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5.1. Prologue. E. Cartan classified simple Lie algebras over C in his thesis in 1894,
a classification that is nowadays done through the (Dynkin) diagrams. In 1913 he
classified the irreducible finite dimensional representations of these algebras1. For
any simple Lie algebra g Cartan’s construction yields an irreducible representation
canonically associated to each node of its diagram. These are the so-called fun-
damental representations in terms of which all irreducible representations of g can
be constructed using ⊗ and subrepresentations. Indeed, if πj(1 ≤ j ≤ `) are the
fundamental representations and mj are integers ≥ 0, and if vj is the highest vector
of πj , then the subrepresentation of

π = π⊗m1
1 ⊗ . . .⊗ π⊗m``

generated by
v = v⊗m1

1 ⊗ . . .⊗ v⊗m``

is irreducible with highest vector v, and every irreducible module is obtained in this
manner uniquely. As is well-known, Harish-Chandra and Chevalley (independently)
developed around 1950 a general method for obtaining the irreducible representa-
tions without relying on case by case considerations as Cartan did.

If g = sl(`+ 1) and V = C`+1, then the fundamental module πj is Λj(V ), and
all irreducible modules can be obtained by decomposing the tensor algebra over the
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defining representation V . Similarly, for the symplectic Lie algebras, the decomposi-
tion of the tensors over the defining representation gives all the irreducible modules.
But Cartan noticed that this is not the case for the orthogonal Lie algebras. For
these the fundamental representations corresponding to the right extreme node(s)
(the nodes of higher norm are to the left) could not be obtained from the tensors
over the defining representation. Thus for so(2`) with ` ≥ 2, there are two of these,
denoted by S±, of dimension 2`−1, and for so(2`+ 1) with ` ≥ 1, there is one such,
denoted by S, of dimension 2`. These are the so-called spin representations; the S±

are also referred to as semi-spin representations. The case so(3) is the simplest. In
this case the defining representation is SO(3) and its universal cover is SL(2). The
tensors over the defining representation yield only the odd dimensional irreducibles;
the spin representation is the 2-dimensional representation D1/2 = 2 of SL(2). The
weights of the tensor representations are integers while D1/2 has the weights ±1/2,
revealing clearly why it cannot be obtained from the tensors. However D1/2 gener-
ates all representations; the representation of highest weight j/2 (j an integer ≥ 0)
is the j-fold symmetric product of D1/2, namely Symm⊗jD1/2. In particular the
vector representation of SO(3) is Symm⊗2D1/2. In the other low dimensional cases
the spin representations are as follows.

SO(4): Here the diagram consists of 2 unconnected nodes; the Lie algebra so(4)
is not simple but semisimple and splits as the direct sum of two so(3)’s. The group
SO(4) is not simply connected and SL(2)×SL(2) is its universal cover. The spin
representations are the representations D1/2,0 = 2× 1 and D0,1/2 = 1× 2. The
defining vector representation is D1/2,0×D0,1/2.

SO(5): Here the diagram is the same as the one for Sp(4). The group SO(5) is
not simply connected but Sp(4), which is simply connected, is therefore the universal
cover of SO(5). The defining representation 4 is the spin representation. The
representation Λ24 is of dimension 6 and contains the trivial representation, namely
the line defined by the element that corresponds to the invariant symplectic form in
4. The quotient representation is 5-dimensional and is the defining representation
for SO(5).

SO(6): We have come across this in our discussion of the Klein quadric. The
diagrams for so(6) and sl(4) are the same and so the universal covering group for
SO(6) is SL(4). The spin representations are the defining representation 4 of SL(4)
and its dual 4∗, corresponding to the two extreme nodes of the diagram. The
defining representation for SO(6) is Λ24 ' Λ24∗.

SO(8): This case is of special interest. The diagram has 3 extreme nodes and
the group S3 of permutations in 3 symbols acts transitively on it. This means
that S3 is the group of automorphisms of SO(8) modulo the group of inner au-
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tomorphisms, and so S3 acts on the set of irreducible modules also. The vector
representation 8 as well as the spin representations 8± are all of dimension 8 and
S3 permutes them. Thus it is immaterial which of them is identified with the vector
or the spin representations. This is the famous principle of triality. There is an
octonionic model for this case which makes explicit the principle of triality8,13.

Dirac’s equation of the electron and Clifford algebras. The definition given
above of the spin representations does not motivate them at all. Indeed, at the
time of their discovery by Cartan, the spin representations were not called by that
name; that came about only after Dirac’s sensational discovery around 1930 of the
spin representation and the Clifford algebra in dimension 4, on which he based the
relativistic equation of the electron bearing his name. This circumstance led to
the general representations discovered by Cartan being named spin representations.
The elements of the spaces on which the spin representations act were then called
spinors. The fact that the spin representation cannot be obtained from tensors
meant that the Dirac operator in quantum field theory must act on spinor fields
rather than tensor fields. Since Dirac was concerned only with special relativity and
so with flat Minkowski spacetime, there was no conceptual difficulty in defining the
spinor fields there. But when one goes to curved spacetime, the spin modules of
the orthogonal groups at each spacetime point form a structure which will exist
in a global sense only when certain topological obstructions (cohomology classes)
vanish. The structure is the so-called spin structure and the manifolds for which
a spin structure exists are called spin manifolds. It is only on spin manifolds that
one can formulate the global Dirac and Weyl equations.

