
Symmetry and supersymmetry

V. S. Varadarajan

Department of Mathematics
University of California, Los Angeles

CA 90095-1555
vsv@math.ucla.edu

1



Abstract

The notion of symmetry plays a great role in quantum
physics. Supersymmetry is an unusual and profound gen-
eralization of symmetry. It was discovered by the physi-
cists in the early 1970’s. Although there is still no ex-
perimental confirmation that nature is supersymmetric,
the ideas of supersymmetry have played a tremendously
important theoretical role in high energy physics. In par-
ticular it is widely accepted that a unified theory of all
forces has to be supersymmetric.

In this talk, which will be very elementary, I shall try to
explain what supersymmetry is, and describe the modi-
fications we have to make in our conception of geometry,
specifically the geometry of spacetime at small distances
and times, to accommodate the requirements of super-
symmetry.
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• Superparticles

3



Quantum world and its symmetries
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Quantum States

I. States are unit vectors in a complex Hilbert space
H; φ and cφ(c ∈ C) represent the same state if |c| =
1.

II. If φ is the state and we do an experiment to see if
the state is ψ, then

|(φ, ψ)|2

is the probability that the experiment finds the sys-
tem in state ψ.

By I. the states are the points of a projective space.
Physicists call this the superposition principle.

This rule contains the entire statistical aspect of quantum
theory and encodes at a fundamental level the fact that
measurements interfere with the phenomena to be mea-
sured but that the results of measurement are in general
only statistically determinate.

Note that the absolute value ensures that this quantity
depends only on the states determined by φ, ψ, since it is
unchanged by

φ 7−→ cφ, ψ 7−→ c′ψ (|c| = |c′| = 1).
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Quantum Symmetries

Symmetries are bijections of the space of states pre-
serving measurement probabilities. By the fundamental
theorem of projective geometry these are therefore given
by

φ 7−→ Uφ

where U is unitary or antiunitary :

(Uφ,Uψ) = (φ, ψ) or (Uφ,Uψ) = (ψ, φ).

Remark. The above result (due to Wigner) is the reason
why quantum mechanics is linear . Weinberg and others
have considered nonlinear dynamical systems on projec-
tive space in attempts to extend the scope of quantum
mechanics.
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Symmetry Groups

Internal symmetries. Quantum particles, unlike clas-
sical ones, have internal states which move with the parti-
cles. The internal symmetry group then characterizes the
type of internal structure: spin, isospin, charm, etc. The
internal groups are generally compact, U(N) or SU(N).

Spacetime symmetries. The description of the system
should not depend on the observer. This puts in display
an action of the spacetime group by symmetries (The
principle of covariance). In QFT the symmetry group is
the Poincaré group, in 2-dimensional field theory it is the
Galilean group.

Theorem. If the symmetry group G is a connected Lie
group, covariance with respect to G is expressed by a uni-
tary representation of G or at least a central extension of
G by the circle group.

Remark. If G is the Poincaré group there is no need
to go to central extensions of G (Wigner). If G is the
Galilean group, central extensions of G are unavoidable
and introduce the so-called mass superselection sectors
corresponding to the one parameter family of central ex-
tensions (Bargman).

Gauge symmetries. When spacetime and internal
symmetries combine we get gauge symmetries. Physicists
call Poincaré symmetry global and gauge symmetry lo-
cal.
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Relativistic systems

The requirement of Poincaré covariance is quite strin-
gent. The simplest such systems arise when the UR of
the Poincaré group is irreducible. These define free par-
ticles. The irreducible UR’s of the Poincaré group were
first classified by Wigner by a method that goes back to
Frobenius and later put in proper perspective by Mackey
(Wigner’s little group method and the Mackey machine).

There are more irreducible UR’s than particles. One has
to exclude the UR’s where the mass is imaginary or the
energy is 0.

In systems where particle number is not conserved and
particles are created and annihilated in reactions like

electron+positron→photon
photon→electron+positron

the UR of the Poincaré group is not irreducible. QFT
which tries to construct such systems is beset with prob-
lems which have been resolved only partially, and that
too, only by ad hoc procedures like renormalization.
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Spacetime geometry at small distances:

from Riemann to Salam
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What is the geometry of spacetime?

