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Abstract

Albert Einstein once said that he does not believe in a
God who plays dice. He was referring to the fundamental
principle that quantum theory permits only statistical as-
sertions concerning the values of physical quantities. This
issue, namely, whether the description of Nature in statisti-
cal terms is complete or even consistent, was the subject of
a very lively debate-dialogue between Einstein and Niels
Bohr in the years 1920-1930. Nowadays there is no de-
bate as the principles of quantum theory have been verified
countless times in experiments.

In this lecture (which requires no previous background) I
shall discuss both classical and quantum probabilities. Al-
though the meaning of probability remains the same in
both contexts, the method of calculating them is differ-
ent. I shall explain the strange but beautiful manner in
which quantum probabilities are calculated, explaining the
mathematical foundations in an elementary manner.



The meaning of probability

Jakob Bernoulli

e If we want to determine the probability p of an event,
find out the number f of times it has occurred in a
very large number N of trials. Then

PN

Pierre Simon Laplace

e If the possible number of outcomes is n and the number
of outcomes that correspond to the event in question
is m, then the probability p of the event is

p=—.
n



Jakob Bernoulli (1654-1705)

e One of the pioneers of Calculus

e Wrote the first great treatise Ars Conjectandi
(Art of Conjecture) on Probability. He introduced
the concept of successive trials which are indepen-
dent (Bernoulli trials), constructed a mathematical
model for it, and proved that in this model, the prob-
ability that the frequency ratio f/N is close to p goes
to 1 as N — oo (Law of large numbers).

e The Law of large numbers is the basis for all applica-
tions of probability.



Pierre Simon Lapace (1749-1827)

e Celestial Mechanics

Wrote his monumental Mécanique Céleste.

Probability

His book Théorie analytique des probabilités was
the first systematic treatise on diverse problems
in probability theory.

e Black holes

Pointed out that a star can be so massive that
even light cannot escape its gravitational pull.

e Central limit theorem

He had the insight to realize that sums of inde-
pendent variables were nearly Gaussian but could
not prove it.

He dominated so many areas that he was called the French
Newton. He transformed both the Theory of Probabil-
ity and Mathematical and Observational Astronomy into
mighty disciplines.



Classical models for Probability

We identify the possible outcomes w of some phenomenon
that we are studying, and introduce the set €2 of all possible
w. For any event we associate the subset A of ) of all
outcomes w that correspond to the event in question. Then
P(A) satisfies the following.

1. 0< P(A) < 1.
2. P(Al UAQ) = P(Al) +P(A2) if the events Al,AQ

are mutually exclusive

Remark. If () is finite, then P is defined for all sub-
sets. For infinite €2, P has to satisfy a stronger version
of 2 (countable additivity).

P(AjUAU.. . UA, ...) = P(A1)+P(A2)+.. . +P(A,)+...

for events Aq, Ao, ..., A,, ... which are pairwise mutually
exclusive. In uncountable {2 one has to restrict the defini-
tion of P to certain classes of subsets. P is a probability
measure. This model for probability was created by A. N.
Kolmogorov, one of 20" century’s greatest mathemati-
cians.



Andrei Nikolaevich Kolmogorov (1903—-1987)

Kolmogorov made profound contributions to an extraordi-
nary number of areas in both pure and applied mathemat-
ics.

e Probability Theory

e Fourier Series

e Statistics

e Logic

e Computational complexity
e Celestial Mechanics

e Superposition of functions
e Turbulence

e Topology

e Teaching of Mathematics



The double slit experiment

Electrons from a source, all with the same energy, pass
through two slits on a screen and fall on a plate. We place
a counter at a variable point X on the plate and record the
arrival of the electrons. If the source is a weak one, we will
be able to count the electrons one by one as they arrive.

Let the holes be numbered 1 and 2. Let A; = A;(X) be
the event that corresponds to the situation when only hole
i is open, i = 1,2. Let A(X) correspond to the situation
when both holes are open. If we use the classical model
for probability, then A(X) = A1(X)U A3(X) while the two
events A; are mutually exclusive. Write
P(X) = P(A(X)), Bi(X) = P(Ai(X)).

Then we should expect that

P(X) = Pi(X) + P2(X).
However experiments conclusively show that

P(X) # Pi(X) + Py(X),
If we put a light source at the slits to see if the electrons
pass through the slits, then

P(X) = Py(X) + Py(X).

How are we to understand this bizarre state of affairs?



Discussion

The qualitative explanation is based on the fact that all
particles possess both wave and particle properties. This
is the wave-particle duality and is a special case of the
complementarity principle. It is the experimental arrange-
ment that decides which kind of property is to be expected.
When we do not check whether the electrons pass through
the holes, the experimental arrangement presumably allows
interference between the electrons and so results in a com-
plicated pattern.

The problem is to construct probability models when we
have to deal with the phenomenon of complementarity.
There are two equivalent approaches due respectively to

e von Neumann

e Feynman.



