• History of Mathematics 106

• Illustrations and Supplements
 Chapter 1
Some Early Mathematics

Middle East around 1900 BCE
Rhind Papyrus
1850 BCE

Calculations with Fractions
Linear Equations
Areas Volumes

Egypt
Base 10

\[142 = 1 \times 10^2 + 4 \times 10 + 2 \]

Base 60

\[142 = 2 \times 60 + 22 \]
Babylonian Numbers

Sexagesimal System

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No Zero!
Example

\[142 = 2 \times 60 + 22 \]
Question: How do you write 120?

Is this 120 or 2? Need a space marker or a zero.
Why base 60?

360 + 5 = \#days in a year

360 days = 12 months \times

30 days

Both 12 and 30 divide 60

60 = 12 \times 5 = 30 \times 2
Plimpton 322

1800 BCE
Pythagorean Triples

\[
a^2 + b^2 = c^2
\]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>120</td>
<td>169</td>
</tr>
<tr>
<td>3367</td>
<td>3456</td>
<td>4825</td>
</tr>
<tr>
<td>4601</td>
<td>4800</td>
<td>6649</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>161</td>
<td>240</td>
<td>289</td>
</tr>
<tr>
<td>1771</td>
<td>2700</td>
<td>3229</td>
</tr>
<tr>
<td>28</td>
<td>45</td>
<td>53</td>
</tr>
</tbody>
</table>
a=3 b=4 c=5
Pythagoras

About 580-500 BCE
Born in Samos

Had school in Kroton

Born in Samos
Pythagoreans:

• Used Deductive reasoning

• Connected abstract mathematics with Nature

"They supposed the elements of number to be the elements of all things, and the whole heavens to be a musical scale and a number." Aristotle
Some Achievements

• Explained Musical Harmony in terms of fractions

• Pythagorean Theorem

• Discovery of irrational lengths
Legendary Beliefs

- Transmigration of Souls. Eat no beans since they came from same source as humans

- Pythagoras had a golden thigh (a sign of divinity); the people of Croton called him the Hyperborean Apollo (Apollo's avatar)
Pythagorean Theorem

\[a^2 + b^2 = c^2 \]
Proof of Pythagorean Theorem

\[c^2 = a^2 + b^2 \]
Another Proof of Pythagorean Theorem

\[(a+b)^2 = c^2 + 4(ab/2)\]
Outline of the rest of the chapter

• Review of basic properties of integers
• Formulas for Pythagorean Triples
• Irrationality of Square root of 2
• Similar Triangles
• Law of Cosines (Supplement)
Law of Cosines

\[c^2 = a^2 + b^2 - 2ab \cos \theta \]

Proof:

\[d = b \cos(\pi - \theta) \quad e = b \sin(\pi - \theta) \]

\[c^2 = (a + d)^2 + e^2 = a^2 + b^2 (\sin^2(\pi - \theta) + \cos^2(\pi - \theta)) + 2ab \cos(\pi - \theta) \]

\[= a^2 + b^2 - 2ab \cos \theta \]

For the proof we assume that the angle is obtuse