If we read space instead of spacetime, this question
is ancient, going back to Euclid. Gauss was the first per-
son to understand the distinction between this question
and the question of existence of noneuclidean geometries,
later discovered by Bolyai and Lobachevsky. Riemann
took this question to another level when he created Rie-
mannian geometry, discovered the curvature tensor, and
proved that for space to be euclidean it must have van-
ishing curvature (flat). Spacetime came in after Einstein
discovered that neither space nor time has an objective
existence for all observers, and that only spacetime has
an invariant significance. Highlights of his discoveries in-
clude:

I. If we can neglect gravitation, spacetime is flat and is
an affine space whose symmetries form the Poincaré
group, the semidirect product of the translation
group and the Lorentz group. [This is a consequence
of the constancy of the velocity of light in vacuum in
all inertial frames.]

II. Gravitation is a manifestation of the curvature of
spacetime, and in matter-free regions spacetime is
Ricci flat, i.e., the Ricci tensor is 0.
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Spacetime at small distances and times

In classical physics, and even in quantum mechan-
ics, there is no necessity to question the use of flat
Minkowskian geometry for spacetime, since gravitational
forces are negligible in that scale. It is only when ex-
periments began to probe extremely small distances that
theories trying to understand and predict the experiments
began to encounter serious conceptual difficulties. Physi-
cists then began to look more closely into the structure
of spacetime at ultrashort scales of distances and times.
The Planck scale refers to distances of the order of

10−33cm

and times of the order of

10−43sec.
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Riemann’s vision of space at small distances

In his Göttingen inaugural lecture Riemann speculated
on the structure of space at small distances. Here is what
he said:

Now it seems that the empirical notions on which the met-
ric determinations of Space are based, the concept of a
solid body and a light ray, lose their validity in the in-
finitely small; it is therefore quite definitely conceivable
that the metric relations of Space in the infinitely small
do not conform to the hypotheses of geometry; and in fact,
one ought to assume this as soon as it permits a simpler
way of explaining phenomena.

Göttingen inaugural address, 1854.
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Current views on structure of spacetime

• At the Planck scale, no measurements are possible and
so conventional models can no longer be relied upon to
furnish a true description of phenomena. String the-
ory attempts to work in a framework where the smallest
objects are not point-like but extended, i.e., strings or
(more recently) membranes. Spacetime geometry at the
Planck scale is thus almost surely non-commutative be-
cause there are no points. No one has so far constructed a
convincing geometrical theory which is noncommutative
but has the Riemann-Einstein geometry as a limit.

• Even at energies very much lower than the Planck scale,
a better understanding of phenomena is obtained if we
assume that the geometry of spacetime is described lo-
cally by a set of coordinates consisting of the usual ones
supplemented by a set of anticommuting (Grassmann)
coordinates.
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Why Grassmann coordinates

Typically, quantum systems arise by quantization of clas-
sical systems, a procedure in which the classical configu-
ration space M of the particles is replaced by the Hilbert
space of functions on M , and the classical physical ob-
servables are promoted to become operators (self adjoint)
on this Hilbert space (Schrödinger picture). Already in
the early days of quantum theory this procedure led to
an oversupply of states when dealing with many-electron
systems such as an atom. The Pauli exclusion princi-
ple cut down the number of states by demanding that the
electrons have the exclusion property: no two electrons
can occupy the same quantum state. In mathemat-
ical terms this means that if H is the Hilbert space of one
electron, the Hilbert space of an N -electron system is not
the full tensor product

H⊗N

but the exterior product

ΛN (H).

It was a great idea of the physicists, most notably
of Salam and Strathdee, that one should replace the
classical manifold M by a manifold that admits (addi-
tional)Grassmann coordinates. The theory of classical
fields on such a manifold would then provide a basis for
quantization that will yield the exterior algebras. Such a
manifold is nowadays called a supermanifold.
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The concept of supersymmetry
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Bosons, fermions, and the spin-statistics theorem

The exclusion principle for the electrons is a special case
of a fundamental dichotomy among elementary particles
based on their spin. The spin states of a particle form an
irreducible module for SU(2) of dimension 2j + 1 where
j ∈ (1/2)Z is the spin. Particles with j integral (resp.
half integral) are bosons (resp. fermions). Electrons,
protons and neutrons are fermions while the photon is
a boson. The Hilbert space of a system of N identical
particles of the same spin j with a Hilbert space H is
either SymmN (H) or ΛN (H) according as j is integral or
half-integral, i.e., according as the particle is a boson or
fermion. This is the spin-statistics theorem which is a
consequence of general principles of quantum field theory.

