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Integral proofs that 355/113 > π

Stephen K. Lucas

1 Introduction

One of the more beautiful results related to approximating π is the integral
∫ 1

0

x4(1− x)4

1 + x2
dx =

22
7
− π. (1)

Since the integrand is nonnegative on the interval [0, 1], this shows that π is strictly less
than 22/7, the well known approximation to π. The first published statement of this result
was in 1971 by Dalzell [3], although anecdotal evidence [2] suggests it was known by Kurt
Mahler in the mid-1960s. The result (1) is not hard to prove, if perhaps somewhat tedious.
A partial fraction decomposition leads to a polynomial plus a term involving 1/(1 + x2),
which integrates immediately to the required result. An alternative is to use the substitution
x = tan θ, leading to a polynomial in powers of tan θ. We then apply the recurrence relation
for taking the integrals of powers of tan θ. Of course, the simplest approach today is to
simply verify (1) using a symbolic manipulation package such as Maple or Mathematica.

An obvious question at this point might be whether similar elegant integral results can
be found for other rational approximations for π. A particularly good approximation is
355/113, which is accurate to seven digits. Our aim here is to find a variety of such integral
results.

2 More general integrals

Backhouse [1] recently generalized (1) by varying powers in the numerator of the integrand,
leading to

Im,n =
∫ 1

0

xm(1− x)n

1 + x2
dx = a + bπ + c log 2, (2)

where a, b, c are rationals that depend on the positive integers m and n, and a and b have
opposite sign. Backhouse [1] showed that if 2m − n ≡ 0 (mod 4), then c = 0 and a variety
of approximation to π are obtained. An integral equal to a + bπ leads to a rational approxi-
mation of π as |a/b|, and the maximum value of the integrand gives an upper bound on the
error. As m and n increase, the integrand becomes increasingly flat (Backhouse calls them
“pancake functions”) and the approximation to π improved. Unfortunately, no form of (2)
leads to the approximation 355/113.

Another question raised in [1, 2] is whether there are other families of integrals with
positive integrands that can be used to give increasingly accurate estimates of π. One such
class of integrals not previously considered is

Jm,n =
∫ 1

0

xm(1− x)n

√
1− x2

dx = a + bπ, (3)

where a and b are rationals of opposite sign depending on the positive integers m and n.
Note that an approximation to π can be found from (3) for every choice of positive m and
n. For comparison purposes, Table 1 lists Im,n and Jm,n for the first few m and n for which
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m n Im,n I error Jm,n J error
1 2 π/2− 3/2 1.4e− 1 5/3− π/2 1.9e− 1
3 2 19/12− π/2 2.5e− 2 6/5− 3π/8 5.8e− 2
2 4 π − 47/15 8.3e− 3 49π/32− 24/5 6.9e− 3
1 6 63/10− 2π 8.4e− 3 681/35− 99π/16 3.0e− 3
5 2 π/2− 47/30 8.3e− 3 104/105− 5π/16 2.8e− 2
4 4 22/7− π 1.3e− 3 323π/256− 416/105 1.5e− 3
3 6 2π − 1759/280 5.2e− 4 5018/315− 649π/128 2.6e− 4
7 2 1321/840− π/2 3.6e− 3 272/315− 35π/128 1.6e− 2
2 8 3959/315− 4π 4.7e− 4 10439π/512− 20176/315 1.0e− 4
6 4 π − 1979/630 3.2e− 4 563π/512− 1088/315 5.1e− 4
1 10 8π − 15829/630 9.2e− 4 178555/693− 20995π/256 9.4e− 5
5 6 377/60− 2π 7.4e− 5 48008/3465− 1129π/256 4.7e− 5
9 2 π/2− 989/630 1.9e− 3 128/165− 63π/256 1.1e− 2
4 8 4π − 4838/385 3.4e− 5 36231π/2048− 64192/1155 9.5e− 6
8 4 10886/3465− π 1.1e− 4 2023π/2048− 512/165 2.2e− 4

Table 1. Comparing Im,n and Jm,n

Im,n does not involve log 2, as well as the error in the approximation to π. While the errors
are similar, in no case is the approximation 355/113 forthcoming.

3 Some integral results

In what follows, we shall look at a variety of ways of forming integrals with positive inte-
grands that evaluate to 355/113− π.

