k

2

)
Γ
(
s − k

2

)
)2

,

see (4.52). Therefore, normalizing by the scalar

δ(s, k) = Γ
(

s − k

2

)
/Γ
(

s + k

2

)
, (4.62)

we get the operator Psk = δ(s, k)Pk which is a bijective isometry from
Ck(Γ, χ; s) to C−k(Γ, χ; s) (for k = 0 this is the identity operator).

Next we introduce the reflection operator X which acts on functions
f : H→ C by

(X f )(z) = f(−z̄) . (4.63)

Note that X : C−k(Γ, χ)→ Ck(Γ, χ) and X2 = 1. Moreover∆k X = X∆−k
so X : C−k(Γ, χ; s)→ Ck(Γ, χ; s). Also notice that

X f ±−k(z, s) = f ∓k (z, s) . (4.64)
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By composing Pk with X we return to the space of forms of weight k.
Precisely we obtain the operator

Qk = X Pk : Ck(Γ, χ; s)→ Ck(Γ, χ; s) (4.65)

such that Qsk = δ(s, k)Qk is an isometry. In fact we have (see Hilfssatz 5
of [Ma2]):

Proposition 4.5. If s �= �
2 for any � ≡ k (mod 2) then the operator Qsk =

δ(s, k)X Pk is an involution on Ck(Γ, χ; s).

Proof. First we show that

K�X = −XΛ−� . (4.66)

Indeed we have

X Kk Xg(x, y) = X Kkg(−x, y) = X

(
k

2
+ iy

∂

∂x
+ y

∂

∂y

)
g(−x, y)

=
(

k

2
− iy

∂

∂x
+ y

∂

∂y

)
g(x, y) = −Λ−kg(x, y)

showing (4.66) because X2 = 1. By (4.66) applied k times we get

Qk = X
←∏

−k<��k
�≡k(2)

Λ� = (−1)k
( ←∏
−k<��k
�≡k(2)

K−�
)

X

= (−1)k
( →∏
−k<��k
�≡k(2)

K�−2

)
X .

Hence

Q2
k = (−1)k

( →∏
−k<��k
�≡k(2)

K�−2

)( ←∏
−k<��k
�≡k(2)

Λ�

)
.

By (4.8) we get for any g ∈ C�(Γ, χ; s)

(K�−2Λ�) g =
(
−∆� − λ

(�
2

))
g =

(
λ(s)− λ

(�
2

))
g .

Applying this successively for � = 2−k, . . . , k (we may assume that k � 1,
because the assertion is trivial for k = 0) we derive Q2

k f = δ(s, k)−2 f for
any f ∈ Ck(Γ, χ; s). This completes the proof of Proposition 4.5.
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Next we examine the action of Qsk on the Fourier series

u(z) =
∞∑

n=1

(
ρ(n) f +k (nz, s)+ ρ(−n) f −k (nz, s)

)
(4.67)

where f +k (z, s), f −k (z, s) are given by (4.17), (4.18). Applying the Maass
operator Λ� successively for � = k, . . . , 2 − k we derive by (4.27), (4.28)
that

Pku(z) =
∞∑

n=1

(
δ(s, k)−2ρ(n) f +−k(nz, s)+ ρ(−n) f −−k(nz, s)

)
.

Then we apply the reflection (4.63) and the normalization factor (4.62)
getting by (4.64)

Qsku(z) =
∞∑

n=1

(
δ(s, k)−1ρ(n) f −k (nz, s)

+ δ(s, k)ρ(−n) f +k (nz, s)
)
.

(4.68)

Since Qk commutes with∆k (to see this use (4.12) and X∆� = ∆−�X), we
may require u(z) to be an eigenfunction of Qsk, that is

Qsku(z) = εu(z) (4.69)

with ε = 1, or ε = −1. Accordingly we say that u(z) is even or odd.
Comparing (4.67) and (4.68) we conclude by (4.69) that

ρ(−n) = εΓ
(
s + k

2

)
Γ
(
s − k

2

)ρ(n) . (4.70)

One can see directly that the Eisenstein series (4.44) is also an eigenfunc-
tion of the involution Qsk. Indeed it follows by (4.48) and by X E(−k)

a (z, s) =
E(k)a (z, s) that

Qsk Ea(z, s) = Ea(z, s) . (4.71)

In other words Ea(z, s) is even. The Eisenstein series has Fourier expansion
of type

Ea(z, s) = δays + ϕa(s)y1−s

+
∑
n �=0

ρa(n, t)W kn
2|n| ,it

(4π|n|y)e(nx) (4.72)

(recall that s = 1
2 + it). By (4.71) the coefficients satisfy

ρa(−n, t) = Γ
(
s + k

2

)
Γ
(
s − k

2

)ρa(n, t) . (4.73)
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We assert that if u jk(z) is an eigenfunction of Qs j k (for s j �≡ k
2 (mod 1)),

then its original ancestor u jκ(z) is an eigenfunction of Qs jκ and vice-versa.
In fact the eigenvalues do not change, that is the following equations are
equivalent

Qs jκu jκ(z) = εu jκ(z) ,

Qs j ku jk(z) = εu jk(z) .

Proof. Let k > κ, because the case k = κ is obvious. Skipping the subscript
j we have the following situation

Qskuk(z) = α(s, k)δ(s, k) (XΛ2−k . . . Λk) (Kk−2 . . . Kk) uk(z)

= δ(s, k)

α(s, k)
XΛ2−k . . . Λkuk(z)

by (4.9) and (4.59). Then by (4.66) applied k−κ
2 times we get

Qskuk(z) = δ(s, k)

α(s, k)
(−1)

k−κ
2 Kk−2 . . . Kk Qkuk(z)

= ε(−1)
k−κ

2
δ(s, k)

δ(s, κ)α2(s, k)
uk(z) = εuk(z)

by (4.59) and (4.62), which completes the proof.

For the theory of L–functions it is instructive (and helpful for double-
checking arguments) to have displayed connections between the coefficients
of a cusp form and those of its basic ancestor. Suppose u jk(z) is induced by
u jκ(z) in Cκ(Γ, χ; s j ) with κ = 0, 1, κ ≡ k (mod 2) and s j �≡ k

2 (mod 1) by
means of (4.57). Let

u jk(z) =
∞∑

n=1

(
ρ jk(n) f +k (nz, s j)+ ρ jk(−n) f −k (nz, s j)

)
(4.74)

u jκ(z) =
∞∑

n=1

(
ρ jκ(n) f +κ (nz, s j)+ ρ jκ(−n) f −κ (nz, s j)

)
(4.75)

be the Fourier expansions. By (4.25) and (4.26) applied successively to the
terms of (4.75) we find that

u jk(z) =
∞∑

n=1

(
(−1)

k−κ
2 α(s j; k)ρ jκ(n) f +k (nz, s j)

+ α(s j , k)
−1ρ jκ(−n) f −k (nz, s j)

)
.

(4.76)
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Hence the desired connections between the Fourier coefficients are

ρ jk(n) = (−1)
k−κ

2 α(s j; k)ρ jκ(n), (4.77)

ρ jk(−n) = α(s j; k)−1ρ jκ(−n), (4.78)

for any n � 1, where α(s, k) is the normalization factor given by (4.59).
Suppose u(z) is in Ck(Γ, χ; s) with s = m

2 for some m ≡ k (mod 2).
We can assume without loss of generality that 0 < m � k (change s into
1 − s if needed). These forms are obtained from classical forms of weight
m by successive application of Maass K–operators and, in view of (4.70),
they are characterized as having no negative terms in the Fourier expansion
(4.61). Suppose (see (4.58))

u(z) = β(m, k)
→∏

m��<k
�≡k(2)

K�

{
y

m
2 F(z)

}
(4.79)

with

F(z) =
∞∑

n=1

ann
m−1

2 e(nz) ∈ Sm(Γ, χ) . (4.80)

By (4.25) we get

→∏
m��<k
�≡k(2)

K�

{
f +m (z, s)

} = (−1)
k−m

2 f +k (z, s) .

In particular for s = m
2 we get

→∏
m��<k
�≡k(2)

K�

{
y

m
2 e(z)

}
= (−1)

k−m
2 W k

2 ,
m−1

2
(4πy)e(x) . (4.81)

This also holds if z is replaced by nz. Introducing (4.80) into (4.79) we
obtain by (4.81) the following expansion

u(z) = (−1)
k−m

2 β(m, k)
∞∑

n=1

an√
n

W k
2 ,

m−1
2
(4πny)e(nx) . (4.82)

Hence the Fourier coefficients of u(z) are given in terms of the classical
series (4.80) by

ρ(n) = (−1)
k−m

2 β(m, k)ann−
1
2 (4.83)

where β(m, k) is the normalization factor given by (4.60).
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5. Spectral summation formula

Throughout
{
u j(z)

}
is an orthonormal system of Maass cusp forms which

is a basis of Ck(Γ, χ). This includes forms induced from holomorphic cusp
forms of weight 0 < m � k, m ≡ k (mod 2), however we do not make
special notation for them. Each of u j(z) has expansion in terms of Whittaker
functions of type

u j(z) =
∑
n �=0

ρ j(n)W kn
2|n| ,it j

(4π|n|y)e(nx) (5.1)

whereλ j = s j(1−s j) = 1
4+t2

j is the Laplace eigenvalue of u j (z). Recall that
at the bottom of discrete spectrum λ j = λ

(
k
2

) = k
2

(
1− k

2

)
, s j = k

2 , it j = k−1
2 ,

and the u j(z) corresponds to a holomorphic cusp form Fj(z) = y−
k
2 u j(z)

from Sk(Γ, χ). By (4.21) the expansion (5.1) becomes

Fj(z) =
∞∑
1

ρ j(n)(4πn)
k
2 e(nz) . (5.2)

Moreover each Eisenstein series Ea(z, s) associated with a singular cusp
a has a similar expansion

Ea(z, s) = δays + ϕa(s)y1−s

+
∑
n �=0

ρa(n, t)W kn
2|n| ,it

(4π|n|y)e(nx) (5.3)

for s = 1
2 + it.

In this section we establish a summation formula for the coefficients
ρ j(n), ρa(n, t) with respect to the spectrum. To this end we introduce two
Poincaré series of type

Pm(z) =
∑

γ∈Γ∞\Γ
χ(γ) jγ (z)

−k P(mγz) (5.4)

Qn(z) =
∑

γ∈Γ∞\Γ
χ(γ) jγ (z)

−k Q(mγz) (5.5)

where P(z), Q(z) are suitable functions on H such that the series converge
(we do not require the absolute convergence). Let p(y), q(y) be smooth
functions on R+ such that p(y), q(y), yp′(y), yq′(y) are all bounded. We
take

P(z) = 4πyp(4πy)e(z)

Q(z) = 4πyq(4πy)e(z) .
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Let m, n be positive integers. Then Pm(z) and Qn(z) are in Lk(Γ, χ). The
starting point for our derivation of the formula in question is the inner
product

〈 Pm, Qn 〉 =
∫
Γ \H

Pm(z)Qn(z)dµz .

First we compute 〈 Pm, Qn 〉 by using the spectral expansion

Pm(z) =
∑

j

〈 Pm, u j 〉 u j(z)

+
∑
a

1

4π

∫ ∞

−∞
〈 Pm, Ea(∗, s) 〉 Ea(z, s)dt

where s = 1
2 + it (add (4.46) to (4.50)). Hence the Parseval formula

〈 Pm , Qn 〉 =
∑

j

〈 Pm , u j 〉 〈 u j , Qn 〉

+
∑
a

1

4π

∫ ∞

−∞
〈 Pm , Ea(∗, s) 〉 〈 Ea(∗, s), Qn 〉 dt .

This formula reduces the problem to computing the projections of the
Poincaré series on the basic Maass forms. By unfolding the fundamental
domain we deduce using the Fourier series (5.1) that

〈 Pm, u j 〉 =
∫
Γ∞\H

P(mz)ū j(z)dµz

= 4πmρ j(m)
∫ ∞

0
p(4πmy)e−2πmyW k

2 ,it j
(4πmy)y−1dy

= 4πmρ j(m)h p(t j)

where

h p(t) =
∫ ∞

0
p(y)e−y/2W k

2 ,it
(y)y−1dy . (5.6)

The same argument works for the inner product against the Eisenstein series
giving

〈 Pm , Ea(∗, s) 〉 = 4πmρa(m, t)h p(t) .

Inserting these results into the Parseval formula we conclude that

〈 Pm, Qn 〉 = 16π2mn

{∑
j

h p(t j)h̄q(t j)ρ j(m)ρ j(n)

+
∑
a

1

4π

∫ ∞

−∞
h p(t)h̄q(t)ρa(m, t)ρa(n, t)dt

}
.

(5.7)
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Another way of computing the inner product 〈 Pm, Qn 〉 goes by un-
folding with respect to Qn . This leads to

〈 Pm, Qn 〉 =
∫
Γ∞\H

Pm(z)Q(nz)dµz . (5.8)

The Poincaré series Pm(z) is periodic in x of period one, so it has the Fourier
expansion

Pm(z) =
∞∑

�=−∞
p(m, �; y)e(�x) (5.9)

with the Fourier coefficients p(m, �; y) which are functions of y. By (5.8)
and (5.9) we arrive at

〈 Pm , Qn 〉 =
∫ ∞

0
p(m, n; y)Q(iny)y−2dy . (5.10)

Now we refine the Fourier expansion (5.9) using the series (5.4). The
identity motion γ = 1 contributes P(mz). The other cosets are parametrized
by pairs of integers {c, d} with c > 0, c ≡ 0 (mod D) and (c, d) = 1. If

γ =
(

a b
c d

)
then ad ≡ 1 (mod c),

γz = a

c
− 1

c(cz + d)

and
P(mγz) = e

(am

c

)
P
( −m

c(cz + d)

)
.

Therefore Pm(z) splits into

Pm(z) = P(mz)+
∑

c≡0(D)

∑
(d,c)=1

χ(d)e
( d̄m

c

)( |cz + d|
cz + d

)k
P
( −m

c(cz + d)

)

and here we can further split the inner sum over d prime to c into reduced
classes modulo c. For each such class we apply Poisson’s formula obtaining

Pm(z) = P(mz)+
∑

c≡0(D)

∑
�

Sχ(m, �; c)

∫ ∞

−∞

( |z + u|
z + u

)k
P
(−mc−2

z + u

)
e(−�u)du .

where Sχ(m, �; c) is the Kloosterman sum

Sχ(m, �; c) =
∑∗

d (mod c)

χ(d)e
( d̄m + d�

c

)
. (5.11)
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Changing the variable u = z− z and transferring the factor e4π�y we get

Pm(z) = P(mz)+
∑
�

∑
c≡0(D)

Sχ(m, �; c)Pc(m, �; y)e(�z̄) (5.12)

where

Pc(m, �; y) =
∫

Im z=y

( |z|
z

)k
P
(−m

zc2

)
e(−z̄�)dz . (5.13)

Hence the nth Fourier coefficient of Pm (z) is given by a series of Kloosterman
sums

p(m, n; y) = δmn P(iny)+
∑

c≡0(D)

Sχ(m, n; c)Pc(m, n; y)e2πny. (5.14)

Inserting (5.14) into (5.10) we derive by a simple change of the variables of
integration z and y the following expression

〈 Pm, Qn 〉 = 4π
√

mn

{
δ(m, n)I

+
∑

c≡0(D)

c−1 Sχ(m, n; c)I
(4π

√
mn

c

)} (5.15)

where

I =
∫ ∞

0
e−y p(y)q̄(y)dy (5.16)

and I(x) is given by the double integral

x
∫

Im z=1

( |z|
z

)k
∫ ∞

0
p
( x

y|z|
)

q̄
( xy

|z|
)

e

( −x z̄

4π|z|
(

y + 1

y

)) dy dz

y|z|2 .

Next we transform the horizontal line Im z = 1 into the semi-circle |ζ | = 1,
Re ζ > 0 by the change of variables z = 2i(ζ2 + 1)−1. We have z =
i(ζ Re ζ)−1, |z| = (Re ζ)−1 = −izζ and |z|−2dz = −iζ−1dζ . Hence

I(x) = −x
∫ i

−i
(−iζ)k−1

∫ ∞

0
e−

1
2 ζx(y+y−1)

p
(
xy−1 Re ζ

)
q̄
(
xy Re ζ

)
y−1dy dζ

(5.17)

where the integration over ζ runs counter-clockwise along right half of the
unit circle.