Coming back to Dirac’s discovery, his starting point was the Klein-Gordon
equation

(∂2
0 − ∂2

1 − ∂2
2 − ∂2

3)ϕ = −m2ϕ

(
∂µ =

∂

∂xµ

)
where ϕ is the wave function of the particle (electron) and m is its mass. This
equation is of course relativistically invariant. However Dirac was dissatisfied with
it primarily because it was of the second order. He felt that the equation should be of
the first order in time and hence, as all coordinates are on equal footing in special
relativity, it should be of the first order in all coordinate variables. Translation
invariance meant that the differential operator should be of the form

D =
∑
µ

γµ∂µ

where the γµ are constants. To maintain relativistic invariance Dirac postulated
that

D2 = ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 (1)
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and so his equation took the form

Dϕ = ±imϕ.

Here the factor i can also be understood from the principle that only the i∂µ are
self adjoint in quantum mechanics. Now a simple calculation shows that no scalar
γµ can be found satisfying (1); the polynomial X2

0 −X2
1 −X2

2 −X2
3 is irreducible.

Indeed, the γµ must satisfy the equations

γ2
µ = εµ, γµγν + γνγµ = 0(µ 6= ν) (ε0 = 1, εi = −1, i = 1, 2, 3) (2)

and so the γµ cannot be scalars. But Dirac was not stopped by this difficulty and
asked if he could find matrices γµ satisfying (2). He found the answer to be yes.
In fact he made the discovery that there is a solution to (2) where the γµ are 4× 4
matrices, and that this solution is unique up to similarity in the sense that any
other solution (γ′µ) of degree 4 is of the form (TγµT−1) where T is an invertible
4× 4 matrix; even more, solutions occur only in degrees 4k for some integer k ≥ 1
and are similar (in the above sense) to a direct sum of k copies of a solution in
degree 4.

Because the γµ are 4× 4 matrices, the wave function ϕ cannot be a scalar any-
more; it has to have 4 components and Dirac realized that these extra components
describe some internal structure of the electron. In this case he showed that they
indeed encode the spin of the electron.

It is not immediately obvious that there is a natural action of the Lorentz
group on the space of 4-component functions on spacetime, with respect to which
the Dirac operator is invariant. To see this clearly, let g = (`µν) be an element of
the Lorentz group. Then it is immediate that

D ◦ g−1 = g−1 ◦D′, D′ = γ′µ∂µ, γ′µ =
∑
ν

`µνγν .

Since
D′2 = (g ◦D ◦ g−1)2 = D2

it follows that
γ′µ = S(g)γµS(g)−1

for all µ, S(g) being an invertible 4× 4 matrix determined uniquely up to a scalar
multiple. Thus

S : g 7−→ S(g)
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is a projective representation of the Lorentz group and can be viewed as an ordinary
representation of the universal covering group of the Lorentz group, namely H =
SL(2,C). The action of H on the 4-component functions is thus

ψ 7−→ ψg := S(g)ψ ◦ g−1

and the Dirac operator is invariant under this action:

Dψg = (Dψ)g.

From the algebraic point of view one has to introduce the universal algebra C
over C generated by the symbols γµ with relations (2) and study its representations.
If we work over C we can forget the signs ± and take the relations between the γµ
in the form

γ2
µ = 1, γµγν + γνγµ = 0 (µ 6= ν).

Dirac’s result is then essentially that C has a unique irreducible representation,
which is in dimension 4, and that any representation is a sum of copies of this one.
Moreover, there is an action S of the group H on this representation space that is
compatible with the action of the Lorentz group as automorphisms of C. S is the
spin representation.

The Clifford algebra, as the algebra over R with n generators

e1, e2, . . . , en

and relations
e2
r = −1, eres + eser = 0 (r 6= s)

goes back to a paper of Clifford2 in 1878 where it is viewed as a generalization
of the quaternion algebra (for n = 2 it is the quaternion algebra). Their deeper
significance became clear only after Dirac’s discovery3 of the spin representation,
but only in dimensions 3 and 4. In 1935, R. Brauer and H. Weyl wrote a seminal
paper4 in which they studied various questions concerning the spinors and spin
representations over the real and complex field but in arbitrary dimensions and
in the definite and Minkowski signatures. The geometric aspects of spinors were
treated by Cartan in a book5 published in 1938. The general algebraic study of
spinors in arbitrary fields was carried out by C. Chevalley in his book6. The theory
of spinors in arbitrary dimensions but for positive definite quadratic forms was
developed in a famous paper of Atiyah, Bott, and Shapiro7 where they carried
out many applications. In recent years, with the increasing interest of physicists
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in higher dimensional spacetimes, spinors in arbitrary dimensions and arbitrary
signatures have come to the foreground.