3.1 Idea 1 – set b = 1

The first idea is to multiply the integrands in (2) and (3) by a positive rational α so that
the coefficient multiplying π becomes one, and the integral equals a′ − π. Note that this
limits our choices of m,n to when b is positive. We then require m,n large enough that
a′ < 355/113. If we add β = 355/113− a′ to both sides, we get

∫ 1

0

[
αxm(1− x)n

1 + x2
+ β

]
dx =

355
113

− π, (4)

and ∫ 1

0

[
αxm(1− x)n

√
1− x2

+ β

]
dx =

355
113

− π, (5)

where α and β (different for the two different integrals, of course) are positive rationals.
Since the integrands in (4,5) are nonnegative, this gives the required integral proof that
355/113 > π. Numerical testing with the criteria of choosing β with the smallest number of
digits leads to the best results

∫ 1

0

[
x10(1− x)8

4(1 + x2)
+

5
138450312

]
dx =

355
113

− π, (6)

and ∫ 1

0

[
8192

114291
x9(1− x)8√

1− x2
+

15409
219772564011

]
dx =

355
113

− π. (7)
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Now while these integrals do indeed have positive integrands, in a sense they are not really
giving us an approximation involving 355/113. We have simply chosen m and n large
enough so that the approximations to π given by Im,n and Jm,n are better than 355/113,
then degraded the results to get the approximation 355/113 by adding a “fudge factor” to
the integrand. While strictly correct, they lack a certain elegance.

3.2 Idea 2 – set a = 355/113

Another approach is to multiply the integrands of (2) or (3) by a positive rational α so that
the integral equals 355/113 − b′π. If we choose m and n large enough that b′ is a positive
rational greater than one, then we can choose β = 4(b′ − 1) and β′ = 2(b′ − 1) so that

∫ 1

0

αxm(1− x)n + β

1 + x2
dx =

355
113

− π and
∫ 1

0

αxm(1− x)n + β′
√

1− x2
dx =

355
113

− π. (8)

These results use the integrals
∫ 1
0 1/(1+x2) dx = π/4 and

∫ 1
0 1/

√
1− x2 dx = π/2, and since

the integrands are nonnegative, once again lead to 355/113 > π. Numerical testing with
various values of m and n lead to the simplest results in terms of the number of digits in α
and β as

∫ 1

0

21747726x10(1− x)8 + 4
86990903(1 + x2)

dx =
355
113

− π, (9)

and ∫ 1

0

[
355355

10535216
xm(1− x)n +

15409
345217957888

]/√
1− x2 dx =

355
113

− π. (10)

Unfortunately, the previous argument can also be used against the elegance of these results,
its just the position of the addition to the integral to degrade the approximation that has
changed.

3.3 Idea 3 – multiply by a polynomial

Finally, we can take the approach of multiplying the integrand by a low order polynomial,
and adjusting the coefficients to return the correct result. We then choose the simplest case
where the polynomial is nonnegative on [0, 1] – simplest in the sense of the smallest number
of digits in the coefficients. Experimenting with Im,n leads to the results

∫ 1

0

x7(1− x)7(192− 791x + 983x2)
3164(1 + x2)

dx =
355
113

− π, (11)

and ∫ 1

0

x8(1− x)8(25 + 816x2)
3164(1 + x2)

dx =
355
113

− π. (12)

While the powers are lower in (11), the number of characters in the expression is larger
than in (12), and it is not immediately obvious that the integrand is nonnegative. The
integral (12) is nearly as simple as (1), and it is immediately obvious that the integrand is
nonnegative. The best case for Jm,n is

∫ 1

0

x7(1− x)8(617273− 478592x)
16288272

√
1− x2

dx =
355
113

− π, (13)

which only uses a linear factor. The results using quadratic factors are more complicated.
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4 Conclusion

After testing a variety of families of integrals (some of which are not mentioned here), the
result (12) is the simplest formula available that represents the gap between 355/113 and π
as the integral of a positive integrand. Since 1 < 1 + x2 < 2 for the integral range, we can
use it to form the bound

355
113

− 911
2630555928

< π <
335
113

− 911
5261111856

, (14)

or 355/113 − 3.46 × 10−7 < π < 335/113 − 1.73 × 10−7. The true result is π = 355/113 −
2.67× 10−7, which is very close to the middle of the bound.
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