Finally combining (5.8) and (5.15) we conclude the following
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Proposition 5.1. Let p(y), q(y) be smooth functions on R+ such that p(y),
q(y) and yp′(y), yq′(y) are bounded. For any positive integers m, n we have

4π2√mn
(∑

j

h(t j)ρ j(m)ρ j(n)+
∑
a

1

4π

∫ ∞

−∞
h(t)ρa(m, t)ρa(n, t)dt

)

= δ(m, n)I +
∑

c≡0(D)

c−1Sχ(m, n; c)I
(4π

√
mn

c

)
(5.18)

where

h(t) = 1

π
h p(t)h̄q(t) ,

I is given by (5.16), I(x) is given by (5.17) and Sχ(m, n; c) denotes the
Kloosterman sum.

The same formula (5.18) remains true if both m, n are negative integers
provided that one changes k into −k in (5.6) and (5.17). The arguments of
the proof are very much the same so we do not repeat them here. When m, n
have different sign then again a formula similar to (5.18) is true, but with
a somewhat different function I(x), however we are able to avoid its use in
our applications.

In fact we shall only require Proposition 5.1 for the special test functions

p(y) = q(y) = yir

where r is a real parameter. This choice gives rise to the standard Poincaré
series

Pm(z) =
∑

γ∈Γ∞\Γ
χ(d)

( cz + d

|cz + d|
)−k( 4πmy

|cz + d|2
)1+ir

e(mγz) .

In this case (5.6) gives by (7.621.11) of [GR]

h p(t) = Γ
(1

2
+ i(r − t)

)
Γ
(1

2
+ i(r + t)

)
Γ
(

1− k

2
− ir

)−1
.

Hence by the functional equation for the gamma function

h(t) = π
∣∣∣Γ (1− k

2
− ir

)∣∣∣−2
(chπ(r − t) chπ(r + t))−1 . (5.19)

Next the integral (5.17) simplifies to

I(x) = −x
∫ i

−i
(−iζ)k−1

∫ ∞

0
e−

1
2 ζx(y+y−1)y−1−2irdy dζ , (5.20)
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and the inner integral is 2K2ir(ζx) where Kν(y) is the K–Bessel function.
Therefore

I(x) = I(x, r) = −2x
∫ i

−i
(−iζ)k−1 K2ir(ζx)dζ . (5.21)

In Lemma 17.2 we shall give another integral representation for I(x, r) in
terms of the J–Bessel function.

Finally (5.16) gives I = 1 . Thus, for our special test functions, Propo-
sition 5.1 becomes

Proposition 5.2. For any positive integers m, n and any real number r we
have∑

j

ρ j(m)ρ j(n)

chπ(r − t j) chπ(r + t j)
+
∑
a

1

4π

∫ ∞

−∞
ρa(m, t)ρa(n, t)dt

chπ(r − t) chπ(r + t)

=
∣∣Γ (1− k

2 − ir
)∣∣2

4π3
√

mn

(
δ(m, n)+

∑
c≡0(D)

c−1Sχ(m, n; c)I
(4π

√
mn

c

))

where I(x) is given by (5.21).

Having the real parameter r at our disposal we could create a large
class of test functions h(t) in (5.18) (similar to that in the Selberg trace
formula) by integrating over r against a properly chosen distribution q(r).
This integration will be needed to improve our estimates for the resulting
function I(x) (for small x) which is required in order to accelerate the
convergence of the sums of Kloosterman sums on the right side of (5.18).
Nevertheless, because a substantial part of our arguments can be carried out
more clearly for individual r we have chosen to postpone the integration in
question to the last possible moment (see Sect. 14).

6. Hecke operators

For any n � 1 the Hecke operator Tn is defined on functions f : H→ C
which are periodic of period one by

(Tn f ) (z) = 1√
n

∑
ad=n

χ(a)
∑

b (mod d)

f
(az + b

d

)
. (6.1)

These operators are multiplicative, precisely they satisfy

Tm Tn =
∑

d|(m,n)
χ(d)Tmnd−2 . (6.2)

Hence the Hecke operators commute with each other.
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Note that due to our normalization Tn does not depend on k, but we
are mostly interested on its action on automorphic functions of weight k.
Clearly Tn : Ak(Γ, χ) → Ak(Γ, χ). Since Tn commutes with ∆k it also
acts on eigenspaces; Tn : Ak(Γ, χ; s) → Ak(Γ, χ; s). For (n, D) = 1 the
operator Tn is normal, precisely we have

〈 Tn f, g 〉 = 〈 f, χ(n)Tng 〉 (6.3)

for every f, g in Lk(Γ, χ). Therefore we can choose an orthonormal basis
{u j(z)} of Ck(Γ, χ)which consists of common eigenfunctions of all Tn with
(n, D) = 1. We call such functions the Hecke-Maass cusp forms.

Because χ (mod D) is primitive the Hecke operators enjoy the so called
multiplicity-one property. This means that any two functions in Lk(Γ, χ)
which are eigenfunctions of all Tn for (n, D) = 1 with the same eigenvalues
are equal up to a constant factor. Consequently if T : Lk(Γ, χ)→ Lk(Γ, χ)
is a linear operator over C which commutes with all Tn for (n, D) = 1,
then every common eigenfunction of all Tn for (n, D) = 1 is also an
eigenfunction of T . This property is the key fact in the Atkin-Lehner theory
of newforms, see [AL], [L], [I3]. We would like to emphasize that the
multiplicity-one property fails for automorphic functions which are not
square-integrable!

By the multiplicity-one property it follows that the Hecke-Maass cusp
forms u j(z) are eigenfunctions of all Tn, not just those with (n, D) = 1,
never mind that they are not all normal operators. Therefore we have for all
n � 1

Tn u j = λ j(n)u j . (6.4)

By (6.2) these eigenvalues satisfy the multiplicativity formula

λ j(m)λ j(n) =
∑

d|(m,n)
χ(d)λ j(mnd−2) (6.5)

for all m, n � 1. If (n, D) = 1 then (6.3) implies that

λ j(n) = χ(n)λ j(n) . (6.6)

For every p | D we have λ j(p�) = λ j(p)� with |λ j(p)| = 1.
Define the operator Wk acting on functions f : H→ C by

(Wk f )(z) =
( |z|

z

)k
f
(−1

zD

)
. (6.7)

Note that Wk : Ak(Γ, χ)→ Ak(Γ, χ). We have

y−
k
2 Wk

(
y

k
2 F(z)

)
= (z√D

)−k
F
(−1/zD

)
(6.8)

which gives the action of Wk in the more familiar format of holomorphic
forms.
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In order to return to the original character we compose Wk with the
operator X defined by

(X f )(z) = f̄ (−z̄) (6.9)

(this is the complex conjugation of the operator X). Put Wk = XWk so

(
Wk f

)
(z) =

( |z|
−z

)k
f̄ (1/z̄D) . (6.10)

Obviously Wk is an involution, i.e. W
2
k = 1. But note that Wk is not linear

over C, precisely we have

Wk(λ f ) = λ̄Wk f for λ ∈ C . (6.11)

One can show that Wk : Ak(Γ, χ)→ Ak(Γ, χ) (which is not obvious, see
p. 112 of [I3]) and that Wk is an isometry on Lk(Γ, χ). Since Wk and X
commute with∆k, so does Wk. Therefore Wk : Ck(Γ, χ; s)→ Ck(Γ, χ; s).

The operator Wk does not precisely commute with the Hecke operators,
but it satisfies

Tn Wk = χ(n)Wk Tn if (n, D) = 1 . (6.12)

The three properties (6.6), (6.11), (6.12) suffice to imply by the multiplicity-
one property that the Hecke-Maass cusp forms u j(z) are also eigenfunctions
of the involution Wk. We have

Wk u j = η j u j (6.13)

for a complex number η j having |η j | = 1 (the eigenvalue η j does not need
to be real even if the character χ is real!).

Applying the Hecke operator (6.1) to the Fourier expansion (5.1) one
can see quickly that the Fourier coefficients ρ j(n) are proportional to the
Hecke eigenvalues λ j(|n|), specifically

ρ j(n) = ρ j(1)λ j(n)n
− 1

2 (6.14)

ρ j(−n) = ρ j(−1)λ j(n)n
− 1

2 (6.15)

for any n � 1, the factor n−
1
2 appearing due to our earlier normalization.

The above theory of Hecke operators acting on Maass cusp forms does
not exactly apply to the Eisenstein series. Later, in Sect. 7, we shall show
that the Eisenstein series are eigenfunctions of Hecke operators Tn with
(n, D) = 1, specifically

Tn Ea(z, s) = λa(n, t)Ea(z, s) (6.16)
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with

λa(n, t) =
∑
ad=n

χv(a)χw(d)
(a

d

)it
(6.17)

for s = 1
2+it. Here a is the cusp equivalent to 1/vwith vw = D, (v,w) = 1

and χ = χv χw is the decomposition of the primitive character χ (mod D)
into characters of moduli v, w. In spite of the property (6.16) the multiplicity-
one principle does not apply because Ea(z, s) is not square-integrable.
Therefore we cannot argue that Ea(z, s) is an eigenfunction of the involution
Wk. In fact we shall show in Sect. 7 the following relation

Wk Ea(z, s) = Eā(z, s) (6.18)

where ā stands for the cusp “dual” to a in the sense that if a ∼ 1/v then
ā ∼ 1/wwith vw = D, (v,w) = 1. This reveals that the square-integrability
plays a significant role in the arithmetic of Maass forms.

In Sect. 7, rather than using Hecke operators in the fragile space of the
continuous spectrum, we shall perform direct and explicit computations
on the Eisenstein series. We shall establish the following formulas for the
Fourier coefficients:

ρa(n, t) = ρa(1, t)λa(n, t)n− 1
2 , (6.19)

ρa(−n, t) = ρa(−1, t)λa(n, t)n
− 1

2 , (6.20)

where λa(n, t) is given by (6.17) for all n � 1.
By means of (6.14) and (6.19) we can rephrase our spectral summation

formula (5.18) in terms of Hecke eigenvalues.

Proposition 6.1. For any positive integers m, n we have∑
j

h(t j)ν j λ̄ j(m)λ j(n)

+
∑
a

1

4π

∫ ∞

−∞
h(t)νa(t)λ̄a(m, t)λa(n, t)dt

= δ(m, n)I +
∑

c≡0(D)

c−1Sχ(m, n; c)I
(4π

c

√
mn
)

(6.21)

where we put

ν j =
∣∣ 2πρ j(1)

∣∣2 (6.22)

νa(t) =
∣∣ 2πρa(1, t)

∣∣2 , (6.23)

while the other notation and conditions are as in Proposition 5.1.
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Finally notice that the Hecke operators Tn commute with the Maass
operators Λ�, K� and with the reflection operator X. Hence all Tn commute
with the involution Qsk on Ck(Γ, χ; s) for any s �≡ k

2 (mod 1). Therefore the
Hecke-Maass cusp forms u j(z) of weight k � 0 and eigenvalue λ(s j) with
s j �≡ k

2 (mod 1) (i.e. those whose ancestors are not holomorphic forms) are
automatically eigenfunctions of Qsk (by the multiplicity-one property), say

Qs j ku j(z) = ε j u j(z) (6.24)

with ε j = ±1. Consequently for s j �≡ k
2 (mod 1)we conclude the orthogonal

decomposition

Ck(Γ, χ; s j) = C+k (Γ, χ; s j )⊕ C−k (Γ, χ; s j ) (6.25)

where C+k ,C
−
k denote the subspaces of even and odd forms respectively.

7. Explicit computations on Eisenstein series

In this section we prove (6.16), (6.18) and we compute the coefficients
ρa(n, t) in the Fourier expansion (4.72) for the Eisenstein series Ea(z, s).
The results are quite explicit and will be needed in Sect. 13 to match and
cancel a large contribution coming from the other side of the formula.

Recall that a ∼ 1
v

with vw = D, (v,w) = 1 sow is the “width” of a. We
begin by writing in more explicit form the series (4.44). The scaling matrix
can be chosen as

σa =
(√

w 0
v
√
w 1/

√
w

)
. (7.1)

Hence

σ−1
a Γ =

{
τ =

(
a/
√
w b/

√
w

c
√
w d

√
w

)
;

(
a b
c d

)
∈ SL2(Z), c+ av ≡ 0(vw)

} (7.2)

and for τ ∈ σ−1
a Γ we have

σaτ =
(

a b
c+ av d + bv

)
. (7.3)

Hence, factoring the character χ = χv χw, we find that χ(σaτ) = χ(a) =
χv(a)χw(a) = χv(d)χw(−c/v). The coset Γ∞ \ σ−1

a Γ is parametrized by
pairs of integers (c, d) = 1, c ≡ 0 (mod v), (c/v,w) = 1, because a runs
modulo cw and is determined by the congruences a ≡ d̄ (mod c), a+c/v ≡
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0 (modw) (note that (c, w) = 1 since (v,w) = 1 and (c/v,w) = 1). Hence
we deduce that

Ea(z, s) = 1

2

( y

w

)s ∑∑
(c,d)=1

χv(d)χw(−c)Js(c, d; vz) (7.4)

where

Js(c, d; z) =
( cz + d

|cz + d|
)−k|cz + d|−2s . (7.5)

From the explicit formula (7.4) it is easy to see that

X Eχa (z, s) = χw(−1)Eχa (z, s) (7.6)

where X is the reflection operation (6.9) and the superscript in the Eisenstein
series indicates (temporarily) the nebentypus character. We also see from
(7.4) that

Eχ
ā

(−1

Dz
, s
)
= χw(−1)

( z

|z|
)k

Eχa (z, s) .

In other words

Wk Eχa (z, s) = χw(−1)Eχ
ā
(z, s) . (7.7)

Applying (7.7) followed by (7.6) we arrive at (6.18).
Next we proceed to the derivation of (6.16). For convenience we remove

the condition (c, d) = 1 in (7.4) by means of Möbius inversion, getting

Ea(z, s) = (y/w)s

2L(2s, χv χw)

∑∑
(c,d) �=(0,0)

χv(d)χw(−c)Js(c, d; vz) . (7.8)

Applying the Hecke operator Tn (to avoid confusion of notation we rename
a, d, b in (6.1) as α, δ, β respectively) we obtain

Tn Ea(z, s) = ns− 1
2 (y/w)s

2L(2s, χv χw)

∑
αδ=n

χ(α)
∑

β (mod δ)∑∑
(c,d) �=(0,0)

χv(d)χw(−c)Js(c, �;αvz)

(7.9)

where � = βcv + δd. Note that the condition (c, d) �= (0, 0) is equivalent
to (c, �) �= (0, 0).

Now suppose (n, v) = 1. Thus (δ, v) = 1 and χv(d) = χv(�)χv(δ).
Put (δ, c) = η, δ = ηδ1, c = ηc1 (so that (δ1, c1) = 1) and � = η�1. We
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have βc1v+ δ1d = �1 so βc1v ≡ �1 (mod δ1) and the number of β (mod δ)
satisfying this congruence is η. Therefore we have

Tn Ea(z, s) = ns− 1
2 (y/w)s

2L(2s, χvχw)

∑
αηδ1=n

χ(α)η1−2s

∑∑
(c1,�1) �=(0,0)
(c1,δ1)=1

χv(�1)χv(δ1)χw(−ηc1)Js(c1, �1;αvz) .

We relax the condition (c1, δ1) = 1 by Möbius inversion getting

Tn Ea(z, s) = ns− 1
2 (y/w)s

2L(2s, χvχw)

∑
αηδ2δ3=n

χ(α)η1−2sµ(δ2)χv(δ2δ3)χw(ηδ2)

∑∑
(c2,�1) �=(0,0)

χv(�1)χw(−c2)Js(c2, �1; γvz)

where γ = αδ2. Here χ(α)χv(δ2)χw(δ2) = χ(γ) and the sum
∑
µ(δ2) over

αδ2 = γ vanishes unless γ = 1 in which case α = δ2 = 1, giving

Tn Ea(z, s) = ns− 1
2 (y/w)s

2L(2s, χvχw)

( ∑
ηδ3=n

η1−2sχv(δ3)χw(η)

)
∑∑

(c2,�1) �=(0,0)
χv(�1)χw(−c2)Js(c2, �1; vz) ,

and by (7.8) this is just (6.16) with the eigenvalue given by (6.17).
Recall that the above computations are only valid if (n, v) = 1. The fact

that Ea(z, s) is an eigenfunction for all the other Tn with eigenvalues λa(n, t)
given by (6.17) as well will be seen as a by–product of our computation of
the Fourier coefficients ρa(n, t) of Ea(z, s) which we give next.