The foundation of the theory of spinors lies in the theory of Clifford algebras
and their representations. We do this in §2. In §3 we take up the theory of spin
groups and spin representations; the key here is to view the spin group as embedded
in the group of units of the even part of the Clifford algebra and to view the spin
representations as modules for it. In §4 we study reality questions concerning the
spin modules which are critical for applications in physics. Here we follow Deligne8

and obtain the basic results as consequences of the theory of super Brauer groups,
generalizing the classical theory of the ordinary Brauer group of a field. The theory
is developed over an arbitrary field of characteristic 0 but we also include a shorter
treatment based on7 in which the main results on the reality of the spin represen-
tations are obtained more quickly. The concern in §5 is with pairings between spin
modules and the vector and other exterior modules of the orthogonal group. The
last section is an appendix where we discuss some well-known properties of orthog-
onal groups including Cartan’s theorem that the reflections generate the orthogonal
groups.

Our treatment leans heavily on that of Deligne8. One of its highlights is the
study of the Clifford algebras and their representations from the point of view of
the super category. This makes the entire theory extremely transparent. For those
who are familiar with the physicists’ language and formalism the paper of Regge9

is a useful reference.

5.2. Clifford algebras and their representations. Tensors are objects functo-
rially associated to a vector space. If V is a finite dimensional vector space and

T r,s = V ∗⊗r ⊗ V ⊗s

then the elements of T r,s are the tensors of rank (r, s). V is regarded as a module
for GL(V ) and then T r,s becomes also a module for GL(V ). Spinors on the other
hand are in a much more subtle relationship with the basic vector space. In the
first place, the spinor space is attached only to a vector space with a metric. Let us
define a quadratic vector space to be a pair (V,Q) where V is a finite dimensional
vector space over a field k of characteristic 0 and Q a nondegenerate quadratic form.
Here a quadratic form is a function such that

Q(x) = Φ(x, x)

where Φ is a symmetric bilinear form, with nondegeneracy of Q defined as the
nondegeneracy of Φ. Thus

Q(x+ y) = Q(x) +Q(y) + 2Φ(x, y).
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Notice that our convention, which is the usual one, differs from that of Deligne8

where he writes Φ for our 2Φ. A quadratic subspace of a quadratic vector space
(V,Q) is a pair (W,QW ) where W is a subspace of V and QW is the restriction of Q
to W , with the assumption that QW is nondegenerate. For quadratic vector spaces
(V,Q), (V ′, Q′) let us define the quadratic vector space (V ⊕ V ′, Q⊕Q′) by

(Q⊕Q′)(x+ x′) = Q(x) +Q(x′)(x ∈ V, x′ ∈ V ′).

Notice that V and V ′ are orthogonal in V ⊕ V ′. Thus for a quadratic subspace
W of V we have V = W ⊕ W⊥ as quadratic vector spaces. Given a quadratic
vector space (V,Q) or V in brief, we have the orthogonal group O(V ), the subgroup
of GL(V ) preserving Q, and its subgroup SO(V ) of elements of determinant 1. If
k = C and dim(V ) ≥ 3, the group SO(V ) is not simply connected, and Spin(V ) is
its universal cover which is actually a double cover. The spinor spaces carry certain
special irreducible representations of Spin (V ). Thus, when the space V undergoes a
transformation ∈ SO(V ) and g∼ is an element of Spin(V ) above g, the spinor space
undergoes the transformation corresponding to g∼. The spinor space is however
not functorially attached to V . Indeed, when (V,Q) varies, the spinor spaces do
not vary in a natural manner unless additional assumptions are made (existence of
spin structures). This is the principal difficulty in dealing with spinors globally on
manifolds. However, in this chapter we shall not treat global aspects of spinor fields
on manifolds.

The Clifford algebra C(V,Q) = C(V ) of the quadratic vector space (V,Q) is
defined as the associative algebra generated by the vectors in V with the relations

v2 = Q(v)1 (v ∈ V ).

The definition clearly imitates the Dirac definition (1) in dimension 4. The relations
for the Clifford algebra are obviously equivalent to

xy + yx = 2Φ(x, y)1 (x, y ∈ V ).

Formally, let T (V ) be the tensor algebra over V , i.e.,

T (V ) =
⊕
r≥0

V ⊗r

where V 0 = k1 and multiplication is ⊗. If

tx,y = x⊗ y + y ⊗ x− 2Φ(x, y)1 (x, y ∈ V )
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then
C(V ) = T (V )/I

where I is the two-sided ideal generated by the elements tx,y. If (ei)1≤i≤n is a basis
for V , then C(V ) is generated by the ei and is the algebra with relations

eiej + ejei = 2Φ(ei, ej) (i, j = 1, 2, . . . , n).

The tensor algebra T (V ) is graded by Z but this grading does not descend to
C(V ) because the generators tx,y are not homogeneous. However if we consider the
coarser Z2–grading of T (V ) where all elements spanned by tensors of even (odd)
rank are regarded as even (odd), then the generators tx,y are even and so this grading
descends to the Clifford algebra. Thus C(V ) is a super algebra. The point of view
of super algebras may therefore be applied systematically to the Clifford algebras.
Some of the more opaque features of classical treatments of Clifford algebras arise
from an insistence on treating the Clifford algebra as an ungraded algebra. We shall
see below that the natural map V −→ C(V ) is injective and so we may (and shall)
identify V with its image in C(V ): V ⊂ C(V ) and the elements of V are odd.