John von Neumann (1903—-1957)

One of the greatest mathematicians of all time, he worked
in almost all parts of pure and applied mathematics. Here
is a partial list of his achievements and the areas to which
he contributed at a fundamental level.

e Logic
e Quantum mechanics

His book, Mathematical Foundations of Quantum
Mechanics, written when he was 29, is one of the
great landmarks of 20*" century Science.

e Infinite dimensional linear algebra

e Solution of Hilbert’s 5*" problem for compact groups

Computer Science and the theory of automata

His pioneering work on the theory of the computer
entitles him to be regarded as the father of the
computer age.

e Atomic and Hydrogen bombs

Played an important role in the Manhattan
project and later, with Stanislaw Ulam, in the
creation of the hydrogen bomb.

e Numerical analysis, including weather prediction



Logic of quantum mechanics:

The von Neumann model

The double slit experiment suggests that the logic of quan-
tum theory is not classical, i.e., not a boolean algebra, be-
cause of the complementarity principle. As long as the
statements are made with respect to a fixed experimental
arrangement, the logic is classical. But when statements
are being made about different experimental arrangements,
there is interference and one has to abandon boolean alge-
bras.

In the von Neumann model the experimental statements
(=quantum events) are arranged as in a complex euclidean
projective geometry, namely as the set of linear subspaces
of a complex euclidean space: inclusion corresponds to im-
plication, and negation to taking orthogonal complements.

Complex scalars are essential for many reasons (charge con-
jugation for instance).



Probabilities in the von Neumann model

For each linear subspace S of a complex euclidean space
(Hilbert space) ‘H we have a probability P(S) of the event
that S represents. The classical additivity still holds but
only for orthogonal subspaces:

P(A1 @ Az) = P(A1) + P(A2)  (Ar L Az).

It is possible that for suitable A;, Ay, we have A = A1 & A,
where A; and A, are not orthogonal; in this case in general

P(A1 ® Az) # P(A1) + P(Az).
We shall say that the events A; and As interfere with each
other. Such a P is called a quantum probability measure.
The statistical basis of quantum theory is the statement:

e P is the state of the system.

e All of quantum theory is subsumed under this model.



Description of states: Gleason-Mackey theorem

For any unit vector ¢ of ‘H defines a quantum probability
measure Py as follows:

P,(S) = ||¢s]|? (¢ps = the projection of ¢ on 5).
The relation
16511 = (165, |I° + (|5, |I° + ... + 65,1
where
S=51952d...05,, Si L S;(¢ # j)
shows that Py is a quantum probability measure. Moreover

Py =Py ¢ =c(le| = 1)

Theorem (Gleason—Mackey) If dim(H) > 3, then every
quantum probability measure s a convex linear combination

of the Py.



Discussion

The Gleason-Mackey theorem is the basis of the principle
in QM that states are represented by unit vectors and that
¢ and co(|c| = 1) define the same state. The Schrddinger
equation describes how ¢ varies with time.

When dim(H) = 3 it is equivalent to saying that any func-
tion f defined on the unit sphere satisfying

(1) 0< f(¢) <1
(2) f(9) = [fco), || =1
(3) f(é1)+ f(p2) + f(p3) =1 ((¢;) an ON basis)

is of the form

f(9) = (Ao, 9)

where A is a hermitian matrix with eigenvalues > 0 and
trace 1. Try proving this!



Richard P. Feynman (1918-1998)

The most imaginative and iconolastic physicist of his gen-
eration, and an American original. He is most famous for
e Path integral (sum over histories) approach to QM
e The Feynman Lectures on Physics

e Theory of superfluidity

The behaviour of liquid Helium at near zero (Ab-
solute) temperature

Quantum Electrodynamics

Shared the Nobel prize with Julian Schwinger and
Sin-Itiro-Tomonaga in 1965.

e Feynman diagrams
e Pioneered quantum computing and nano technology

e Role in the Challenger Commission



Calculation of probabilties in the double slit experiment

The general principle is that one calculates the complex
amplitude ¢; of the path from the source S to the point X
on the plate when only the slit 7 is open. Then

P(X) = [¢|°, Py(X) = |os|?

where

¢» = @1+ ¢o.

In general

b1 + d2|* # |d1]° + |pa]”.



Path integral

The probability for a particle to go from spacetime point
A to a spacetime point B, is

Ll

where ¢ is given by the Feynman integral

¢ = exp{iS(y)/h}.
A—B

Here the integration is over the space of all paths v from A
to B and S(7) is the classical action for the path ~. Also
h is Planck’s constant divided by 2.

In the domain where h is very small, the method of station-
ary phase shows that the main contributions to the integral
come from the paths for which the action S is stationary,
i.e., the classical paths. Thus we recover the classical action
principle.

Warning! This is only a heuristic formula. To make it
rigorous requires considerable effort.



Rigorous meaning of the path integral

Because of the factor ¢ in the exponent of the path integral
the Feynman integral, even under a very generous interpre-
tation, is highly oscillatory. A toy model is the integral

exp{—iz?/2}dx.

1 oo
V 2 /;oo
If we change ¢ to o where o > 0, we get

s or L
exp{—ox”/2}d N3

The function of o on the right is analytic on Re(o) > 0 and
continuous on Re(o) > 0 and so we can evaluate at i to get

7l

1—2

1 [ L B
\/—2_7T/oo exp{—iz*/2}dx = 75




Discussion

Wiener measure In practice, what is done is to change
over to a genuine probability measure, called the Wiener
measure, which is a sort of Gaussian measure on the path
space. It models Brownian Motion. One then evaluates
the integrals with respect to the Wiener measure and then
make an analytic continuation of the result.

Sum over histories The path integral and methods of cal-
culating it, have revolutionized modern physics and math-
ematics. It is briefly called the sum over histories and has
been used by Stephen Hawking and others to construct
a remarkable theory of quantum black holes. In mathemat-
ics, in addition to its applications to various applied areas,
it has led to alternative views and proofs of such landmark
results as the Index Theorem of Atiyah-Singer.
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