We begin from (7.8). Let Z(c) denote the contribution for given c. The
case of c = 0 is special. In this case w = 1 so v = D which means a ∼ ∞
and we find that

Z(0) = δa∞ys . (7.10)

For c �= 0 we have Z(c) = Z(−c) so it suffices to consider c � 1. In this
case d runs over all integers so we can apply Poisson’s formula∑

d

χv(d)G(d) = v−1τχv

∑
h

χv(h)Ĝ
(h

v

)
(7.11)

where Ĝ is the Fourier transform of G

Ĝ(y) =
∫ ∞

−∞
G(x)e(−xy)dx .
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This gives

Z(c) = χw(−c)(y/w)s

2vL(2s, χvχw)
τχv

∑
h

χv(h)
∫ ∞

−∞
Js(c, ξ; vz)e

(−ξh
v

)
dξ .

Here the integral is equal to (cv)1−2se(hcx)Is(hc, y), where

Is(n, y) =
∫ ∞

−∞

( u + iy

|u + iy|
)−k|u + iy|−2se(−nu)du

by (7.5) and by a change of variable ξ = cvu. For n = 0 we have

Is(0, y) = 2πi−kΓ(2s − 1)Γ
(

s − k

2

)−1
Γ
(

s + k

2

)−1
(2y)1−2s

by (8.381.1) of [GR], and for n �= 0 we have

Is(n, y) = i−kΓ
(

s + kn

2|n|
)−1

W kn
2|n| ,s− 1

2
(4π|n|y)

(π|n|
y

)s|n|−1

where Wα,β(y) is the Whittaker function by (3.384.9) of [GR].
Note that for n = hc = 0 with c � 1 we have h = 0 and χv(0) = 0

unless v = 1, i.e. a ∼ 0. From the above computations we obtain the Fourier
expansion (4.72) with

ϕa(s) = δa0 4πik

(4D)s
Γ(2s − 1)

Γ
(
s − k

2

)
Γ
(
s + k

2

) L(2s − 1, χ)

L(2s, χ)
(7.12)

and for n �= 0

ρa(n, t) = ik

√|n|
( π
vD

)s
χv

( n

|n|
)
τ̄χv

λa(n, t)

Γ
(
s + kn

2|n|
)
L(2s, χvχw)

(7.13)

where λa(n, t) is given by (6.17) for any n �= 0 (recall that s = 1
2 + it).

Using (7.13) we obtain an explicit formula for νa(t) defined in (6.23).

Proposition 7.1. Let a ∼ 1
v

with vw = D, (v,w) = 1 and let χ = χv χw
be the factorization of χ (mod D) into primitive characters χv (mod v),
χw (modw). Then for real t we have

νa(t) = 4π3

D

∣∣∣ Γ (k + 1

2
+ it

)
L
(
1+ 2it, χv χw

) ∣∣∣−2
. (7.14)
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Remarks. The above formula yields a rather precise lower bound

νa(t)D(|t| + 1)ke−π|t| � (log(D+ |t|))−2 . (7.15)

In Sect. 19 we shall establish a result analogous to Proposition 7.1 for the
cuspidal case and derive an estimate for ν j , defined in (6.22), specifically

ν j D(|t j | + 1)ke−π|t j | � (D+ |t j |)−ε, (7.16)

for any ε > 0, the implied constant depending only on ε and k.
Upper bounds for νa(t) and ν j are also available but these are not needed

for our applications.

8. L-functions

In this section we introduce the L–functions in which we are interested as
well as some others which we shall require along the way. Let {u j(z)} be
an orthonormal basis of the space Ck(Γ, χ) which are Hecke-Maass cusp
forms, and let

{
Ea
(
z, 1

2 + it
)}

be the eigenpacket of the space E k(Γ, χ)
which are Eisenstein series on the critical line.

To every u j(z) we associate the L–function

L j(s) =
∞∑
1

λ j(n)n
−s (8.1)

where λ j(n) are the corresponding eigenvalues of Hecke operators, and
analogously, to every Eisenstein series Ea

(
z, 1

2 + it
)

we associate the L–
function

La(s, t) =
∞∑
1

λa(n, t)n
−s (8.2)

where λa(n, t) are given by (6.17). Note that t does not here denote the
imaginary part of s, but rather the spectral parameter.

By the multiplicativity of Hecke eigenvalues (see (6.5)) we obtain the
Euler products

L j(s) =
∏

p

(
1− λ j(p)p

−s + χ(p2)p−2s
)−1

, (8.3)

La(s, t) =
∏

p

(
1− λa(p, t)p−s + χ(p2)p−2s

)−1
, (8.4)

for Re s > 1. We require analytic continuation and functional equations for
each of these.

The case of Eisenstein series is slightly unusual, because Ea(z, s) is not
exactly an eigenfunction of the involution Wk. However using the explicit
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formula for λa(n, t) we can play directly. First we see from (6.17) that
La(s, t) factors into Dirichlet L–functions

La(s, t) = L(s − it, χv)L(s + it, χw) (8.5)

and inherits the analytic continuation and the functional equation therefrom.
Here recall that the singular cusp a is equivalent to 1/v with vw = D,
(v,w) = 1 and χ = χv χw is the factorization of the primitive character
χ (mod D) into primitive characters χv (mod v), χw (modw). Note that
La(s, t) = L ā(s,−t), where ā is the dual cusp. For a ∼ ∞ or a ∼ 0 we
have

L∞(s, t) = L(s − it, χ)ζ(s + it) (8.6)
L0(s, t) = L(s + it, χ)ζ(s − it) (8.7)

so these L–functions have a simple pole at s = 1 ∓ it which has residue
L(1∓ 2it, χ) respectively. If a is not equivalent to ∞ or 0, then La(s, t) is
entire. For any a and real t we put

Λa(s, t) =
(√D

π

)s
Γ
(s − it

2
+ 1− χv(−1)

4

)

Γ
(s + it

2
+ 1− χw(−1)

4

)
La(s, t)

(8.8)

and we find the following functional equation

Λa(s, t) = ωΛa(1− s̄,−t) (8.9)

with the root number ω given by Gauss sums

ω = i
1
2 (χv(−1)+χw(−1)−2)

( v
w

)it
τχvτχw D−

1
2 . (8.10)

Next we examine a Hecke-Maass cusp form u j(z) in Ck
(
Γ, χ; m

2

)
with

0 < m � k, m ≡ k (mod 2), i.e. having the Laplace eigenvalue λ
(

m
2

) =
m
2

(
1− m

2

)
. Such a form is induced by a holomorphic cusp form F(z) in

Sm(Γ, χ). The Fourier coefficients ρ j(n) of u j(z) are connected to the
coefficients an of F(z) by the formula (4.83). Here u j(z) and y

m
2 F(z) are

both assumed to have L2–norm one so the factor (−1)
k−m

2 β(m, k) in (4.83)
shows a discrepancy in normalization of the Whittaker function and the
exponential function. This formula shows that ρ j(n) = ρ j(1)λ j(n) and
an = a1λ(n)with Hecke eigenvalues λ j(n) = λ(n) for all n � 1. Therefore
the L–function of u j(z) agrees with that of F(z). In this case Hecke showed
that

Λ j(s) =
(√D

2π

)s
Γ
(

s + m − 1

2

)
L j(s) (8.11)
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is entire and satisfies the functional equation

Λ j(s) = ω jΛ j(1− s̄) (8.12)

with the root number ω j given by the corresponding eigenvalue of the
involution im Wm . This can be expressed in terms of the Hecke eigenvalue
λ j(D) and the Gauss sum τχ , precisely

ω j = im λ̄ j(D)τ̄χD−
1
2 . (8.13)

However, all we need to know about ω j in this paper is that

|ω j | = 1 . (8.14)

Now we proceed to the case of a Hecke-Maass cusp form u j(z) in
Ck(Γ, χ; s j )with s j �≡ k

2 (mod 1). In this case the form is induced by a non-
holomorphic cusp form of weight κ = 0, 1, κ ≡ k (mod 2) with the same
Laplace eigenvalue λ(s j) = s j(1− s j) so we have one of the following two
possibilities:

Re s j = 1
2 , s j �= 1

2 (8.15)
0 < s j < 1 , if k ≡ 0 (mod 2) . (8.16)

Actually the Selberg conjecture predicts that (8.16) never happens, but so
far it resists proof.

The associated L–function (8.1) can be examined by arguments similar
to these applied by Hecke to the classical (holomorphic) cusp forms. Unfor-
tunately we could not find in the published literature satisfactory results so
we are going to sketch proofs of what is needed in this paper. Our first ob-
jective is to establish a functional equation with appropriate gamma factors.
Put

Λ j(s) =
(√D

π

)s
Γ
(s + it j

2
+ 1− ε j

4

)

Γ
(s − it j

2
+ 1− ε j(−1)k

4

)
L j(s)

(8.17)

where ε j = ±1 is the eigenvalue of the involution Qs j k (see (6.24)).

Proposition 8.1. The function Λ j(s) is entire and it satisfies

Λ j(s) = ω jΛ j(1− s̄) (8.18)

with the root number ω j which depends on the corresponding eigenvalue
η j of the involution Wk (see (6.13)) as follows

ω j = i
k+2

[
k
2−

1−ε j
4

]
η̄ j ρ j(1)/ρ j(1) . (8.19)
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Remark. The appearance of the first Fourier coefficient ρ j(1) in the root
number ω j is superficial, the reason being that Wk is not linear over C
and the form u j(z) is not perfectly normalized. Multiplying by a unitary
factor we could assume that ρ j(1) is real so it would not have appeared
in ω j . Observe that the functional equation (8.18) does not, in the case of
holomorphic forms, immediately resemble (8.11). To bring it to the same
shape one requires applications of the recurrence and duplication formulae
for the gamma function and this introduces a polynomial factor which can
then be cancelled out since it enjoys the same symmetry.

We begin by writing the equation (6.13) at z = iy/
√

D which becomes

u j(iy/
√

D) = ikη̄ j ū j(i/y
√

D) . (8.20)

Let Ψ j(s) denote the Mellin transform of y−
1
2 u j(iy/

√
D),

Ψ j(s) =
∫ ∞

0
u j(iy/

√
D)ys− 3

2 dy . (8.21)

By (8.20) we arrange this integral as follows

Ψ j(s) =
∫ ∞

1

{
u j

( iy√
D

)
ys− 1

2 + ikη̄ j ū j

( iy√
D

)
y

1
2−s

}
dy

y
. (8.22)

Hence Ψ j(s) is entire and it satisfies the functional equation

Ψ j(s) = ikη̄ j Ψ j(1− s̄) . (8.23)

Next we compute Ψ j(s) by integrating the Fourier expansion

u j

( iy√
D

)
=
∑
n �=0

ρ j(n)W kn
2|n| ,it j

(4π|n|y√
D

)

=
∞∑
1

λ j(n)√
n

{
ρ j(1)W k

2 ,it j
+ ρ j(−1)W− k

2 ,it j

}(4πny√
D

)
,

see (6.14) and (6.15). Note that

ρ j(−1) = ε jρ j(1)
Γ
(
s j + k

2

)
Γ
(
s j − k

2

)
by (4.70). Hence we derive by a change of variable

Ψ j(s) = 4D−
1
4

(√D

π

)s
Φεk(s, it j)ρ j(1)L j(s) (8.24)
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where we put

Φεk(s, β) =
√
π

4

∫ ∞

0

{
W k

2 ,β
(4y)+ εΓ

(
β + 1+k

2

)
Γ
(
β + 1−k

2

)W− k
2 ,β
(4y)

}
ys− 3

2 dy .

(8.25)

We shall prove by induction on k the following result.

Lemma 8.2. For ε = ±1 and any complex numbers s, β with Re s > |Reβ|
we have

Φεk(s, β) = pεk(s, β)Γ
(s + β

2
+ 1− ε

4

)
Γ
(s − β

2
+ 1− ε(−1)k

4

)
(8.26)

where the pεk(s, β) are the polynomials in s recursively defined below.

Proof. First we establish a recursion formula for

V ε
k,β(y) = W k

2 ,β
(4y)+ εΓ

(
β + 1+k

2

)
Γ
(
β + 1−k

2

)W− k
2 ,β
(4y) . (8.27)

Combining (9.234.1) and (9.234.2) of [GR] we derive the following two
recursion formulae for the Whittaker function:

2β√
y

Wα,β(y) = Wα+ 1
2 ,β− 1

2
(y)− Wα+ 1

2 ,β+ 1
2
(y)

= (β − α+ 1
2

)
Wα− 1

2 ,β+ 1
2
(y)+ (β + α− 1

2

)
Wα− 1

2 ,β− 1
2
(y) .

Hence we get

2β√
y

V ε
κ,β

( y

4

)
=
(
β + 1− k

2

)
W k−1

2 ,β+ 1
2
(y)+

(
β + k − 1

2

)
W k−1

2 ,β− 1
2
(y)

+ εΓ
(
β + 1+k

2

)
Γ
(
β + 1−k

2

) (W 1−k
2 ,β− 1

2
(y)−W 1−k

2 ,β+ 1
2
(y)
)
.

Using sΓ(s) = Γ(s + 1) we rearrange the above terms into the recursion
formula

β√
y

V ε
k,β(y) =

(
β + k − 1

2

)
V ε

k−1,β− 1
2
(y)

+
(
β + 1− k

2

)
V−ε

k−1,β+ 1
2
(y) .

(8.28)

Integrating this we obtain by (8.25) the following recursion formula

Φεk(s, β) =
(

1+ k − 1

2β

)
Φε

k−1,β− 1
2

(
s + 1

2

)

+
(

1− k − 1

2β

)
Φ−ε

k−1,β+ 1
2

(
s + 1

2

) (8.29)

for any k � 1 and β �= 0.
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Now we are ready to prove (8.26) by induction on k. For k = 0 we have

V ε
0,β(y) = (1+ ε)W0,β(4y) = (1+ ε)2

( y

π

) 1
2
Kβ(2y) .

Hence

Φε0(s, β) =
1+ ε

2
Γ
(s + β

2

)
Γ
(s − β

2

)
(8.30)

by (6.581.16) of [GR]. This proves (8.26) with

pε0(s, β) =
1+ ε

2
. (8.31)

Suppose k � 1. Introducing (8.26) for Φεk−1(s, β) into the right side of
(8.29) we obtain

Φεk(s, β) =
(

1+ k − 1

2β

)
pεk−1

(
s + 1

2
, β − 1

2

)

Γ
(s + β

2
+ 1− ε

4

)
Γ
(s − β + 1

2
+ 1+ ε(−1)k

4

)

+
(

1− k − 1

2β

)
p−εk−1

(
s + 1

2
, β + 1

2

)

Γ
(s + β + 1

2
+ 1+ ε

4

)
Γ
(s − β

2
+ 1− ε(−1)k

4

)
.

Here we write

Γ
(s − β + 1

2
+ 1+ ε(−1)k

4

)
= Γ

(s − β
2

+ 1− ε(−1)k

4

){1
s−β

2

according as ε = ∓(−1)k and

Γ
(s + β + 1

2
+ 1+ ε

4

)
= Γ

(s + β
2

+ 1− ε
4

){1
s+β

2

according as ε = ∓1. Hence we obtain the assertion (8.26) with

pεk(s, β) =
(

1+ k − 1

2β

)
pεk−1

(
s + 1

2 , β − 1
2

){1 if ε = −(−1)k
s−β

2 if ε = (−1)k

+
(

1− k − 1

2β

)
p−εk−1

(
s + 1

2 , β + 1
2

){1 if ε = −1
s+β

2 if ε = 1.

This recursion formula shows that pεk(s, β) is a polynomial in s.
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From this formula it is easy to find by induction on k � 1 the degree and
the leading coefficient of the polynomials, specifically

p1
k(s, β) = 2[ k−1

2 ]s[ k
2 ] + lower degree terms (8.32)

p−1
k (s, β) = 2[ k

2 ]s[ k−1
2 ] + lower degree terms. (8.33)

Therefore pεk(s, β) are not identically zero, except for p−1
0 (s, β) ≡ 0.

The first four polynomials are

p1
1(s, β) = 1 p−1

1 (s, β) = 1

p1
2(s, β) = s − 1

2 p−1
2 (s, β) = 2

p1
3(s, β) = 2s + β − 1 p−1

3 (s, β) = 2s − β − 1

p1
4(s, β) = 2s2 − 2s − β2 + 3

4 p−1
4 (s, β) = 4s − 2

while the next, which we don’t actually require, are

p±1
5 (s, β) = 4s2 − 2(2∓ β)s − β2 ∓ β + 2.