Since C(V ) is determined by Q the subgroup of GL(V ) preserving Q clearly
acts on C(V ). This is the orthogonal group O(V ) of the quadratic vector space V .
For any element g ∈ O(V ) the induced action on the tensor algebra T descends to
an automorphism of C(V ).

The definition of the Clifford algebra is compatible with base change; if k ⊂ k′
and Vk′ := k′ ⊗k V , then

C(Vk′) = C(V )k′ := k′ ⊗k C(V ).

Actually the notions of quadratic vector spaces and Clifford algebras defined above
may be extended to the case when k is any commutative ring with unit element
in which 2 is invertible. The compatibility with base change remains valid in this
general context. We shall however be concerned only with the case when k is a field
of characteristic 0.

By an orthonormal (ON) basis for V we mean a basis (ei) such that

Φ(ei, ej) = δij .

If we only have the above for i 6= j we speak of an orthogonal basis; in this case
Q(ei) 6= 0 and eiej + ejei = 2Q(ei)δij . For such a basis, if k is algebraically closed,
there is always an ON basis. So in this case there is essentially only one Clifford
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algebra Cm for each dimension m. If k is not algebraically closed, there are many
Clifford algebras. For instance let k = R. Then any quadratic vector space (V,Q)
over R is isomorphic to Rp,q where p, q are integers ≥ 0, and Rp,q is the vector
space Rp+q with the metric

Q(x) = x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

p+q.

The numbers p, q are invariants of (V,Q) and we refer to either (p, q) or p − q as
the signature of V or Q. Thus, for k = R, we have, as ungraded algebras,

C(R0,1) ' C, C(R1,0) ' R⊕R C(R0,2) ' H C(R1,1) 'M2(R)

where H is the algebra of quaternions and M2(R) is the 2× 2 matrix algebra over
R.

Basic elementary properties. Some of the basic elementary properties of Clifford
algebras are as follows. For general k, C(V ) has dimension 2dim(V ), and if dim(V ) =
n, then the elements

1, eI = ei1ei2 . . . eir (I = {i1, . . . , ir} i1 < . . . < ir, 1 ≤ r ≤ n)

form a basis for C(V ). If we change Q to −Q, we obtain C(V )opp, the algebra
opposite to C(V ):

C(V,−Q) ' C(V )opp. (3)

Notice here that we are speaking of opposite algebras in the super category. Let
V, V ′ be quadratic vector spaces. We then have the important relation

C(V ⊕ V ′) = C(V )⊗ C(V ′) (4)

as super algebras, the tensor product being taken in the category of super algebras.
We remark that this relation is not true if the tensor product algebra is the usual one
in ungraded algebras; indeed, as V and V ′ are orthogonal, their elements anticom-
mute in C(V ⊕ V ′) but in the ordinary tensor product they will have to commute.
This is again an indication that it is essential to treat the Clifford algebras as objects
in the category of super algebras.

We shall first establish (4). If A is an associative algebra with unit and (W,R)
is a quadratic vector space, then in order that a linear map L(W −→ A) extend to
a map C(W ) −→ A it is necessary and sufficient that L(w)2 = R(w)1 for all w ∈ A,
and that for A a super algebra, this is a map of super algebras if L(w) is odd for
all w ∈W . Let

(W,R) = (V,Q)⊕ (V ′, Q′), A = C(V )⊗ C(V ′), L(v ⊕ v′) = v ⊗ 1 + 1⊗ v′.
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Since v, v′ are odd, (1⊗ v′)(v ⊗ 1) = −v ⊗ v′, and so we have

(v ⊗ 1 + 1⊗ v′)2 = R(v ⊕ v′)1

so that L extends to a map of C(V ⊕ V ′) into C(V )⊗C(V ′). To set up the inverse
map note that the inclusions V, V ′ ⊂ V ⊕V ′ give even maps h, h′ of C(V ), C(V ′) −→
C(V ⊕ V ′) and hence a linear map a ⊗ a′ 7−→ h(a)h′(a′) of C(V ) ⊗ C(V ′) into
C(V ⊕ V ′). Since h, h′ preserve parity, this map will be a morphism of super
algebras if for a, b ∈ C(V ) and a′, b′ ∈ C(V ′) we can show that

h(b)h′(a′) = (−1)p(b)p(a
′)h′(a′)h(b).

This comes down to showing that for vi ∈ V, v′j ∈ V ′ we have

v1 . . . vrv
′
1 . . . v

′
s = (−1)rsv′1 . . . v

′
sv1 . . . vr

in C(V ⊕V ′). This is obvious since, by definition, vi and v′j anticommute in V ⊕V ′.
It is trivial to check that the two maps thus constructed are inverses of each other;
indeed, the compositions in either order are the identities at the level of the vectors
and so are the identities everywhere. Thus (4) is proved.

At this stage we can conclude that C(V ) has dimension 2n where n = dim(V ).
In fact, if V has dimension 1 and v is nonzero in V with Q(v) = a 6= 0, then C(V )
is the span of 1 and v so that it has dimension 2; for arbitrary V of dimension n it
follows from (4) that C(V ) has dimension 2n. In particular, if (ei)1≤i≤n is a basis
of V , then

1, eI = ei1ei2 . . . eir (I = {i1, . . . , ir} i1 < . . . < ir, 1 ≤ r ≤ n)

form a basis for C(V ). This implies at once that the natural map V −→ C(V ) is
injective so that we shall assume from now on that V ⊂ C(V ).