In SUSY quantum mechanics the Hilbert spaces always
have a decomposition into fermionic and bosonic states.
Mathematicians call such spaces Z2-graded. In the grad-
ing

H = H0 ⊕H1

the elements of H0 (resp. H1) are called even (resp.
odd).
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Supergeometry

The fundamentals of supergeometry are built like or-
dinary geometry. This is done at 3 levels:

• Infinitesimal

• Local

• Global
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Super linear algebra

Infinitesimal geometry is linear. Super linear algebra is
just linear algebra over super vector spaces, namely vec-
tor spaces which are Z2-graded. The transition from
linear to super linear is based on the rule of signs: in
any classical formula where two odd elements are inter-
changed, one should introduce a minus sign. For instance,
a super algebra is commutative in the super category, i.e.,
supercommutative, if

ab =
{
ba if at least one of a, b is even
−ba if both a and b are odd.

This rule also has its origins in QFT where the fermi fields
obey anticommutation rules. The super commutator is
defined by

[a, b] =
{
ab− ba if at least one of a, b is even
ab+ ba if both a and b are odd.

The supercommutator obeys a super Jacobi identity and
leads to the definition of Lie super algebras. Note that
the anticommutator of odd elements

a, b 7−→ [a, b] = ab+ ba

is symmetric and equivariant with respect to the commu-
tator action of the even elements.
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The Berezinian

Let R be a super commutative algebra over a field k of
characteristic 0 and Rp|q be the free module of dimension
p|q over R. Let GL(p|q)(R) be the group of invertible
even morphisms of Rp|q. Then the Berezinian is a mor-
phism of GL(p|q)(R) into R×0 (the group of units of the
even part R0 of R) given by

Ber(x) = det(A−BD−1C) det(D)−1

where

x =
(
A B
C D

)
.

We have
Ber(xy) = Ber(x)Ber(y).

This is the superversion of the determinant, discovered
by F. A. Berezin, one of the pioneers of super algebra
and super analysis. Since the entries of B and C are
nilpotent, x is invertible if and only if A and D, whose
entries are in the commutative ring R0, are invertible.
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Charts and local rings

The local coordinates are given by

x1, x2, . . . , xp, θ1, θ2, . . . , θq

where the xi are the usual commuting coordinates and
the θj are the grassmann coordinates:

θkθk + θkθj = 0.

The local ring is

C∞(x1, x2, . . . , xp)[θ1, θ2, . . . , θq].
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The concept of a super manifold

A super manifold M of dimension p|q is a smooth man-
ifold |M | of dimension p together with a sheaf OM of
super commuting algebras on |M | that looks locally like

C∞(Rp)[θ1, θ2, . . . , θq]

The intuitive picture of M is that of |M | surrounded by
a grassmannian cloud. The cloud cannot be seen: in
any measurement the odd variables will be 0 be-
cause they are nilpotent. Thus measurement sees
only the underlying classical manifold |M |. Nev-
ertheless the presence of the cloud eventually has conse-
quences that are striking.

Unlike classical geometry the local ring contains nilpo-
tents. So the analogy is with a Grothendieck scheme.

Physicists refer to the sections of the structure sheaf as
superfields.
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Supersymmetries

A Supersymmetry is just a morphism between super-
manifolds.

Example: The diffeomorphism

R1|2 ' R1|2 : t1 7−→ t1 + θ1θ2, θα 7−→ θα

is a typical supersymmetry. Note how the morphism in-
terchanges odd and even variables. This is how the grass-
mann cloud interacts with the classical manifold under-
lying the supermanifold.
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Integration on super manifolds

Let

θI = θi1θi2 . . . θik I = (iµ), {i1 < i2 < . . . < ik}.