The polynomials pεk(s, β) have numerous symmetries. It is easy to see
that

Φεk(s, β) = Φε(−1)k

k (s,−β) . (8.34)

This follows from Wα,β(y) = Wα,−β(y) and

Γ
(
β + 1+k

2

)
Γ
(
β + 1−k

2

) = (−1)k
Γ
(− β + 1+k

2

)
Γ
(− β + 1−k

2

)
by the functional equation for the gamma function. Then (8.34) implies

pεk(s, β) = pε(−1)k

k (s,−β) . (8.35)

Less obvious is the functional equation

pεk(s, β) = νpεk(1− s,−β) (8.36)

with ν = ±1. This can be verified for 1 � k � 4 from the following
expressions

p1
1

(
s + 1

2 , β
) = 1 p−1

1

(
s + 1

2 , β
) = 1

p1
2

(
s + 1

2 , β
) = s p−1

2

(
s + 1

2 , β
) = 2

p1
3

(
s + 1

2 , β
) = 2s + β p−1

3

(
s + 1

2 , β
) = 2s − β

p1
4

(
s + 1

2 , β
) = 2s2 − β2 + 1 p−1

4

(
s + 1

2 , β
) = 4s.

We do not need to compute any more of these polynomials. To establish
the functional equation (8.36) for all k � 0 and to complete the proof
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of Proposition 8.1 we argue as follows. First from (8.23) we get (8.18)
if 1 � k � 4, because the polynomials pεk(s, it j) and pεk(1 − s,−it j)

cancel out by virtue of (8.36). Note that β = it j has the property −β = β̄
unless β is real; that can happen only if k is even in which case we also
use (8.35). For larger k we have already obtained the functional equation
(8.18) but only with ω j replaced by a rational function of s. On the other
hand we know that L j(s) agrees with the L–function of a cusp form of
weight κ = 0, 1 which induces u j(z), so (8.18) holds for L j(s) with the
same gamma factors (because k ≡ κ (mod 2) and the parity of the form,
i.e. the eigenvalue ε j = ±1 does not change). Comparing both functional
equations we deduce that the rational function in question must be constant.
This means that the functional equation (8.36) holds for some constant ν.
Then by (8.32) and (8.33) we find that this constant is given by

ν = (−1)deg pεk = (−1)[
k
2− 1−ε

4 ] .

Finally, having the functional equation for the polynomial, we can apply
(8.26), (8.24) and (8.23) to obtain the functional equation (8.18) for the
L–function with the root number given by

ω j = ikνη̄ j ρ̄ j(1)/ρ j(1)

as claimed.
We still have to justify (8.18) for u j (z) in C−0(Γ, χ; s j ) because p−1

0 (s, β j)
≡ 0. This case can be reduced to one already established by mapping u j(z)
to its successor.

We remark that although the polynomials pk seem quite basic we were
unable to find any reference to them in the literature.

9. Partitioning the L–function

In this section we break up our L–function L j(s) into partial sums. Quite
generally L–functions can be approximated by partial sums of length about
the square root of the conductor and use of the functional equation is the
standard way to achieve this. In our case we begin with (8.18). However, if
u j comes from a holomorphic form we prefer to use (8.11) with m = k for
technical reasons (to avoid poles of the gamma factors).

We choose a function G(u) holomorphic in |Re u| < 2 such that

G(u) = G(−u) ,
G(0) = 1 , (9.1)
G(u)� 1 .

Consider the integral

I j(s) = 1

2πi

∫
(1)
Λ j(s + u)G(u)u−1du .
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Moving the integration to the line Re u = −1 and applying (8.18) we get

Λ j(s) = I j(s)+ ω j I j(1− s̄) . (9.2)

On the other hand, introducing the Dirichlet series (8.1) and integrating
termwise we obtain

I j(s) =
∞∑
1

λ j(n)
1

2πi

∫
(1)

(√D

πn

)s+u
γ j(s + u)G(u)u−1du

where

γ j(s) = Γ
(s + it j

2
+ 1− ε j

4

)
Γ
(s − it j

2
+ 1− ε j(−1)k

4

)
(9.3)

or γ j(s) = 2−sΓ
(
s + k−1

2

)
in case u j(z)y−

k
2 is holomorphic. Note that in

both cases γ j(s) is holomorphic for Re s � 1
2 by (8.15), (8.16). Inserting

this into (9.2) and dividing by
(√

D
π

)s
γ j(s) we arrive at the following exact

approximate functional equation.

Lemma 9.1. For s with Re s = 1
2 we have

L j(s) =
∞∑
1

λ j(n)n
−sVs

( πn√
D

)

+ ω j(s)
∞∑
1

λ̄ j(n)n
s−1V1−s

( πn√
D

) (9.4)

where

ω j(s) = ω j

(√D

π

)1−2s γ j(1− s)

γ j(s)

and Vs(y) is given by the Mellin integral

Vs(y) = 1

2πi

∫
(1)

γ j(s + u)

γ j(s)

G(u)

u
y−udu . (9.5)

Remark. For Re s = 1
2 we have |ω j(s)| = 1.

In our applications of Lemma 9.1 we shall need to control the size of
Vs(y) and its derivatives. The following result suffices for this.

Lemma 9.2. Let A � 3 be an integer. There exists G(u) satisfying (9.1)
such that for any integer a � 0 we have

V (a)
s (y)�

( |s| + |t j |
y

)a(
1+ y

|s| + |t j |
)−A

, (9.6)

the implied constant depending on a, A and k.
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Proof. We choose

G(u) =
(

cos
πu

A

)−A
.

Move the integration to Re u = B where B = − 1
4 or B = A, and differen-

tiate a times getting

V (a)
s (y)�

∫
(B)

∣∣∣ γ j(s + u)

γ j(s)
G(u)ua−1 y−Bdu

∣∣∣ +{1 if B < 0,
0 if B > 0.

Consider the case where γ j(s) is given by (9.3), so

γ j(s + u)

γ j(s)
= Γ

(
s′ + u

2

)
Γ(s′)

Γ
(
s′′ + u

2

)
Γ(s′′)

where

s′ = s

2
+ it j

2
+ 1− ε j

4
,

s′′ = s

2
− it j

2
+ 1− ε j(−1)k

4
.

Note that σ ′ = Re s′ > 1
4 and σ ′′ = Re s′′ > 1

4 by (8.15), (8.16). By
Stirling’s formula

Γ
(
s′ + u

2

)
Γ(s′)

#
∣∣s′ + u

2

∣∣σ ′− 1
2+ B

2

|s′|σ ′− 1
2

exp
(π

2

(
|s′| − ∣∣s′ + u

2

∣∣))

�
a,A
|u|− a

2 |s′| a+B
2 exp

(π
4
|u|
)

and a similar bound holds with s′′ in place of s′. Hence we deduce the
estimate

V (a)
s (y)� y−B

(
|s| + |t j |

)a+B
∫
(B)
|G(u)| exp

(π
2
|u|
) ∣∣∣ du

u

∣∣∣
+
{

1 if B < 0
0 if B > 0

and this last integral is bounded. The lemma follows on choosing B = A
if y > |s| + |t j | and B = − 1

4 otherwise. In the case of holomorphic forms
it j = k−1

2 and the result is given in Lemma 3.2 of [DFI7].
Applying a smooth partition of unity we derive by (9.4) and (9.5) that

L j(s)�
∑

n

G j(N)√
N

(
1+ N

(|s| + |t j |)
√

D

)−A
(9.7)
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where G j(N) are sums of type

G j(N) =
∑

n

λ j(n)g(n)

with g(x) a smooth function supported on [N, 2N] for N = 2ν/2, ν � −1,
such that

g(a)(x)�
( |s| + |t j |

N

)a

for every a � 0, the implied constant depending on a, A and k.
By Cauchy’s inequality applied to (9.7) we have

L j(s)
2 �

∑
N

|G j(N)|2
N

(
1+ N

(|s| + |t j |)
√

D

)−2A
log 3N .

It remains to estimate |G j(N)|2. We have

|G j(N)|2 =
∑∑

n1 n2

λ j(n1)λ̄ j(n2)g(n1)ḡ(n2)

and from (6.6) and (6.5) we get

|G j(N)|2 =
∑
d|D∞

λ̄ j(d)
∑

(δ,D)=1∑
n1

∑
n2

λ j(n1 n2)g(δn1)ḡ(δdn2)χ(n2) .

Grouping the terms in accordance with the product n1 n2 = n we write the
above expression as

|G j(N)|2 =
∑
d|D∞

λ̄ j(d)
∑

(δ,D)=1

∑
n

λ j(n)σF(n, χ) (9.8)

where σF(n, χ) is defined in (10.1) for general F(x1, x2) and here we have
specifically

F(x1, x2) = g(δx1)ḡ(δdx2) . (9.9)

Thus F(x1, x2) is supported in the dyadic box [X1, 2X1] × [X2, 2X2] with

X1 = N/δ , X2 = N/δd . (9.10)

Moreover the partial derivatives of F satisfy (11.1) with

P = |s| + |t j | . (9.11)
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10. Averaging the spectral sum

In this chapter we are going to develop a formula for the average over n
of the spectral sum in Proposition 6.1 weighted by a special function of
arithmetic nature designed for the problem of bounding the fourth power of
our L–function.

Specifically we consider

σF(n, χ) =
∑

n1n2=n

F(n1, n2)χ(n2) (10.1)

where F(x1, x2) is defined on R+ ×R+ and is of Schwartz type. A product
L j(s)L j(s, χ) may be built out of bits of type σF(n, χ) twisted against the
coefficients of L j . The product L j(s)L j(s, χ) is just |L j(s)|2 apart from
local factors at the ramified primes.

To each Hecke-Maass cusp form u j(z)we attach the corresponding sum

Nj =
∑

n

λ j(n)σF(n, χ) (10.2)

and, to each Eisenstein series Ea(z,
1
2 + it), the corresponding sum

Na(t) =
∑

n

λa(n, t)σF(n, χ). (10.3)

Needless to say these also depend on the character χ and the bit function F
but we do not display this since χ will be fixed throughout and most of our
arguments will deal with individual F.

Proposition 10.1. For m � 1 we have

∑
j

h(t j)ν j λ̄ j(m)Nj +
∑
a

1

4π

∫ ∞

−∞
h(t)νa(t)λ̄a(m, t)Na(t)dt

= σF(m, χ)+ χ(−1)
∑

c≡0 (mod D)

∑
n

σG(n, χ)S(m − n, 0; c)
(10.4)

where S(h, 0; c) is the Ramanujan sum and G is the Fourier integral

G(y1, y2) =
∫∫

F(cx1, cx2)I
(
4π
√

mx1x2
)

e
(−x1 y2 − x2 y1)dx1dx2 .

(10.5)

Here I(x) is the integral transform of h(t) given in (5.21).

Proof. This follows immediately from Proposition 6.1 by opening the
Kloosterman sums and executing the summation over n (but not m) by
means of the Poisson-Voronoi formula, Proposition 6.1 of [DFI7].
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Note that the effect of this averaging is to replace the Kloosterman sums
by the simpler Ramanujan sums. We may recall that the spectral sum formula
Proposition 5.1 is essentially a formula for the inner product 〈 Pn, Pm 〉 of
two Poincaré series. The left side comes from the spectral expansion and
the right side comes from the unfolding of Pn over the cosets of the group
followed by an application of Poisson summation over the stability group.
At that point one could have performed a summation over n first, giving an
alternate route to Proposition 10.1. In this way we would have avoided the
appearance of any Kloosterman sums whatsoever.

11. Contribution of the continuous spectrum

Although our main objective is to estimate the sums Nj for individual
Hecke-Maass cusp forms u j we are able to evaluate asymptotically the
corresponding sums Na(t) for the Eisenstein series Ea

(
z, 1

2 + it
)

due to the
explicit formula (6.17) for λa(n, t). We shall show that sums Na(t) are small
except for the two cusps a ∼ 0 and a ∼ ∞ and for each of these we get
a main term. This is not surprising because in these cases λa(n, t) is very
much like σF(n, χ) so there is no orthogonality.

We assume that the bit function F(x1, x2) is smooth, supported on the
box [X1, 2X1] × [X2, 2X2] with X1, X2 � 1

2 and satisfying

∂(α1,α2)

∂xα1
1 ∂x

α2
2

F(x1, x2)� Pα1+α2 X−α1
1 X−α2

2 (11.1)

for some P � 1, and all α1, α2 � 0, the implied constant depending only
on α1, α2.

This is a natural assumption for a function which does not oscillate too
rapidly where the extra factor P provides needed flexibility, for example
it will allow us to achieve polynomial growth in our L–function bound in
both the s and spectral aspects.

Opening λa(n, t) and σF(n, χ) in (10.3) we get

Na(t) =
∑

n1n2=ad

F(n1, n2)χ(n2)
(a

d

)it
χv(a)χw(d) . (11.2)

To evaluate this we consider the generating Dirichlet series

La(s1, s2) =
∑∑
n1n2=ad

n−s1
1 n−s2

2 χ(n2)
(a

d

)it
χv(a)χw(d) .

All solutions to n1n2 = ad are given by n1 = αδ, n2 = βγ , a = αγ , d = βδ
where α, β, γ, δ run over positive integers with (γ, δ) = 1. Hence

La(s1, s2) =
∑
α

∑
(β,w)=1

∑∑
(γ,δv)=1

(αδ)−s1(βγ)−s2

(αγ
βδ

)it

χv(α)χv(β)χw(γ)χw(δ) .
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We relax the condition (γ, δ) = 1 by Möbius inversion getting

La(s1, s2) =
(∑

α

α−s1+itχv(α)
)( ∑

(β,w)=1

β−s2−it χv(β)
)

( ∑
(γ,v)=1

γ−s2+it χw(γ)
)(∑

δ

δ−s1−itχw(δ)
)( ∑

(ρ,D)=1

µ(ρ)ρ−s1−s2

)
.

To simplify, for any Dirichlet series D(s) = ∑
ann−s we introduce the

notation Dq(s) for the same series restricted to the terms with (n, q) = 1.
Therefore if D(s) has an Euler product then Dq(s) has the same Euler
product with the local factors at the prime divisors of q omitted.

Now the above formula becomes

La(s1, s2) = ζD(s1 + s2)
−1L(s1 − it, χv)L(s1 + it, χw)

L D(s2 + it, χv)L D(s2 − it, χw) .

By contour integration we have

Na(t) = − 1

4π2

∫
(2)

∫
(2)

F̂(s1, s2)La(s1, s2)ds1ds2

where F̂(s1, s2) is the Mellin transform of F(x1, x2)

F̂(s1, s2) =
∫∫

F(x1, x2)x
s1−1
1 xs2−1

2 dx1dx2 .

By (11.1) and integration by parts we deduce that

F̂(s1, s2)� Xσ1
1 Xσ2

2

( P2

|s1s2|
)A

(11.3)

where σ1 = Re s1, σ2 = Re s2, 1
2 � σ1, σ2 � 2, and any A > 0, the implied

constant depending on A. Moving the integration to Re s1 = 1
2 , Re s2 = 1

2
we meet simple poles at s1 = 1+ it and s2 = 1 − it in case v = 1 (that is
a ∼ 0) and at s1 = 1− it and s2 = 1+ it in case w = 1 (that is a ∼ ∞). To
describe this we use the notation δv = 1 if ν = 1 and = 0 otherwise, and
similarly for δw. Note that

ζD(2)
∏
p|D

(
1− 1

p

)−1 = ζ(2)ν(D)
D
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where ν(D) is given by (4.1). We get

Na(t) = δvD

ζ(2)ν(D)
F̂(1+ it, 1− it)

∣∣L(1+ 2it, χ)
∣∣2

+ δwD

ζ(2)ν(D)
F̂(1− it, 1 + it)

∣∣L(1− 2it, χ)
∣∣2

+ δv I(s2,−t, χ)L(1+ 2it, χ)+ δw I(s2, t, χ)L(1− 2it, χ)

+ δv I(s1, t, χ)L(1− 2it, χ)+ δw I(s1,−t, χ)L(1+ 2it, χ)

− 1

4π2

∫
( 1

2 )

∫
( 1

2 )

F̂(s1, s2)La(s1, s2)ds1ds2

where

I(s, t, χ) = 1

2πi

∫
( 1

2 )

F̂(s, 1− it)
ζD(s − it)

ζD(s + 1− it)
L(s + it, χ)ds .

Next we estimate all but the first two terms above using the classical esti-
mates

L(s, χ)� |s|D 3
16+ε, ζ(s)� |s|, for Re s = 1

2 ,

L(s, χ)� log(|s|D), ζ(s)−1 � log |s|, for Re s = 1 .