We shall now prove (3). The identity map of V lifts to a morphism of T (V )
onto C(V )opp as super algebras. We claim that this lift vanishes on the kernel
of T (V ) −→ C(V −) where we write V − for (V,−Q). It is enough to show that
for x ∈ V , the image of x ⊗ x + Q(x)1 in C(V )opp is 0. But this image is the
element −x2 + Q(x)1 in C(V ) and so is 0. Thus we have a surjective morphism
C(V −) −→ C(V )opp. Since the dimensions are equal this is an isomorphism.

The Clifford algebra and the exterior algebra. The Clifford algebra is filtered
in a natural way because the tensor algebra which sits above it is filtered by rank
of tensors. Thus C = C(V ) acquires the filtration (Cr) where Cr is the span of
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elements of the form v1 . . . vs where vi ∈ V and s ≤ r. Let Cgr be the associated
graded algebra. Clearly Cgr

1 = V . If v ∈ V , then v2 ∈ C0 and so v2 = 0 in Cgr.
Hence we have a homomorphism of Cgr onto the exterior algebra Λ(V ) preserving
degrees, which is an isomorphism because both spaces have dimension 2dim(V ). Thus

Cgr ' Λ(V ) (as graded algebras).

It is possible to construct a map in the reverse direction going from the exterior
algebra to the Clifford algebra, the so-called skewsymmetrizer map

λ : v1 ∧ . . . ∧ vr 7−→
1
r!

∑
σ

ε(σ)vσ(1) . . . vσ(r)

where the sum is over all permutations σ of {1, 2, . . . , r}, ε(σ) is the sign of σ, and
the elements on the right side are multiplied as elements of C(V ). Indeed, the right
side above is skewsymmetric in the vi and so by the universality of the exterior
power, the map λ is well-defined. If we choose a basis (ei) of V such that the ei are
mutually orthogonal, the elements ei1 . . . eir are clearly in the range of λ so that λ
is surjective, showing that

λ : Λ(V ) ' C(V )

is a linear isomorphism. If we follow λ by the map from Cr to Cgr we obtain the
isomorphism of Λ(V ) with Cgr that inverts the earlier isomorphism. The definition
of λ makes it clear that it commutes with the action of O(V ) on both sides. Now
Λ(V ) is the universal enveloping algebra of V treated as a purely odd Lie super
algebra, and so λ is analogous to the symmetrizer isomorphism of the symmetric
algebra of a Lie algebra with its universal enveloping algebra.

Center and super center. For any super algebra A its super center sctr(V ) is
the sub super algebra whose homogeneous elements x are defined by

xy − (−1)p(x)p(y)yx = 0 (y ∈ A).

This can be very different from the center ctr(V ) of A regarded as an ungraded
algebra. Notice that both sctr(V ) and ctr(V ) are themselves super algebras.

Proposition 5.2.1. We have the following.

(i) sctr(C(V )) = k1.
(ii) ctr(C(V )) = k1 if dim(V ) is even.
(iii) If dim(V ) = 2m+ 1 is odd then ctr(C(V )) is a super algebra of dimension

1|1; if ε is a nonzero odd element of it, then ε2 = a ∈ k \ (0) and ctr(V ) =
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k[ε]. In particular it is a super algebra all of whose nonzero homogeneous
elements are invertible and whose super center is k. If (ei)0≤i≤2m is an
orthogonal basis for V , then we can take ε = e0e1 . . . e2m. If further e2

i =
±1, then ε2 = (−1)m+q1 where q is the number of i’s for which e2

i = −1.

Proof. Select an orthogonal basis (ei)1≤i≤n for V . If I ⊂ {1, 2, . . . , n} is nonempty,
then

eIej = αI,jejeI where αI,j =
{
−(−1)|I| (j ∈ I)
(−1)|I| (j /∈ I).

Let x =
∑
I aIeI be a homogeneous element in the super center of C(V ) where the

sum is over I with parity of I being same as p(x). The above formulae and the
relations xej = (−1)p(x)ejx imply, remembering that ej is invertible,

(αI,j − (−1)p(x))aI = 0.

If we choose j ∈ I, then, αI,j = −(−1)p(x), showing that aI = 0. This proves (i).
To prove (ii) let x above be in the center. We now have xej = ejx for all j. Then,
as before,

(αI,j − 1)aI = 0.

So aI = 0 whenever we can find a j such that αI,j = −1. Thus aI = 0 except
when dim(V ) = 2m+ 1 is odd and I = {0, 1, . . . , 2m}. In this case ε = e0e1 . . . e2m

commutes with all the ej and so lies in ctr(V ). Hence ctr(V ) = k[ε]. A simple
calculation shows that

ε2 = (−1)mQ(e0) . . . Q(e2m)

from which the remaining assertions follow at once.

Remark. The center of C(V ) when V has odd dimension is an example of a
super division algebra. A super division algebra is a super algebra whose nonzero
homogeneous elements are invertible. If a ∈ k is nonzero, then k[ε] with ε odd and
ε2 = a1 is a super division algebra since ε is invertible with inverse a−1ε.