On
Λ = R[θ1, . . . , θq]

the integral is a linear map

a 7−→
∫
adqθ

defined by∫
θIdqθ =

{
0 if |I| < q
1 if I =: Q = {1, 2, . . . , q}.

Integration is also differentiation:∫
=

(
∂

∂θq

) (
∂

∂θq−1

)
. . .

(
∂

∂θ1

)
.

In the local ring with coordinates xi, θj ,∫
sdpxdqθ =

∫
sQd

px (s =
∑

I

sIθ
I).
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The change of variables formula

For a morphism given locally as

ψ : (x, θ) 7−→ (y, ϕ)

we define the Jacobian matrix

J =
( ∂y

∂x −∂y
∂θ

∂ϕ
∂x

∂ϕ
∂θ

)
.

Then ∫
s =

∫
ψ∗(s)Ber(Jψ)

for compactly supported sections of the local ring. For
arbitrary manifolds we use partitions of unity as in the
classical case.

• This beautiful formula goes back to Berezin. The
justification for the peculiar definition of integration
in the anticommuting variables is the change of vari-
ables formula.
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Super spacetime and super Poincaré group
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Super Lie groups and their super Lie algebras

Super Lie groups are group objects in the category of
super manifolds. As in the theory of ordinary Lie groups
one can define the super Lie algebra Lie(G) of a super
Lie group G. The even part of a super Lie algebra is an
ordinary Lie algebra and the super Lie algebra may be
viewed as a supersymmetric enlargement of it.

History. Gol’fand-Likhtman and Volkov-Akulov discov-
ered the minimal SUSY extension of the Poincaré algebra
in the early 1970’s. Wess-Zumino discovered a little later,
in 1974, the first example of a simple super Lie algebra,
namely the minimal SUSY extension of the conformal
Lie algebra. In 1975 V. Kac formally defined super Lie
algebras and carried out the super version of the Cartan-
Killing classification of simple Lie algebras over C.
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Super Minkowski spacetime

Let t0 be a flat Minkowski spacetime of signature (1, n).
By a flat Minkowski superspacetime is meant a super
Lie group whose even part is t0 identified with its group
of translations. The corresponding super Lie algebra t
has the grading

t = t0 ⊕ t1.

Physical interpretations lead to the requirement that the
adjoint action of t0 on t1,

a, b 7−→ [a, b] (a ∈ V0, b ∈ V1)

is a very special module, namely a spin module. In this
case, at least when t1 is irreducible, there is an essentially
unique symmetric bilinear form

t1 ⊗ t1 −→ t0

If we choose this to be the supercommutator of odd ele-
ments we may regard t = t0 ⊕ t1 as a super Lie algebra.
The super Lie group T of t is flat super Minkowski
spacetime.
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Super Poincaré group

The semi direct product

G = T ×′ Spin(1, n)

is a super Poincaré group.
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SUSY Field theory

All of the machinery is now in place for introducing the
Lagrangians and doing SUSY field theory on flat super
Minkowski spacetime: Wess-Zumino (SUSY electrody-
namics) and Ferrara-Zumino (SUSY Yang-Mills).

The SUSY extension of Einstein spacetime is more com-
plicated and was first done in 1976 by Ferrara, Freed-
man, and van Nieuwenhuizen, and a little later, by
Deser and Zumino. It is called supergravity.

• Zumino proved in 1979 that a nonlinear σ model (in
which the fields take values in a Riemannian target
space) is supersymmetric if and only if the target
space is a Kähler manifold.
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Superparticles
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Classification of super particles

In quantum theory the unitary irreducible representa-
tions (UIR) of the Poincare group classify free elemen-
tary particles. In SUSY quantum theory, the UIR’s of a
super Poincaré group classify elementary super particles.
Each super particle, when viewed as a UR of the under-
lying Poincaré group, is the direct sum of a collection of
ordinary particles, called a multiplet. The members of
a multiplet are called partners of each other.

Unlike the classical case, the positivity of energy
is a consequence of supersymmetry.

The existence of the superpartners of the known particles
is the biggest prediction of supersymmetry.

It is the hope of many that the new super collider being
readied at CERN will create the super partners of the
usual elementary particles. This is not certain because
one does not know exactly the scale at which supersym-
metry is broken.
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