When taken together with (11.3) for A = 2, these bounds yield

Na(t) = δvD

ζ(2)ν(D)
F̂(1+ it, 1− it)

∣∣L(1+ 2it, χ)
∣∣2

+ δwD

ζ(2)ν(D)
F̂(1− it, 1+ it)

∣∣L(1− 2it, χ)
∣∣2

+ O
(

P4(|t| + 1)4+ε(X1 + X2 +
√

D)
1
2 (X1 X2)

1
2 D

3
16+ε

)
.

(11.4)

Now we are ready to estimate the contribution of the continuous spectrum
to the left hand side of the spectral sum (10.4). This is

L E(m) =
∑
a

1

4π

∫ ∞

−∞
h(t)νa(t)λ̄a(m, t)Na(t)dt .

We insert the formula (11.4) for Na(t) and write

L E(m) = L (1)E (m)+ L (2)E (m)

where L (1)E (m) gives the contribution from the two main terms in (11.4) and
L (2)E (m) gives the rest.
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Note that only the cusps a ∼ ∞ and a ∼ 0 contribute to L (1)E (m) and
in view of (7.13) these contributions are equal, as they are for each pair of
complementary cusps. Therefore

L (1)E (m) =
12

ν(D)

∫ ∞

−∞
λ̄(m, t)h(t)

F̂(1+ it, 1− it)∣∣Γ ( k+1
2 + it

)∣∣2 dt , (11.5)

where

λ(m, t) = λ∞(m, t) =
∑

b1b2=m

χ(b1)
(b1

b2

)it
. (11.6)

For the error term we obtain

L (2)E (m)� (|r| + 1)3 P4(X1 + X2 +
√

D)
1
2

(X1 X2)
1
2 D−

13
16 (D+ |r|)ε

(11.7)

because by (5.19) and Stirling’s formula,∫ ∞

−∞
|h(t)|(|t| + 1)4+ε

∣∣∣Γ (k + 1

2
+ it

)∣∣∣−2
dt � (|r| + 1)3+ε .

Here the factor (D+ |r|)ε incorporates the bound,

L(1+ 2it, χ)� D−ε
(
log(|t| + 2)

)−1

which is required due to (7.13). Therefore, if χ is real our estimate is
ineffective and this carries over to our final bounds. For the purpose of our
final bounds for L–functions we could rearrange our intermediate arguments
so that (by positivity) only upper bounds, not lower bounds, are required
leading to effective results.

Turning to the main term L (1)E (m) it will be convenient to write (11.5) in
somewhat more explicit form before we leave this section. Specifically we
insert (11.6) and

F̌(t) = F̂(1+ it, 1− it) =
∫∫

F(x1, x2)
(x1

x2

)it
dx1dx2

giving

L (1)E (m) =
12

ν(D)

∑
b1b2=m

χ(b2)

∫∫
F(x1, x2)L

(√b1x2

b2x1

)
dx1dx2 (11.8)

where we have denoted

L(y) =
∫ ∞

−∞
h(t)y2it

∣∣∣Γ (k + 1

2
+ it

)∣∣∣−2
dt . (11.9)
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12. Contribution of the singular determinants

We single out from the right hand side of (10.4) the contribution from the
terms n = m. These ‘singular’ terms give rise to a large contribution which
will asymptotically cancel the large contribution LE(m) on the left side
coming from the continuous spectrum.

This singular contribution is just

Rs(m) = χ(−1)
∑

c≡0(mod D)

σG(m, χ)ϕ(c) (12.1)

where G(y1, y2) is given by (10.5). Recall that G depends on c although
this is not displayed by the notation.

OpeningσG(m, χ) (see (10.1)) and interchanging the order of summation
we obtain

Rs(m) =
∫∫

I
(
4π
√

mx1x2
) ∑

b1b2=m

χ(b2)Ek(b1x2 + b2x1)

∑
c≡0(D)

ϕ(c)F(cx1, cx2)dx1dx2

where

Ek(x) =
{

2 cos 2πx if k even,
2i sin 2πx if k odd.

(12.2)

Originally b1, b2 ran over all integers so, after we have grouped the pairs
±(b1, b2), Ek(x) compensates for the sum now running over b1, b2 positive.

For the sum over c we apply the Euler-Maclaurin formula (see Lemma 7.1
of [DFI7]) getting

∑
c≡0(D)

ϕ(c)F(cx1, cx2) = 1

ζ(2)ν(D)

∫
tF(tx1, tx2)dt

+
∫
ξD(t)

∂

∂t

(
tF(tx1, tx2)

)
dt .

(12.3)

Recall that ν(D) is given by (4.1) and, as proved in [DFI7]

ξD(t)� log
(

1+ t

D

)
� t

D
.

In accordance with (12.3) we split

Rs(m) = R(1)s (m)+ R(2)s (m)
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where

R(1)s (m) =
1

ζ(2)ν(D)

∑
b1b2=m

χ(b2)

∫∫ (∫ ∞

0
tF(tx1, tx2)dt

)

I
(
4π
√

mx1x2
)
Ek
(
b1x2 + b2x1

)
dx1dx2

(12.4)

and

R(2)s (m) =
∑

b1b2=m

χ(b2)

∫∫ (∫ ∞

0
ξD(t)

∂

∂t

(
tF(tx1, tx2)

)
dt

)

I
(
4π
√

mx1x2
)
Ek
(
b1x2 + b2x1

)
dx1dx2 .

(12.5)

First we estimate R(2)s (m). As in [DFI7, §7] we make the change of
variable x2 into x/x1 and we use the bound∫

∂

∂t

(
tF(tx1, tx/x1

)
Ek
(
b1x2 + b2x1

)
dx1 � P2

(
1+ b1b2x

)− 1
4 .

Note that by the support of F, t is in the range T(x) � t � 2T(x) where
T(x) = √X1 X2/x. Hence

R(2)s (m)� τ(m)P2
∫ ∞

0

∣∣I(4π√mx)
∣∣(1+ mx)−

1
4

∫ 2T(x)

T(x)
log
(

1+ t

D

)
dt dx .

(12.6)

We shall show that

I(x)� min
{

x
(
1+ | log x|), x−

1
2 (|r| + 1)

1
2

}
, (12.7)

the implied constant depending only on k.
First recall the integral representation (5.21). For the K–Bessel function

therein we use the formula

K2ir(z) =
∫ ∞

0
e−z ch x cos(2rx)dx

which yields the bound∣∣∣K2ir(z)
∣∣∣ � K0(Re z)� 1+ | log Re z|

if Re z > 0. Hence we obtain the first part of (12.7),

I(x)� x
∫ i

−i

(
1+ | log Re ζx|)|dζ | � x(1+ | log x|) .
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For the proof of the second part of (12.7) we appeal instead to the integral
representation (5.20). We start from the formula∫ i

−i
e−ζzdζ = 2i

sin z

z
.

Differentiating this k − 1 times in z we get∫ i

−i
(−iζ)k−1e−ζzdζ = 2ik

(sin z

z

)(k−1)

=
∑

0�α<k
α even

A(α)zα−k sin z +
∑

0�α<k
α odd

A(α)zα−k cos z .

Hence (5.20) expands into

I(x) = −x
∑

0�α<k

A(α)
( x

2

)α−k

∫ ∞

0

(
y + 1

y

)α−k
y−1−2ir

{ sin
(

x
2

(
y + 1

y

))
cos
(

x
2

(
y + 1

y

))}dy

= −
∑

0�α<k

A(α)x1+α−k
∫ ∞

0
(ch t)α−k

{
cos(x ch t)
sin(x ch t)

}
cos(2rt)dt .

We estimate each integral separately as follows:∫ ∞

0
=
∫ ε

0
+
∫ ∞

ε

� ε+ |r| + 1

εx
= 2

( |r| + 1

x

) 1
2

on choosing ε optimally. Here the first bound is trivial and the second bound
comes out by partial integration. Hence we derive the second part of (12.7).

Using (12.7) we conclude from (12.6) that the remainder term (12.5)
satisfies

R(2)s (m)� P2τ(m)
( |r| + 1

m
X1 X2

) 1
2
(log 5m X1 X2)

2 . (12.8)

Next we elaborate the main term R(1)s (m). In [DFI7] this main term
vanished due to an orthogonality of Ek(bx) to the Bessel function Jk−1(ax).
The corresponding special function I(ax) here is no longer orthogonal to
Ek(bx) and the integral in (12.4) gives rise to a main term which (as we shall
see after considerable effort) matches the corresponding main term L (1)E (m)
coming from the continuous spectrum (which did not exist in [DFI7]) and
cancels out in the spectral sum formula in the averaged form (10.4).
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Precisely, the main term is after a change of variables in (12.4),

R(1)s (m) =
12

ν(D)

∑
b1b2=m

χ(b2)

∫∫
F(x1, x2)R

(√b1x2

b2x1

)
dx1dx2 (12.9)

where we have denoted

R(y) = 1

2π2

∫ ∞

0
I(2πt)Ek

( t

2

(
y + 1

y

))dt

t
. (12.10)

13. Matching the integrals

Our goal in this chapter is to show that

L (1)E (m) = R(1)s (m) (13.1)

where these are the main terms in the contribution from the continuous
spectrum (given in (11.8)) and that from the singular determinants (given
in (12.9)). We shall actually be able to show somewhat more, that the inner
integrals agree, after which (13.1) follows trivially. In other words, for any
y > 0,

L(y) = R(y) . (13.2)

We begin by making some computations on R(y). From (5.21) and
(12.10) we have

R(y) = − 2

π

∫ i

−i
(−iζ)k−1

∫ ∞

0
K2ir(2πζt)Ek

( t

2

(
y + 1

y

))
dt dζ .

After insertion of (12.2) this becomes

− 2

π2

( y + 1
y

2i

)k−1
∫ 2i/

(
y+ 1

y

)
−2i/

(
y+ 1

y

) ζ k−1
∫ ∞

0
K2ir(ζt)

{ cos t
i sin t

}
dtdζ

where, by
{ A

B

}
, we mean A in case k even and B in case k odd. Next, by

formulae (6.671.6) and (6.671.5) of [GR] we have∫ ∞

0
K2ir (ζt)

{
cos t
sin t

}
dt = π

4
√

1+ ζ2

{
1/ cos πir
1/ sinπir

}

[(1

ζ
+
√

1+ 1

ζ2

)2ir ±
(1

ζ
+
√

1+ 1

ζ2

)−2ir]
.
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Inserting these and changing ζ to 1/ξ we get

R(y) = − 1

2π

( y + 1
y

2i

)k−1
{

1/ chπr
1/ shπr

}∫ i
2

(
y+ 1

y

)
− i

2

(
y+ 1

y

)(ξ2 + 1
)− 1

2

ξ−k
[(
ξ +

√
1+ ξ2

)2ir ±
(
ξ +

√
1+ ξ2

)−2ir]
dξ.

(13.3)

Our next step requires k � 1. The argument for k = 0 will be given later.
We replace the integral over a semi-circle by integrals over two segments

of the imaginary axis using Cauchy’s theorem. (For the convergence of the
relevant integral we require k > 0.) This gives

R(y) = 1

2π

( y + 1
y

2i

)k−1
{

1/ chπr
1/ shπr

}[∫ i∞

i
2

(
y+ 1

y

)+
∫ − i

2

(
y+ 1

y

)

−i∞

]
.

Change ξ to i ch x in the first integral and to −i ch x in the second integral
getting

R(y) = 1

2πi

( y + 1
y

2

)k−1
{

1/ chπr
1/ shπr

}
[
(−1)k−1

∫ ∞

log y

(
e−πr+2irx ± eπr−2irx

) dx

(ch x)k

+
∫ ∞

log y

(
eπr+2irx ± e−πr−2irx

) dx

(ch x)k

]
.

On combining the exponential terms this simplifies to

R(y) = 2

π

( y + 1
y

2

)k−1
{

thπr
cthπr

}∫ ∞

log y

sin 2rx

(ch x)k
dx . (13.4)

For k = 0 we compute R(y) explicitly starting from (13.3). We have

R(y) =
(

y + 1
y

)−1

πi chπr

∫ i
2

(
y+ 1

y

)

− i
2

(
y+ 1

y

)
[(
ξ +

√
1+ ξ2

)2ir

+
(
ξ +

√
1+ ξ2

)−2ir
]

dξ√
1+ ξ2

= −
(

y + 1
y

)−1

2πr chπr

∫ i
2

(
y+ 1

y

)

− i
2

(
y+ 1

y

)
[((

ξ +
√

1+ ξ2
)2ir

)′

−
((
ξ +

√
1+ ξ2

)−2ir
)′ ]

dξ .
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Assume without loss of generality that y � 1 (otherwise change y into 1/y).

Then for ξ = i
2

(
y + 1

y

)
we have

√
1+ ξ2 = i

2

(
y − 1

y

)
so

(
ξ +

√
1+ ξ2

)2ir = y2ire−πr .

Similarly for ξ = − i
2

(
y + 1

y

)
we get

(
ξ +

√
1+ ξ2

)2ir = y2ireπr .

Hence the above integral is equal to

y2ire−πr + y−2ireπr − y2ireπr − y−2ire−πr = −2
(
y2ir + y−2ir

)
shπr .

Therefore, for k = 0 we have

R(y) = thπr

πr

y2ir + y−2ir

y + y−1
. (13.5)

Now we compute L(y). Inserting (5.19) into (11.9) we get

L(y) = π
∣∣∣Γ (1− k

2
− ir

)∣∣∣−2

∫ ∞

−∞
y2itdt∣∣∣Γ ( k+1

2 + it
)∣∣∣2 chπ(r − t) chπ(r + t)

.
(13.6)

Let k � 1; the case k = 0 will be treated later. Since, by the recurrence
formula and functional equation for the gamma function,

∣∣∣Γ (k + 1

2
+ it

)∣∣∣2 = πi−k

{
1/ chπt
1/ shπt

} ∏
1�ν�k

(k + 1

2
− ν + it

)

we have

L(y) = ik
∣∣∣Γ (1− k

2
− ir

)∣∣∣−2

∫ ∞

−∞

{
chπt
shπt

}
y2itdt

∏
1�ν�k

(
k+1

2 − ν + it
)

chπ(r − t) chπ(r + t)
.

(13.7)
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Hence(
yk−1L(y)

)′ = 2ik
∣∣∣Γ (1− k

2
− ir

)∣∣∣−2

∫ ∞

−∞

{
chπt
shπt

}
y2it+k−2dt

∏
1<ν�k

(
k+1

2 − ν + it
)

chπ(r − t) chπ(r + t)
.

(13.8)

Now move the integration to the horizontal line t − i. We meet poles at
t = r − i

2 and t = −r − i
2 and find that(

yk−1L(y)
)′ = V(y)− 2ik

∣∣∣Γ (1− k

2
− ir

)∣∣∣−2

∫ ∞

−∞

{
chπt
shπt

}
y2it+kdt

∏
1<ν�k

(
k+3

2 − ν + it
)

chπ(r − t) chπ(r + t)

where V(y) denotes the contribution from these two poles.
From this we see that L(y) satisfies the first order differential equation(

yk−1L(y)
)′ = −y2k

(
y1−kL(y)

)′ + V(y) .

This equation can be written as((
y + 1

y

)1−k
L(y)

)′
= y−k

(
y + 1

y

)−k
V(y) . (13.9)

Integrating both sides we get

L(y) = −
(

y + 1

y

)k−1
∫ ∞

y

(
η+ 1

η

)−k
η−kV(η)dη+ const. (13.10)

The convergence of this integral will be seen once we have computed
V(y) which we now proceed to do. The residue of the integrand in (13.8) at
t = r − i

2 is

res
r− i

2

=
−i

{
shπr
chπr

}
y2ir+k−1

Πk(r)(−πi)(−i sh 2πr)

and at t = −r − i
2 is

res
−r− i

2

=
−i

{− shπr
chπr

}
y−2ir+k−1

Πk(−r)(i sh 2πr)(−πi)
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where

Πk(r) =
∏

1<ν�k

(k

2
+ 1− ν + ir

)
.

Note that Πk(r) = (−1)k−1Πk(−r). Therefore we have

V(y) = (−2πi)2ik
∣∣∣Γ (1− k

2
− ir

)∣∣∣−2 (res
r− i

2

+ res
−r− i

2

)

= 2ik

Πk(r)

∣∣∣Γ (1− k

2
− ir

)∣∣∣−2{1/ chπr
1/ shπr

}
yk−1 (y2ir − y−2ir

)
.