Proposition 5.2.2. Let dim(V ) = 2m+ 1 be odd and let D = ctr(V ). Then

C(V ) = C(V )+D ' C(V )+ ⊗D

as super algebras. Moreover, let e0 ∈ V be such that Q(e0) 6= 0, W = e⊥0 , and Q′

be the quadratic form −Q(e0)QW on W ; let W ′ = (W,Q′). Then

C(V )+ ' C(W ′)
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as ungraded algebras.

Proof. Let (ei)0≤i≤2m be an orthogonal basis for V so that e1, . . . , e2m is an
orthogonal basis for W . Let ε = e0 . . . e2m so that D = k[ε]. In the proof r, s vary
from 1 to 2m. Write fr = e0er. Then frfs = −Q(e0)eres so that the fr generate
C(V )+. If γp ∈ C(V )+ is the product of the ej(j 6= p) in some order, γpε = cep
where c 6= 0, and so D and C(V )+ generate C(V ). By looking at dimensions we
then have the first isomorphism. For the second note that frfs + fsfr = 0 when
r 6= s and f2

r = −Q(e0)Q(er), showing that the fr generate the Clifford algebra
over W ′.

Structure of Clifford algebras over algebraically closed fields. We shall
now examine the structure of C(V ) and C(V )+ when k is algebraically closed.
Representations of C(V ) are morphisms into End(U) where U is a super vector
space.

The even dimensional case. The basic result is the following.

Theorem 5.2.3. Let k be algebraically closed. If dim(V ) = 2m is even, C(V ) is
isomorphic to a full matrix super algebra. More precisely,

C(V ) ' End(S) dim(S) = 2m−1|2m−1.

This result is true even if k is not algebraically closed provided (V,Q) ' (V1, Q1)⊕
(V1,−Q1).

This is a consequence of the following theorem.

Theorem 5.2.4. Suppose that k is arbitrary and V = U ⊕ U∗ where U is a vector
space with dual U∗. Let

Q(u+ u∗) = 〈u, u∗〉 (u ∈ U, u∗ ∈ U∗).

Let S = ΛU∗ be the exterior algebra over U∗, viewed as a super algebra in the usual
manner. Then S is a C(V )–module for the actions of U and U∗ given by

µ(u∗) : ` 7−→ u∗ ∧ `, ∂(u) : ` 7−→ ∂(u)` (` ∈ S)

where ∂(u) is the odd derivation of S that is characterized by ∂(u)(u∗) = 〈u, u∗〉.
Moreover the map C(V ) −→ End(S) defined by this representation is an isomor-
phism.
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Theorem 5.2.4 =⇒ Theorem 5.2.3. If k is algebraically closed we can find an
ON basis (ej)1≤j≤2m. If f±r = 2−1/2[er ± iem+r](1 ≤ r ≤ m), then

Φ(f±r , f
±
s ) = 0, Φ(f±r , f

∓
s ) = δrs. (∗)

Let U± be the subspaces spanned by (f±r ). We take U = U+ and identify U− with
U∗ in such a way that

〈u+, u−〉 = 2Φ(u+, u−) (u± ∈ U±).

Then
Q(u+ + u−) = 〈u+, u−〉

for u± ∈ U±, and we can apply Theorem 5.2.4. If k is not algebraically closed but
(V,Q) = (V1, Q1) ⊕ (V1,−Q1), we can find a basis (ej)1≤j≤2m for V such that the
ej are mutually orthogonal, (ej)1≤j≤m span V1⊕ 0 while (em+j)1≤j≤m span 0⊕V1,
and Q(ej) = −Q(em+j) = aj 6= 0. Let f+

r = er + em+r, f
−
r = (2ar)−1(er − em+r).

Then the relations (∗) are again satisfied and so the argument can be completed as
before.

Proof of Theorem 5.2.4. It is clear that µ(u∗)2 = 0. On the other hand ∂(u)2

is an even derivation which annihilates all u∗ and so is 0 also. We regard S as
Z2–graded in the obvious manner. It is a simple calculation that

µ(u∗)∂(u) + ∂(u)µ(u∗) = 〈u, u∗〉1 (u ∈ U, u∗ ∈ U∗).

Indeed, for g ∈ S, by the derivation property, ∂(u)µ(u∗)g = ∂(u)(u∗g) = 〈u, u∗〉g−
µ(u∗)∂(u)g which gives the above relation. This implies at once that

(∂(u) + µ(u∗))2 = Q(u+ u∗)1

showing that
r : u+ u∗ 7−→ ∂(u) + µ(u∗)

extends to a representation of C(V ) in S. Notice that the elements of V act as odd
operators in S and so r is a morphism of C(V ) into End(S).

We shall now prove that r is surjective as a morphism of ungraded alge-
bras; this is enough to conclude that r is an isomorphism of super algebras since
dim(C(V )) = 22 dim(U∗) = dim(End(S)) where all dimensions are of the ungraded
vector spaces. Now, if A is an associative algebra of endomorphisms of a vector
space acting irreducibly on it, and its commutant, namely the algebra of endo-
morphisms commuting with A, is the algebra of scalars k1, then by Wedderburn’s
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theorem, A is the algebra of all endomorphisms of the vector space in question. We
shall now prove that r is irreducible and has scalar commutant. Let (ui) be a basis
of U and u∗j the dual basis of U∗.

The proof of the irreducibility of r depends on the fact that if L is a subspace of
S invariant under all ∂(u), then 1 ∈ L. If L is k1 this assertion in trivial; otherwise
let g ∈ L be not a scalar; then, replacing g by a suitable multiple of it we can write

g = u∗I +
∑

J 6=I,|J|≤|I|

aJu
∗
J I = {i1, . . . , ip}, p ≥ 1.

As
∂(uip) . . . ∂(ui1)g = 1

we see that 1 ∈ L. If now L is invariant under C(V ), applying the operators µ(u∗)
to 1 we see that L = S. Thus S is irreducible. Let T be an endomorphism of
S commuting with r. The proof that T is a scalar depends on the fact that the
vector 1 ∈ S, which is annihilated by all ∂(u), is characterized (projectively) by
this property. For this it suffices to show that if g ∈ S has no constant term, then
for some u ∈ U we must have ∂(u)g 6= 0. If g =

∑
|I|≥p aIu

∗
I where p ≥ 1 and

some aJ with |J | = p is nonzero, then ∂(uj)g 6= 0 for j ∈ J . This said, since
∂(ui)T1 = T∂(ui)1 = 0 we see that T1 = c1 for some c ∈ k. So replacing T by
T − c1 we may assume that T1 = 0. We shall now prove that T = 0. Let T1 = v∗.
Then, as T commutes with all the µ(u∗), we have, Tu∗ = u∗ ∧ v∗ for all u∗ ∈ U∗.
So it is a question of proving that v∗ is 0. Since T commutes with ∂(u) we have,
for all u ∈ U ,

∂(u)Tu∗ = T 〈u, u∗〉 = 〈u, u∗〉v∗

while we also have

∂(u)Tu∗ = ∂(u)(u∗ ∧ v∗) = 〈u, u∗〉v∗ − u∗ ∧ ∂(u)v∗.

Hence
u∗ ∧ ∂(u)v∗ = 0 (u ∈ U, u∗ ∈ U∗).

Fixing u and writing w∗ = ∂(u)v∗, we see that u∗∧w∗ = 0 for all u∗ ∈ U∗. A simple
argument shows that the only elements that are killed by µ(u∗) for all u∗ ∈ U∗ are
the multiples of the element of the highest degree in S†. But w∗ = ∂(u)v∗ is
definitely a linear combination of elements of degree < dim(U∗). Hence ∂(u)v∗ = 0.
As u is arbitrary, we must have v∗ = c1 for some constant c. Then Tu∗ = cu∗ for

† This is dual to the earlier characterization of k1 as the common null space of all the ∂(u).
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all u∗ and as T1 = 0 we must have c = 0 so that T = 0. This finishes the proof
that r maps C(V ) onto End(S).

Remark 1. Write V = U ⊕ U∗ as a direct sum of Vi = Ui ⊕ U∗i (i = 1, 2) where
dim(Ui) 6= 0. Then

C(V ) ' C(V1)⊗ C(V2)

while an easy calculation shows that

r = r1 ⊗ r2

where ri is the representation of C(Vi) defined above. Induction on m then reduces
the surjectivity of r to the case when dim(U) = dim(U∗) = 1 where it is clear
from an explicit calculation. The proof given here, although longer, reveals the
structure of S in terms of the operators of multiplication and differentiation which
are analogous to the creation and annihilation operators in Fock space. In fact the
analogy goes deeper and is discussed in the next remark.

Remark 2: The analogy with the Schrödinger representation. There is
an analogy of the Clifford algebra with the Heisenberg algebra which makes the
representation r the fermionic analogue to the Schrödinger representation. If V is
an even vector space with a symplectic form Φ then the Heisenberg algebra H(V )
associated to (V,Φ) is the algebra generated by the commutation rules

xy − yx = 2Φ(x, y)1 (x, y ∈ V ). (H)

For any symplectic Φ we can always write V = U ⊕U∗ with Φ vanishing on U ×U
and U∗ × U∗ and 2Φ(u, u∗) = 〈u, u∗〉. The algebraic representation of H(V ) is
constructed on the symmetric algebra Symm(U∗) with u∗ acting as the operator
of multiplication by u∗ and u acting as the (even) derivation ∂(u). The splitting
V = U ⊕U∗ is usually called a polarization of V . The commutation rule (H) is the
bosonic analogue of the fermionic rule

xy + yx = 2Φ(x, y)1 (C)

which defines the Clifford algebra. The analogy with the Clifford situation is now
obvious. Unlike in the bosonic case, the polarization does not always exist in the
fermionic case but will exist if k is algebraically closed. The vector 1 is called the
Clifford vacuum by physicists. Notice that it is canonical only after a polarization
is chosen. Indeed, there can be no distinguished line in S; otherwise S would be
attached functorially to V and there would be no need to consider spin structures.
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Remark 3. For any field k the quadratic vector spaces of the form (V1, Q1) ⊕
(V1,−Q1) are called hyperbolic. When k is real these are precisely the quadratic
vector spaces Rm,m of signature 0.