Using the recurrence formula and the functional equation for the gamma
function one can check that∣∣∣Γ (1− k

2
− ir

)∣∣∣2Πk(r) = πik−1

{
1/ shπr
1/ chπr

}
.

This gives

V(y) = 2i

π

{
thπr
cthπr

}
yk−1

(
y2ir − y−2ir

)
. (13.11)

Hence the integral in (13.10) converges for k > 0. Moreover the non–
constant part of the right side is clearly O(y−1). The left side L(y) is also
O(y−1) as follows from (13.7) by moving the horizontal line of integration
above Im t = 1

2 . Therefore by letting y tend to infinity we see that (13.10)
holds with the constant zero. Introducing (13.11) into (13.10) and changing
the variable of integration η into ex we get

L(y) = 2

π

( y + y−1

2

)k−1
{

thπr
cthπr

}∫ ∞

log y

sin 2rx

(ch x)k
dx . (13.12)

This agrees with the outcome (13.4) of our calculation of R(y).
For k = 0 we compute L(y) directly from (13.6). We have

L(y) = ∣∣Γ(1− ir)
∣∣−2

∫ ∞

−∞
y2it chπt dt

chπ(r − t) chπ(r + t)

= 2 shπr

πr

∫ ∞

0

cos(2t log y) chπt

chπ(r − t) chπ(r + t)
dt

and by (3.984.4) of [GR] we get

L(y) = thπr

πr

y2ir + y−2ir

y + y−1
. (13.13)

Again this agrees with the corresponding result (13.5) given for R(y).
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14. Spectral sum formula without Eisenstein series

Having matched the integrals from Sects. 11 and 12 we find that the formula
(10.4) reduces to the following.

Proposition 14.1. For m � 1 we have∑
j

h(t j)ν j λ̄ j(m)Nj = σF(m, χ)

+ χ(−1)
∑

c≡0(mod D)

∑
n �=m

σG(n, χ)S(m − n, 0; c)

+ R(2)s (m)− L (2)E (m)

(14.1)

where the remainders are bounded in (12.8) and (11.7).

One can see that both the series on the left and the sum of Ramanujan
sums on the right converge absolutely (and quickly).

We should emphasize that the test function h(t) defined in (5.19) depends
on the real parameter r and consequently so does the function which contains
I(x) defined by (5.21). The estimates for R(2)s (m), L (2)E (m), in (12.8) and
(11.7) are uniform in r, in fact only depending on the weight k (and on ε
in (11.7)). These two estimates will be sufficient for our applications. On
the other hand when it comes to the bounds we intend to develop for the
sums of Ramanujan sums on the right side of (14.1), these would not be
sufficient. We are able to resolve this problem by exploiting the parameter r.
Specifically we integrate (14.1) over r against a suitable test function q(r)
which improves the situation.

Fix a large real number A and choose

q(r) = r sh 2πr

(r2 + A2)8

(
ch
πr

2A

)−4A
. (14.2)

Of course other choices are possible. Note that q(r) is positive for r real,
but we can also consider it as a function of a complex variable. As such it
is even and holomorphic in the horizontal strip | Im r| < A. Moreover, on
the line Im r = ± A

2 it satisfies the bound

|q(r)| � 24A|r|−15 . (14.3)

Indeed, for u real, u � 0, we have∣∣∣sh 2π
(

u + i A

2

)∣∣∣ � ch 2πu ,∣∣∣ch
π

2A

(
u + i A

2

)∣∣∣ � 1

2
exp

(πu

2A

)
,∣∣∣(u + i A

2

)2 + A2
∣∣∣ � u2 + 3

4
A2 �

∣∣∣u + i A

2

∣∣∣2 .
Combining these we obtain (14.3).
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Multiplying (14.1) by q(r) and integrating from −∞ to ∞ we obtain
a sum formula with the new test function

H(t) =
∫ ∞

−∞
q(r)h(t, r)dr (14.4)

where (see (5.19))

h(t, r) = π
∣∣∣Γ (1− k

2
− ir

)∣∣∣−2
(chπ(r − t) chπ(r + t))−1 .

On the right side the function G is replaced by G, still given by the integral
(10.5), but now with I(x) = I(x, r) replaced by (see (5.21))

� (x) =
∫ ∞

−∞
q(r)I(x, r)dr

= −2x
∫ i

−i
(−iζ)k−1

( ∫ ∞

−∞
q(r)K2ir (ζx)dr

)
dζ .

(14.5)

The integration over r of the error terms leaves the bounds unchanged (put
r = 0 in (12.8) and (11.7)).

Summing up we obtain the following variant of (14.1).

Proposition 14.2. For m � 1 we have∑
j

H(t j)ν j λ̄ j(m)Nj = cAσF(m, χ)

+ χ(−1)
∑

c≡0(mod D)

∑
n �=m

σG(n, χ)S(m − n, 0; c)

+R(2)
s (m)−L(2)

E (m)

(14.6)

where the new error terms R(2)
s (m),L

(2)
E (m) are obtained from the old ones

by integration over r. Therefore they satisfy (12.8) and (11.7) with r = 1.
The constant cA is just the integral of q(r).

We conclude this section by giving a lower bound for H(t) which we
shall later require. We are interested only in t real or purely imaginary, and
for these, h(t, r) is real and positive. Hence

H(t) �
∫ |t|+2

|t|+1
q(r)h(t, r)dr .

In this range q(r) # r−15 and by Stirling’s formula

h(t, r) # rk−1e−πr .

Therefore, for t real or purely imaginary

H(t)� (|t| + 1
)k−16

e−π|t| . (14.7)
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15. A double average of the spectral sum

In the previous sections we obtained formulae for a number of spectral sums
valid for each individual m � 1. In the case of the last formula, without
Eisenstein series, we are going to perform an additional averaging over the
integer m, weighted by an arithmetic function of a particular type.

Let, for a given integer � � 1,

α(m) =
∑

m1m2=m
m2≡0(mod�)

H(m1,m2)δ(m2) (15.1)

where |δ(m2)| � 1 and where H(y1, y2) is supported on [Y1, 2Y1]×[Y2, 2Y2]
with Y1,Y2 � 1

2 , is smooth and satisfies

∂ν1+ν2 H(y1, y2)

∂yν1
1 ∂yν2

2

� Pν1+ν2Y−ν1
1 Y−ν2

2 (15.2)

for each ν1, ν2 � 0, the implied constant depending on ν1, ν2.
We think of Y2 as being slightly larger than Y1 so that α(m) appears as

a Dirichlet convolution in which one of the variables, the slightly shorter
one, is smooth. It is the fact that non-smooth one is the larger which makes
the problem deeper but also gives room for the amplifier and hence makes
the application possible.

For each cusp form f j from our Hecke basis we define

M j =
∑

m

λ j(m)α(m) . (15.3)

We do not require the corresponding sum Ma(t) for the continuous spectrum
since the latter has been eliminated from the formula in the previous chapter.

Proposition 15.1. Let Nj and M j be given by (10.2) and (15.3) with bit
functions F(x1, x2) satisfying (11.1) and H(y1, y2) satisfying (15.2). Let
H(t) be the test function given by (14.4). We have

∑
j

H(t j)ν jM jNj �
{

D
3
8 + (Y1 + Y2)

1− 1
24·48

}
(Y1 + Y2)

( X1

X2
+ X2

X1

) 3
2
(Y1

Y2
+ Y2

Y1

) 1
2 (

X1 X2Y1Y2
) 5

2 D−5 P10
(
DX1 X2Y1Y2

)ε
+ P4�−1

(
X1 X2Y1Y2

) 1
2{

1+ (X1 + X2 +
√

D
) 1

2
(
Y1Y2

) 1
2 D−

13
16

}(
�DX1 X2Y1Y2

)ε
.
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The proof of Proposition 15.1 will occupy several sections. From this point
on some of our arguments will be rather similar to those in [DFI7] from
Sect. 5 onward. The point is that our formula (14.6) without Eisenstein
series is similar to the Petersson formula for holomorphic cusp forms and
the test functions in both cases enjoy similar analytic properties. Actually
we are already one step ahead having eliminated the contribution to the right
side coming from the singular determinants.

By Proposition 14.2 we obtain∑
j

H(t j)ν jM jNj = cA

∑
m

ᾱmσF(m, χ)

+ χ(−1)
∑

c≡0(D)

∑
h �=0

S(h, 0; c)V(h)+
∑

m

ᾱ(m)
(
R(2)

s (m)−L(2)
E (m)

)

where

V(h) =
∑

m−n=h

ᾱ(m)σG(n, χ) . (15.4)

Note that V(h) also depends on c by way of G (see (10.5) and (14.5)).
A more general sum of this type will be evaluated in the next section.

Here the first sum on the right side (the diagonal terms) is estimated
trivially by ∑

m≡0(�)

α(m)σF(m, χ)

� τ2(�)�−1 min {X1 X2,Y1Y2} (log 9X1 X2Y1Y2)
3 .

The remainder terms may also be estimated at once, as follows.∑
m≡0(�)

α(m)
(
R(2)

s (m)−L(2)
E (m)

)
� P2�−1+ε(X1 X2Y1Y2

) 1
2+ε

+ P4�−1
(
X1 + X2 +

√
D
) 1

2
(
X1 X2

) 1
2 Y1Y2 D−

13
16
(
�DY1Y2

)ε
by (12.8) and (11.7) applied to R and L (rather than R and L).

Introducing these estimates for the diagonal terms and the remainder
terms we obtain∑

j

H(t j)ν jM jNj = χ(−1)
∑

c≡0(D)

∑
h �=0

S(h, 0; c)V(h)

+ O
(

P4�−1
{

1+ (X1 + X2 +
√

D
) 1

2
(
Y1Y2

) 1
2 D−

13
16

}
(
X1 X2Y1Y2

) 1
2
(
�DX1 X2Y1Y2

)ε)
.

(15.5)
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16. Representations by the determinant

In this section we consider the determinant equation

a1b2 − a2b1 = h (16.1)

where h �= 0 is a fixed integer and a1, a2, b1, b2 are integer variables. We
are interested in counting the solutions of these with rather general weights.
Let F be a smooth function on R × R × R+ × R+ such that, for any
α1, α2, β1, β2 � 8

aα1
1 aα2

2 bβ1
1 bβ2

2

∂(α1,α2,β1,β2)

∂aα1
1 ∂a

α2
2 ∂b

β1
1 ∂b

β2
2

F(a1, a2; b1, b2)� (16.2)

Zα1+α2+β1+β2

(
1+ |a1|

A

)−4(
1+ |a2|

A

)−4(
1+ b1

B

)−4(
1+ b2

B

)−4

where A, B, Z � 1. This indicates that the support of F is ‘essentially’ in
the box

[−A, A] × [−A, A] × [0, B] × [0, B] .
In practice Z will be small which indicates that F is not highly oscillatory.
Concerning the variables b1, b2 we wish to have completely general weights
so we let γb1, δb2 be any complex numbers, for b1, b2 > 0. Our goal is to
evaluate the sum

V(h) =
∑∑∑∑

a1b2−a2b1=h

γb1δb2 F(a1, a2; b1, b2) . (16.3)

The expected main term is

W(h) =
∑∑
(b1,b2)|h

γb1δb2

(b1, b2)

b1b2
I(b1, b2) (16.4)

where

I(b1, b2) =
∫

F
( x

b2
,

x − h

b1
; b1, b2

)
dx . (16.5)

Our main result in this section is

Theorem 16.1. Let |γb1| � 1 and |δb2| � 1. For any h �= 0 we have

V(h) = W(h) (16.6)

+O

(
τ(h)

(
1+ |h|

AB

)−2 (
Z8 A−1 B

47
48

) 1
24
(AB)1+ε

)

with any ε > 0, the implied constant depending on ε.

The main ingredient in the proof and one of the main ingredients in this
paper is the following corollary of Theorem 2 of [DFI5].
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Proposition 16.2. Let αm for M < m � 2M, and βn for N < n � 2N be
arbitrary complex numbers and h �= 0 an integer. Then, for any ε > 0, we
have

∑∑
(m,n)=1

αmβne
(

h
m

n
+ X

mn

)

� ‖α‖ ‖β‖
(

1+ |X|
MN

)(|h| + MN
) 3

8
(
M + N

) 11
48+ε

where e(t) = e2πit , mm ≡ 1 (mod n), and the implied constant depends
only on ε.

Proof. Theorem 2 [DFI5] is precisely the case X = 0. To derive the general
case we separate the variables m, n in e(X/mn) by Fourier inversion, in-
terchange the order of integration and estimate using the theorem together
with trivial bounds.

Proof of Theorem 13.1. By applying a smooth partition of unity on R4 we
may assume that F is supported in one of the following sets:

B1 = [−1, 1] × R×R+ × R+,
B2 = R× [−1, 1] ×R+ × R+,
Bσ = σ1[X1, 4X1] × σ2[X2, 4X2] × [Y1, 4Y1] × [Y2, 4Y2],

where σ = (σ1, σ2) = (±,±) and X1, X2,Y1,Y2 take values 2n � 1
2 .

If F is supported in B1 then the left side of (16.6) is

V(h) =
∑

−a2b1=h

γb1δb2 F(0, a2; b1, b2)

� B
∑
ab=h

(
1+ |a|

A

)−4(
1+ b

B

)−4 � Bτ(h)
(

1+ |h|
AB

)−4
.

Next, the integral I(b1, b2) in W(h) is bounded by

(
1+ b1

B

)−4(
1+ b2

B

)−4
∫ ∞

−∞

(
1+ |x|

b2

)−4(
1+ |x − h|

Ab1

)−4
dx.

Here we have

(
1+ b1

B

)(
1+ b2

B

)(
1+ |x|

b2

)(
1+ |x − h|

Ab1

)
�
(

1+ |x|
B

)(
1+ |x − h|

AB

)
� 1+ |h|

AB
.
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Hence the main term in (11.2) satisfies

W(h)�
(

1+ |h|
AB

)−2 ∑∑
(b1,b2)|h

(b1, b2)

b1

(
1+ b1

B

)−2(
1+ b2

B

)−2

� Bτ(h)
(

1+ |h|
AB

)−2
.

These estimates are absorbed by the error term in (16.6) showing that
Theorem 16.1 is trivial if F is supported in B1. Similarly we see that
Theorem 16.1 is trivial if F is supported in B2.

Now suppose F is supported in the positive box B = B++= [X1, 4X1]×
[X2, 4X2] × [Y1, 4Y1] × [Y2, 4Y2]. First we estimate both V(h) and W(h)
trivially using the bound F � T−4 where

T = T(B) =
(

1+ X1

A

)(
1+ X2

A

)(
1+ Y1

B

)(
1+ Y2

B

)
.

Hence

V(h)� T−4 | {(a1, a2, b1, b2) ∈ B ; a1b2 − a2b1 = h} |
� T−4

(
1+ |h|

X1Y2 + X2Y1

)−2
min(X1Y2, X2Y1) (X1 X2Y1Y2)

ε

and, because T
(

1+ |h|
X1Y2+X2Y1

)
� 1+ |h|

AB , it follows that

V(h)� T−2
(

1+ |h|
AB

)−2
(X1 X2Y1Y2)

1
2+ε .

Similarly it follows that

W(h)� T−2
(

1+ |h|
AB

)−2
(X1 X2Y1Y2)

1
2+ε .

We apply these estimates for V(h) and W(h) when the box B does not
satisfy

∆2 A < X1, X2 < ∆
−1 A

∆2 B < Y1,Y2 < ∆
−1 B (16.7)

where ∆ > 0 will be chosen later. We obtain

V(h) = W(h)+ O
(∆

T

(
1+ |h|

AB

)−2
(AB)1+ε

)
. (16.8)

Now we proceed to the essential part of the proof. We split the summation
in (16.3) in accordance with the greatest common divisor d of b1, b2 getting

V(h) =
∑
d|h

∑∑
(b1,b2)=1

γdb1δdb2

∑∑
a1b2−a2b1=h/d

F(a1, a2; db1, db2) .
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To the inner double sum we apply Poisson’s formula as follows

∑
a1

∑
a2

=
∑

a2≡−hb̄1/d(mod b2)

F
(h/d + a2b1

b2
, a2; db1, db2

)

=
∑

r

e
(

r
h

d

b̄1

b2

)
Ir(b1, b2)

where

Ir(b1, b2) = 1

db1b2

∫
F
( x + h

db2
,

x

db1
; db1, db2

)
e
( rx

db1b2

)
dx .

(16.9)

From the zero frequency r = 0 we obtain the main term W(h). We
shall estimate the contribution of the other terms separately for each r using
Proposition 16.2 with h given by rh

d and X by rx
d . To this end we must

estimate the integral Ir .
If 0 < |r| < R = BZ

Ad then the original expression (16.9) suffices for the
estimation. For larger r we shall use the alternative expression, obtained by
partial integration three times,

Ir(b1, b2) = −
(db1b2

2πir

)3 1

db1b2

∫
F( )′′′e

( rx

db1b2

)
dx (16.10)

where F( )′′′ is the third derivative with respect to x.
From the two expressions and (16.2) one obtains by trivial estimation

Ir(b1, b2)�
(

1+ |h|d
AB

)−4 Ad

B
min

{
1,

R3

|r|3
}
. (16.11)

Before applying this estimate we need to separate the variables b1, b2.
This can be done using the Fourier transform at a cost to the resulting
estimate of a factor Z4.

We obtain by Proposition 16.2,

V(h)−W(h)�
∑
d|h

∑
r �=0

Ad

B
min

{
1,

R3

|r|3
}B

d

(
1+ A|r|d

B

)
(
|r| |h|

d
+ B2

d2

) 3
8
(B

d

) 11
48
(

1+ |h|d
AB

)−4
Bε

�
∑
d|h

RAd

B

B

d

(
1+ ARd

B

)( R|h|
d
+ B2

d2

) 3
8
(B

d

) 11
48
(

1+ |h|d
AB

)−4
Bε

� Z3
(

1+ |h|
AB

)−2
B

95
48+ε , (16.12)
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valid for any positive box B. Similarly one can show that (16.12) holds for
any box of type Bσ with σ = (±,±). Summing over the boxes B1,B2 and
Bσ we complete the proof of Theorem 16.1 since

∑
B

T(B)� (log 2A)2(log 2B)2 � (AB)ε .

For special coefficients we can successfully estimate the main term W(h)
defined in (16.4). We are interested in the coefficients given by

γb1 = χ1(b1/�1) if �1 | b1 , γb1 = 0 if �1 � b1 ,

δb2 = χ2(b2/�2) if �2 | b2 , δb2 = 0 if �2 � b2 , (16.13)

where χ1 (mod D1), χ2 (mod D2) are non-trivial Dirichlet characters. In
this case we write

W(h) =
∑
δd|h

µ(δ)d
∑∑

b1≡0([δd,�1])
b2≡0([δd,�2])

χ1(b1)χ2(b2)
I(b1, b2)

b1b2
.

Trivially I(b1, b2)� A min(b1, b2) � A
√

b1b2, but the condition (16.2)
implies that

bβ1
1 bβ2

2

∂β1+β2

∂bβ1
1 ∂b

β2
2

I(b1, b2)

� Zβ1+β2 A
√

b1b2

(
1+ b1

B

)−2(
1+ b2

B

)−2(
1+ |h|

AB

)−2
.

Hence, applying Burgess’s estimate (see [B2])

∑
b�B

χ(b)b−
1
2 � D

3
16+ε ,

which holds for any non-trivial character χ (mod D), one derives

Proposition 16.3. If the coefficients are given by (16.13) then

W(h)� τ(h)
(

1+ |h|
AB

)−2
Z2 A(D1 D2)

3
16+ε

for any ε > 0, the implied constant depending on ε.
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17. Estimation of V(h)

In the previous section we gave a general treatment of sums of type V(h).
In this section we apply these results to our specific sum (15.4). Opening
α(m) by (15.1) and σG(n, χ) by (10.1) we write V(h) in the form

V(h) =
∑∑∑∑

a1b2−a2b1=h

H(a1, b2)δ̄(b2)G(a2, b1)χ(b1) . (17.1)

From now on we specialize by choosing

δ(b2) = χ(b2) . (17.2)

This sum is of the type considered in Sect. 16 with

F(a1, a2; b1, b2) = H(a1, b2)G(a2, b1) (17.3)

and the coefficients given by (16.13) with

χ1 = χ2 = χ , D1 = D2 = D , �1 = 1, �2 = � .
It remains to verify the condition (16.2) for our choice of F once it has

been suitably normalized. Recall that

G(a2, b1) =
∫∫

F(cx1, cx2)�
(

4π
√

a1b2x1x2

)
e (−x1b1 − x2a2) dx1dx2 .

(17.4)

In order to estimate the partial derivatives of F(a1, a2; b1, b2)we need those
of H(a1, b2) and of G(a2, b1). For the first of these we already have (15.2).
For the latter we use (11.1) for F(x1, x2) and we still need bounds for the
derivatives of � (x). These are given by

Proposition 17.1. For ν � 0 we have

� (ν)(x)� x A+1−ν if 0 < x < 1 (17.5)

and

� (ν)(x)� x if x � 1 , (17.6)

the implied constant depending on ν.

We remark that (17.6) can be strengthened but we do not need this. The
exponent A is the constant fixed in our choice of q(r), see (14.2).

Before emarking on the proof of this result we shall establish an integral
representation for I(x) = I(x, r) in terms of the J–Bessel function. We begin
by writing the power series expansions of a number of Bessel functions. We
have

K2ir(z) = πi

2 sh 2πr

(
I2ir(z)− I−2ir(z)

)
,
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with

I2ir(z) =
∞∑
�=0

1

�!Γ(�+ 1+ 2ir)

( z

2

)2�+2ir
,

by (8.445) of [GR] and

J2ir(z) =
∞∑
�=0

(−1)�

�!Γ(�+ 1+ 2ir)

( z

2

)2�+2ir
,

by (8.440) of [GR]. Now using

∫ i

−i
(−iζ)k−1ζ2�+2irdζ = (−1)k−12i2�+1

k + 2�+ 2ir

{
shπr
chπr

}

we obtain

I(2x) = 2πx

{
1/ chπr
1/ shπr

} ∞∑
�=0

(ix)2�

�!
{ (−1)k−1x2ir

(k + 2�+ 2ir)Γ(�+ 1+ 2ir)
− x−2ir

(k + 2�− 2ir)Γ(�+ 1− 2ir)

}
.

Differentiating we obtain

(
xk−1 I(2x)

)′ = 2πxk−1

{
1/ chπr
1/ shπr

}
∞∑
�=0

(−1)�x2�

�!
{ (−1)k−1x2ir

Γ(�+ 1+ 2ir)
− x−2ir

Γ(�+ 1− 2ir)

}

= 2πxk−1

{
1/ chπr
1/ shπr

}{
(−1)k−1 J2ir(2x)− J−2ir(2x)

}

and from this we shall derive

Lemma 17.2. For k even we have

I(x) = −πx1−k

chπr

∫ x

0

(
J2ir(y)+ J−2ir(y)

}
yk−1dy (17.7)

and for k odd

I(x) = πx1−k

shπr

∫ x

0

(
J2ir(y)− J−2ir(y)

}
yk−1dy . (17.8)
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Proof. If k � 1 these formulae are obtained up to an additive constant
on integrating from 0 to x, then checking the constant is zero by letting x
approach zero, the integration being justified by absolute convergence.

In case k = 0 this convergence in (17.7) would not be absolute so instead
we integrate from x to ∞ then check that the additive constant is zero by
letting x approach infinity. Thus we have

I(x) = πx

chπr

∫ ∞

x

(
J2ir(y)+ J−2ir (y)

)dy

y
. (17.9)

The formula (6.561.14), p. 684 of [GR] in our case reduces to∫ ∞

0
J2ir(y)

dy

y
= 1

2ir

for r �= 0. Adding this for r and for −r we find that the complete integral
vanishes and (17.9) becomes (17.7).

Now we are ready to prove the proposition.

Proof of Proposition 17.1. Recall the definition

� (x) =
∫ ∞

−∞
q(r)I(x, r)dr.

where I(x) = I(x, r) is given by (17.7), (17.8) and q(r) by (14.2). Note that
q(r)I(x, r) is holomorphic in the strip | Im r| < A. Using (17.7), (17.8) to
write � (x) as the sum of two integrals we move the first to Im r = − A

2 and
the second to Im r = A

2 . Since q(r) is even the two integrals are equal and
we get

� (x) = 2π
∫ x

0

(−y

x

)k−1
∫

C

{
1/ chπr
1/ shπr

}
q(r)J2ir (y)dr dy (17.10)

where the inner integral is over the horizontal line Im r = − A
2 .

We now can re-introduce the power series expansion for J2ir(y) getting

� (x) = 8π
∞∑
�=0

(−1)k+�−1

�!
∫

C

(x

2

)2�+1+2ir r

(r2 + A2)2(chπr

2A

)−4AΓ(�+ 1+ 2ir)−1

k + 2�+ 2ir

{
shπr
chπr

}
dr .

By using Stirling’s formula we get the lower bound∣∣∣Γ(�+ 1+ 2ir)
∣∣∣� e−π|r|,

and hence (17.5) follows.
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To prove (17.6) we return to (17.10) and move the integration back to
the real line. As a result � (x) becomes

4π
∫ x

0

(−y

x

)k−1
∫ ∞

−∞
rJ2ir (y)

(r2 + A2)2

(chπr

2A

)−4A
{

shπr
chπr

}
dr dy

and, using the bound

J (ν)2ir (y)� (|r| + 1)ν chπr ,

we obtain (17.6).

Now we can explain how to check that the condition (16.2) applies to
F(a1, a2; b1, b2). Put θ = c−1

√
X1 X2Y1Y2. First, by a trivial estimation of

the integral (17.4) and (17.6) we get the upper bound

F(a1, a2; b1, b2)� θ min
{
1, θ A′}c−2 X1 X2 = ‖F‖, say.

Here A′ is the exponent A from (14.2) and (17.5) where we have changed the
name slightly to avoid possible confusion with the A restricting the support
of F(a1, a2; b1, b2). Integrating repeatedly by parts G(a2, b1) in (17.4) we
obtain for any ν � 0

G(a2, b1)� ‖F‖
(

1+ |a2|
A2

)−ν(
1+ |b1|

B1

)−ν
P2ν

where A2 = √Y1Y2 X1/X2 and B1 = √Y1Y2 X2/X1 and P comes from the
property (11.1) of F(x1, x2). By the support of H(a1, b2) we also know that
a1 ∼ Y1, b2 ∼ Y2 so we have

F(a1, a2; b1, b2)� ‖F‖
(

1+ a1

Y1

)−ν(
1+ b2

Y2

)−ν
(

1+ a2

A2

)−ν(
1+ b1

B1

)−ν
P2ν .

Applying the differential operator as on the left side of (16.2) we see
that (16.2) holds up to the factor P8‖F‖ with the following choices:

A = Y1 +
√

Y1Y2 X1/X2 , B = Y2 +
√

Y1Y2 X2/X1

and Z = (θ + 1)P = c−1
(
c+√X1 X2Y1Y2

)
.

By Propositions 16.1 and 16.2 we can now conclude that:

Proposition 17.3. We have for any h �= 0,

V(h)� τ(h)
(

1+ |h|
AB

)−2

{
Z2 AD

3
8+ε +

(
Z8 A−1 B

47
48

) 1
24
(AB)1+ε

}
P8‖F‖ .

(17.11)
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18. Completion of Proof of Proposition 15.1

We need to estimate the sum of Ramanujan sums on the right side of (15.5).
Using the trivial bound |S(h, 0; c)| � (h, c) and (17.11) we get∑

c≡0(D)

∑
h �=0

S(h, 0; c)V(h)

�
∑

c≡0(D)

{
Z2 AD

3
8 +

(
Z8 A−1 B

47
48

) 1
24

AB

}
ABP8‖F‖(cABD)ε .

Note that ‖F‖ is very small if c is slightly larger than
√

X1 X2Y1Y2. Hence
the above sum is bounded by{

AD
3
8 +

(
A−1 B

47
48

) 1
24

AB

}
ABP10 D−5+εX1 X2(X1 X2Y1Y2)

3
2+ε .

Here we have

AD
3
8 +

(
A−1 B

47
48

) 1
24

AB � (A + B)
{

D
3
8 + (A + B)1−

1
24·48

}

�
( X1

X2
+ X2

X1

){
D

3
8 + (Y1 + Y2)

1− 1
24·48

}
(Y1 + Y2)

and

AB �
(X1

X2
+ X2

X1

) 1
2
(Y1

Y2
+ Y2

Y1

) 1
2
Y1Y2 .

Hence the above sum is bounded by

(Y1 + Y2)
{

D
3
8 + (Y1 + Y2)

1− 1
24·48

}
( X1

X2
+ X2

X1

) 3
2
(Y1

Y2
+ Y2

Y1

) 1
2 (

X1 X2Y1Y2
) 5

2 D−5 P10
(
X1 X2Y1Y2 D

)ε
.

This together with (15.5) completes the proof of Proposition 15.1.

19. Estimates for the coefficients of a cusp form

To make proper use of our spectral summation formulae we need good lower
bounds for the normalizing factors ν j and νa(t) given in (6.22) and (6.23).
For the latter we have an explicit expression (7.14) in terms of Dirichlet L–
functions from which the bound (7.15) follows and this is sufficient for the
Eisenstein case. In the case of the cusp forms the corresponding expression
for ν j involves the associated symmetric square L–function so we need
to study the properties of these before we can prove the corresponding
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bound (7.16). The same ideas provide also a proof of another ingredient,
Proposition 19.6, which will be needed in Sect. 21.

We begin with the Rankin-Selberg L–function. Let u j(z) be the Hecke-
Maass cusp form whose Fourier-Whittaker expansion is given by (5.1)
normalized by ‖u j‖2 = 〈 u j , u j 〉 = 1. To this we associate the Rankin-
Selberg L–function

L |2|j (s) =
∞∑

n=1

|λ j(n)|2n−s . (19.1)

Recall that the Hecke-Maass eigenvalues λ j(n) are related to the Fourier
coefficients ρ j(n) by (6.14).

We give an integral representation for this L–function which allows us
to derive the analytic continuation and the functional equation from those of
the Eisenstein series. This method, the unfolding method of Rankin-Selberg,
is well-known. However, references in the case of the non-holomorphic cusp
forms are not easy to find so we provide complete details.

The starting point is the integral

I j(s) =
∫
Γ \H

|u j(z)|2E(z, s)dµz

where
E(z, s) =

∑
γ∈Γ∞\Γ

(Im γz)s

is the Eisenstein series of weight zero for the cusp ∞ of the group Γ =
Γ0(D). Unfolding the fundamental domain Γ \ H into the vertical strip
Γ∞ \H we obtain by the modularity (4.34) of u j(z) that

I j(s) =
∫
Γ∞\H

|u j(z)|2ysdµz .

Introducing the Fourier series (5.1) we obtain by Parseval (since W is real)

I j(s) =
∑
n �=0

|ρ j(n)|2
∫ ∞

0
W2

kn
2|n| ,it j

(4π|n|y)ys−2dy

= (4π)1−s
{
w+j (s)|ρ j(1)|2 +w−j (s)|ρ j(−1)|2

}
L |2|j (s)

where

w±j (s) =
∫ ∞

0
W2
± k

2 ,it j
(y)ys−2dy (19.2)

and by (4.70) we arrive at the desired integral representation

w j(s)ν j L
|2|
j (s) = 4π2

∫
Γ \H

|u j(z)|2E(z, s)dµz (19.3)
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where

w j(s) = (4π)1−s
{
w+j (s)+w−j (s)

∣∣∣ Γ
(
it j + k

2

)
Γ
(
it j − k

2

) ∣∣∣2} (19.4)

and ν j is defined by (6.22).
In general the integrals (19.2) seem difficult to compute but for the

special value s = 1 we may express it in terms of the gamma function and we
shall need this result. Specifically, from the Fourier integral representation
(cf. [GR], p. 321)

Wκ,ν(y) = π−1(πy)
1
2−νΓ

(
ν + κ + 1

2

)
∫ ∞

−∞

(1+ ix

1− ix

)κ
(1+ x2)−

1
2−νe(−xy)dx.

(19.5)

Applying Plancherel (see (14.9) of [DFI4]),∫ ∞

0
W2(4πy)y−1dy = 1

8π

∣∣∣Γ (ν + κ + 1

2

)∣∣∣2. (19.6)

Hence, by (19.4), we have

w j(1) = 1

8π

∣∣∣Γ (s j + k

2

)∣∣∣2 . (19.7)

Next we need to recall some basic facts about the Rankin-Selberg L–
function L |2|j (s). In the first place L |2|j (s) is holomorphic in the plane apart
from a simple pole at s = 1. More precisely

L |2|j (s) =
ζ(s)

ζD(s)

L (2)j (s)

ζ(2s)

where ζ(s) is the Riemann zeta function, ζD(s) = ∏
p|D
(
1− p−s

)−1
, and

L (2)j (s) is the L–function associated to the symmetric square representation
which is given by the following series:

L (2)j (s) = ζ(2s)
∞∑
�=1

λ j(�
2)�−s . (19.8)

It is known, essentially due to Shimura [S], that L (2)j (s) has analytic contin-
uation to the whole s–plane. Hence

res
s=1

L |2|j (s) =
6

π2ζD(1)
L (2)j (1) .
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On the other hand

res
s=1

E(z, s) = 1

vol(Γ \H) =
3

πν(D)
.

Now, comparing the residues in (19.3) and using (19.6), we arrive at

Proposition 19.1. Let u j(z) be a Hecke–Maass cusp form. We have

ν j = (2π)4ζD(2)

D
∣∣∣Γ (s j + k

2

)∣∣∣2L (2)j (1)
. (19.9)

Note the similarity of this formula with that in Proposition 7.1. Just as
that result was used to derive the bound (7.15) we shall employ this one
to obtain (7.16). Now however the Dirichlet L-functions are replaced by
the symmetric–square L-function for Hecke–Maass cusp forms so more
work is required. We begin with an estimate for an integral of the Whittaker
function.

Lemma 19.2. Let W = Wκ,ν(y) be the Whittaker function with κ � 0 and
ν = it, t � 1. For some positive absolute constants α, β we have∫ βt(κ+1)

α

W2(4πy)y−1dy � 1

9π

∣∣∣Γ (ν + κ + 1

2

)∣∣∣2. (19.10)

Proof. It follows from (19.5) that if f(y) and f̂ (x) are both non-negative,
then∫ ∞

0
W2(4πy) f(y)

dy

y
� 1

π

∣∣∣Γ (ν + κ + 1

2

)∣∣∣2 ∫ ∞

0
W2

00(4πy) f(y)
dy

y
.

But

W00(4πy) = √y
∫ ∞

−∞
(1+ x2)−

1
2 e(−xy)dx � √

y log
(

2+ 1

y

)
.

Hence, by a judicious choice of f we derive∫ α

0
W2(4πy)y−1dy � 1

200π

∣∣∣Γ (ν + κ + 1

2

)∣∣∣2 (19.11)

for some small positive absolute constant α. Moreover, it follows from
(19.5) after integration by parts that

W(4πy)�
∣∣∣Γ (ν + κ + 1

2

)∣∣∣|ν|(κ + 1)y−
1
2 ,

provided y � 2|ν| since there is then no stationary point. Hence∫ ∞

β|ν|(κ+1)
W2(4πy)y−1dy <

1

200π

∣∣∣Γ (ν + κ + 1

2

)∣∣∣2 (19.12)

if β is sufficiently large. Finally, subtracting (19.11) and (19.12) from (19.5)
we obtain the lemma.
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Lemma 19.3. Suppose ‖u j‖ = 1. Then

∑
0<n�N

n|ρ j(n)|2�
k

(N

D
+ 1

)
|s j |eπ|s j | (19.13)

where the implied constant depends on k.

Proof. We begin with the equation

∫ 1

0
|u j(z)|2dx =

∑
n �=0

|ρ j(n)|2W2(4π|n|y)

which holds by Parseval. Integrating over y we obtain

1+ 10

DY
�
∫ ∞

Y

∫ 1

0
|u j(z)|2dµz

=
∑
n �=0

|ρ j(n)|2
∫ ∞

Y
W2(4π|n|y)y−2dy

because, by Lemma 2.10 of [I2], every orbit {γz; z ∈ Γ } has no more than
1+ 10

DY points in the half strip 0 � x � 1, y > Y . By Lemma 19.2 and
Stirling’s formula we have

∫ ∞

α

W2(4πy)y−2dy � |s j |−1e−π|s j | (19.14)

where α > 0 is an absolute constant, the implied constant depending on k.
Hence ∫ ∞

Y
W2(4π|n|y)y−2dy � |ns−1

j |e−π|s j |

if nY � α. Setting Y = αN−1 we derive Lemma 19.3.

Let

η j = ν−1
j |s j |eπ|s j |

and note that η j � 1 by Lemma 19.3 with N = 1.

Corollary 19.4. We have

∑
1�n�N

|λ j(n)|2 �
(N

D
+ 1

)
η j . (19.15)
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This estimate is quite good for large N. We shall improve it for small N by
employing the multiplicativity of λ j(n).

Let S(x) = ∑
n�x
|λ j(n)|2. By the multiplicativity (6.6) and by induction

on r we have

|λ j(n1) · · · λ j(nr)| �
∑

d2|n1...nr

τr(d)
∣∣∣λ j

(n1 · · · nr

d2

)∣∣∣ .
Hence, by Cauchy’s inequality

|λ j(n1) · · · λ j(nr)|2 �
( ∑

d2|n1...nr

τ2
r (d)

)( ∑
d2|n1...nr

∣∣∣λ j

(n1 . . . nr

d2

)∣∣∣2) .
We obtain

S(x)r �
∑

m�xr

τr(m)
2
(∑

d2|m
τr(d)

2
)∑

d2|m

∣∣∣λ j

(m

d2

)∣∣∣2

and, estimating the divisor function by xε, we get S(x)r � xεS(xr) for any
ε > 0, r � 1, the implied constant depending only on ε and r. By Corollary
19.4 this yields

S(x)r � xr+εη j . (19.16)

We have established the following bound.

Corollary 19.5. For any ε > 0, x � 1,

S(x)� x(xη j)
ε

where the implied constant depends only on ε and k.

Using Corollary 19.5 we derive an upper bound for L (2)j (1). To this end

we truncate the series for L (2)j (1) getting

ζ(2)L (2)j (1) =
∑
��L

λ j(�
2)

�
+ O

((D|s j |)10

L

)
. (19.17)

By (6.5)

λ j(�) =
∑
d|�
λ j

(( �
d

)2)
χ(d)

so, by Möbius inversion,

λ j(�
2) =

∑
d|�
µ(d)χ(d)λ2

j

( �
d

)
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and, inserting this in (19.17), we deduce

L (2)j (1)�
∑
��L

|λ j(�)|2
�

+ (D|s j |)10

L
. (19.18)

An application of Corollary 19.5 gives

L (2)j (1)�
(
D|s j |η j

)ε
. (19.19)

This bound allows us to complete the proofs. Note that by Stirling’s
formula, the identity (19.12), and (19.19) we obtain

|s j |kν j De−π|s j |
(

D|s j |e
π|s j |

ν j

)ε � 1.

This implies
ν j � D−1|s j |−keπ|s j |(D|s j |)−ε .

and proves (7.16). It also proves that η j � D|s j |k+1(D|s j |)ε which allows
us to drop η j from the estimate (19.19) and Corollary 19.5 now gives the
following result.

Proposition 19.6. For any x � 1 and ε > 0∑
n�x

|λ j(n)|2 � x(xD|s j |)ε .

20. Preparing for amplification

Actually we shall need, rather than Proposition 15.1, a corollary which holds
when the coefficients have a special shape as will occur in the application.

Proposition 20.1. Let Nj be given by (10.2) with the bit function satisfying
(11.1). Let H(t) be as in (14.4) with q(r) given by (14.2). Then, for every
� � 1 and X1, X2 � 1 we have∑

j

H(t j)ν jλ j(�)|Nj |2

� X1 X2 P10
[{
�−

1
2 + (X1 + X2 +

√
D)

1
2 (X1 X2)

1
2 D−

13
16
}

+ �4

D5
(X1 + X2)

3(X1 X2)
2
{

D
3
8 + (X1 + X2)

1−θ}](�DX1 X2)
ε

where θ = 1
1152 .
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Proof. By the multiplicativity formula (6.5) we get

λ j(�)Nj =
∑

n

λ j(�)λ j(n)σF(n, χ)

=
∑
d|�
χ(d)

∑
n1n2≡0(d)

λ j

(�n1n2

d2

)
F(n1, n2)χ(n2)

=
∑
d|�
χ(d)

∑
δ|d

∑
(

n1,
d
δ

)
=1

∑
n2

λ j

( �
d

n1n2

)
F
(
δn1,

d

δ
n2

)
χ
(d

δ
n2

)

=
∑
d|�
χ(d)

∑
δ|d

∑
ν| d
δ

µ(ν) Sdδν

where

Sdδν =
∑
m1

∑
n2

λ j

( �
d
νm1n2

)
F
(
δνm1,

d

δ
n2

)
χ
(d

δ
n2

)

=
∑

m

λ j(m)
∑

m1m2=m

m2≡0
(
�ν
d

) F
(
δνm1

d2

�νδ
m2

)
χ
( d2

�νδ
m2

)
.

We see that, for given d, δ, ν, Proposition 15.1 is applicable with the bit
function H(y1, y2) = F(δνy1,

d2

�νδ
y2) and the coefficients δ(µ) = χ

(
d
δ
µ
)
.

Thus Y1 = X1/δν, Y2 = �νδX2/d2 and � is replaced by �ν/d. Hence one
completes the proof of Proposition 20.1.

To simplify Proposition 20.1 we write

X = X1 + X2 +
√

D (20.1)

and this gives

∑
j

H(t j)ν jλ j(�)|Nj |2 � X1 X2√
�

P10
{
1+ �4 X10−θD−5

}
(�X)ε . (20.2)

Finally, by (14.7) and (7.16) we obtain

H(t j)ν j � (|t j | + 1)−17 D−1−ε (20.3)

and inserting this we complete the proof of Theorem 2.1. Actually the
above argument carries an extra factor �ε which is not needed since it can
be absorbed unless � > X2001 and in this case the theorem is trivial. For
similar reasons we have removed Lε in several places below.
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21. Amplification

Let c� be complex numbers for � � L with (�, D) = 1 and let ‖c‖ be the
�2-norm, that is

‖c‖2 =
∑
��L

|c�|2.

To each cusp form in our basis we asssociate the amplifier

C j =
∑
��L

c�λ j(�) . (21.1)

Using again (20.3), Theorem 2.2 follows at once from the following
result.

Proposition 21.1. Under the same assumptions as Proposition 20.1 and
with X defined by (20.1), we have∑

j

H(t j)ν j |C j |2 |Nj |2 � X1 X2 P10
(
1+ L4 D−5 X10−θ) ‖c‖2 Xε . (21.2)

Proof. By the multiplicativity (6.5) and since λ̄ j(�) = χ(�)λ j(�) for
(�, D) = 1, see (6.6), we get

|C j |2 =
∑

(d,D)=1

∑
�1

∑
�2

λ j(�1�2)cd�1 c̄d�2χ(�2) .

Applying (20.2) with � = �1�2 and Cauchy’s inequality we obtain (21.2).

Note that H(t j) > 0 and ν j > 0. Therefore, dropping every term in
(21.2) but the one with eigenvalue λ j = s j(1− s j), s j = 1

2 + it j , we obtain

H(t j)ν j |C jNj |2 � X1 X2 P10(1+ L4 D−5 X10−θ)‖c‖2 Xε . (21.3)

We want C j to be large. We choose c� as in (1.17) of [DFI7], that is

c� =
{
λ j(p)χ(p) if � = p, 1

2

√
L < p �

√
L

−χ(p) if � = p2, 1
2

√
L < p �

√
L .

(21.4)

Then using the relation, see (6.5),

λ2
j(p)− λ j(p

2) = χ(p) (21.5)

we find that

C j #
√

L(log L)−1 (21.6)

provided that L � (log D)2.
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From Proposition 19.6 we obtain

‖c‖ � L
1
4
(|λ j | + k + D+ L

)ε
. (21.7)

We insert (21.6) in the left side of (21.3) and (21.7) in the right side to
deduce

H(t j)ν j |Nj |2 � L−
1
2 X1 X2 P10

(
1+ L4 D−5 X10−θ) (k + |λ j | + X

)ε
.

To simplify the computation we replace L4 by L5, then we choose L =
DX−2+ θ

5 + (log D)2, getting by (20.1)

H(t j)ν j |Nj |2 � X1 X2 P10 ((k + |λ j | + D+ X1 + X2
)ε

{
D−

1
2 (X1 + X2)

1− θ
10 + D−5(X1 + X2)

10−θ + D−
θ
20

}
.

Finally, inserting (20.3) we complete the proof of the upper bound for Nj
stated in Theorem 2.3.

We apply Theorem 2.3 for Nj the inner sum of (9.8) so that F is given
by (9.9) and P is given by (9.11). In this case we obtain

Nj �
(|t j | + |s|

)14
(DN2

δ2d

) 1
2+ε {

D−
1
2 N1− θ

10 + D−5 N10−θ + D−
θ
20

} 1
2
.

Introducing this in (9.8) and summing over d and δ we get

G j(N)�
(|t j | + |s|

)7
(DN2)

1
4+ε

{
D−

1
2 N1− θ

10 + D−5 N10−θ + D−
θ
20

} 1
4
.

Inserting this in (9.7) and summing over N = 2ν/2 we obtain

L j(s)�
(|t j | + |s|

) 19
2 D

1
4− θ

20+ε ,

giving Theorem 2.4 with a little to spare in both exponents.

22. Applications to the class group

In this section we prove Theorems 2.7 and 2.8. Recall that K is a quadratic
field with discriminant d, that Cl(K ) is the (narrow) class group of K and
ψ is a character of Cl(K ). Let f(x) be a C∞ function supported in [1, 2]
which satisfies

∫∞
0 f(x)dx = 1.We detect ideals with small norm and with

various needed properties using the sum

S(x, ψ) =
∑
a

ψ(a) f(N(a)/x).
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A standard application of Mellin inversion gives

S(x, ψ) = 1

2πi

∫
(2)

f̃ (s)L K(s, ψ)x
sds

where

f̃ (s) =
∫ ∞

0
f(x)xs−1dx

is entire and of rapid decay in vertical strips. Theorem 2.6 yields, after
a contour shift to Re(s) = 1

2 , our starting point

S(x, ψ) = δψL(1, χd )x + O
(
x

1
2 |d| 1

4− 1
23041

)
(22.1)

where δψ is 1 if ψ is trivial and 0 otherwise. Here we explicitly use the
polynomial dependence on |s| of our bound in Theorem 2.6.

To prove Theorem 2.7, let H ⊂ Cl(K ) be a subgroup for which G =
Cl(K )/H. For g ∈ G a coset in Cl(K ) let

Sg(x) =
∑
a∈g

f(N(a)/x)

and let S∗g(x) be the same sum restricted to primitive a ∈ g. We have

Sg(x) = |G|−1
∑

ψ(H )=1

ψ̄(g)S(x, ψ)

so by Möbius inversion we get

S∗g(x) =
∑
m�1

µ(m)Sg(x/m
2) =

∑
1�m�√2x

µ(m)Sg(x/m
2).

Using (22.1) we derive the uniform asymptotic formula

S∗g(x) =
6

π2

L(1, χd )

|G| x + O
(

x
1
2 (log x)|d| 1

4− 1
23041

)
. (22.2)

By Siegel’s theorem L(1, χd)� |d|−ε so we deduce Theorem 2.7, but with
an ineffective implied constant.

We turn next to the proof of Theorem 2.8. Let H be a cyclic subgroup
of Cl(K ) of order h and index k in Cl(K ), so hk = |Cl(K )|. If δH(a) is the
characteristic function of the generators of H then for any fixed generator
g of H we have the formula

δH(a) = 1

hk

∑
ψ

ψ̄(a)
∑
�(mod h)
(�,h)=1

ψ(g�) (22.3)
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which is easily proven using the orthogonality relations and the fact that
a generates H if and only if a = g� for some � with (�, h) = 1. We then
derive the formula

δH(a) = 1

k

∑
m| h

µ(m)

m

∑
ψ(g)m=1

ψ(a) (22.4)

by applying Möbius inversion to the second sum in (22.3):

∑
(�,h)=1

ψ(g�) =
∑
m| h

µ(m)
∑

�(mod h/m)

ψ(gm�) = h
∑
m|h

ψ(g)m=1

µ(m)

m
.

Letting

SH(x) = h

ϕ(h)

∑
a

δH(a) f(N(a)/x)

where ϕ( ) is the Euler function, we derive from (22.4) that

SH(x) = h

kϕ(h)

∑
m|h

µ(m)

m

∑
ψ(H )m=1

S(x, ψ).

Using (22.1) we derive the asymptotic formula

SH(x) = 1

k
L(1, χd)x + O(x

1
2 |d| 1

4− 1
23041.5 ). (22.5)

Theorem 2.8 now follows.
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