From the fact that the Clifford algebra of an even dimensional quadratic space is
a full matrix super algebra follows its simplicity. Recall the classical definition that
an algebra is simple if it has no proper nonzero two-sided ideal. It is classical that
full matrix algebras are simple. We have, from the theorems above, the following
corollary.

Corollary 5.2.5. For arbitrary k, if V is even dimensional, then C(V ) is simple
as an ungraded algebra.

Proof. C(V ) is simple if it stays simple when we pass to the algebraic closure k of
k. So we may assume that k is algebraically closed. The result then follows from
the fact that the ungraded Clifford algebra is a full matrix algebra.

Classically, the algebra E(V ) of all endomorphisms of a vector space V has the
property that V is its only simple module and all its modules are direct sums of
copies of V , so that any module is of the form V ⊗W for W a vector space. We wish
to extend this result to the super algebra End(V ) of any super vector space. In
particular such a result would give a description of all modules of a Clifford algebra
C(V ) for V even dimensional and k algebraically closed.

We consider finite dimensional modules of finite dimensional super algebras.
Submodules are defined by invariant sub super vector spaces. If A,B are super
algebras and V,W are modules for A and B respectively, then V ⊗W is a module
for A⊗B by the action

a⊗ b : v ⊗ w 7−→ (−1)p(b)p(v)av ⊗ bw.

In particular, if B = k, V ⊗W is a module for A where A acts only on the first factor.
Imitating the classical case we shall say that a super algebra A is semisimple if all
its modules are completely reducible, i.e., direct sums of simple modules. Here, by a
simple module for a super algebra we mean an irreducible module, namely one with
no nontrivial proper submodule. If a module for A is a sum of simple modules it is
then a direct sum of simple modules; indeed, if V =

∑
j Vj where the Vj are simple

submodules, and (Ui) is a maximal subfamily of linearly independent members of
the family (Vj), and if U = ⊕Ui 6= V , then for some j, we must have Vj 6⊂ U , so
that, by the simplicity of Vj , Vj ∩ U = 0, contradicting the maximality of (Ui). In
particular a quotient of a direct sum of simple modules is a direct sum of simple
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modules. Now any module is a sum of cyclic modules generated by homogeneous
elements, and a cyclic module is a quotient of the module defined by the left regular
representation. Hence A is semisimple if and only if the left regular representation
of A is completely reducible, and then any module is a direct sum of simple modules
that occur in the decomposition of the left regular representation.

With an eye for later use let us discuss some basic facts about semisimplicity
and base change. The basic fact is that if A is a super algebra, M is a module for
A, and k′/k is a Galois extension (possibly of infinite degree), then M is semisimple
for A if and only if M ′ := k′ ⊗k M is semisimple for A′ := k′ ⊗k A. This is proved
exactly as in the classical case. In physics we need this only when k = R and
k′ = C. For the sake of completeness we sketch the argument. Let G = Gal(k′/k).
Then elements of G operate in the usual manner (c⊗m 7→ cg ⊗m) on M ′ and the
action preserves parity. To prove that the semisimplicity of M implies that of M ′

we may assume that M is simple. If L′ ⊂ M ′ is a simple submodule for A′, then∑
g∈G L

′g is G–invariant and so is of the form k′⊗kL where L ⊂M is a submodule.
So L = M , showing that M ′ is semisimple, being a span of the simple modules L′g.
In the reverse direction it is a question of showing that if L′1 ⊂M ′ is a G-invariant
submodule, there exists a G-invariant complementary submodule L′2. It is enough
to find an even map f ∈ Endk′(M ′) commuting with A and G such that

f(M ′) ⊂ L′1, f(`′) = `′ for all `′ ∈ L′1. (∗)

We can then take L′2 to be the kernel of f . By the semisimplicity of M ′ we can
find even f1 satisfying (∗) and commuting with A; indeed, if L′′2 is a complementary
submodule to L′1, we can take f1 to be the projection M −→ L′1 mod L′′2 . Now f1

is defined over a finite Galois extension k′′/k and so if H = Gal(k′′/k) and

f =
1
|H|

∑
h∈H

hf1h
−1,

then f commutes with A and H and satisfies (∗). But, if g ∈ G and h is the
restriction of g to k′′, then gfg−1 = hfh−1 = f and so we are done. In particular,
applying this result to the left regular representation of A we see thatA is semisimple
if and only if A′ is semisimple.

It is also useful to make the following remark. Let A be a super algebra and
S a module for A. Suppose M is a direct sum of copies of S. Then M ' S ⊗W
where W is a purely even vector space. To see this write M = ⊕1≤i≤rMi where
ti : S −→Mi is an isomorphism. Let W be a purely even vector space of dimension
r with basis (wi)1≤i≤r. Then the map

t :
∑

1≤i≤r

ui ⊗ wi 7−→
∑

1≤i≤r

ti(ui)
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is an isomorphism of S ⊗W with M .

For any super vector space V , recall that ΠV is the super vector space with the
same underlying vector space but with reversed parities, i.e., (ΠV )0 = V1, (ΠV )1 =
V0. If V is a module for a super algebra A, so is ΠV . If V is simple, so is ΠV .
Notice that the identity map V −→ ΠV is not a morphism in the super category
since it is parity reversing. One can also view ΠV as V ⊗ k0|1. Let

E(V ) = End(V )

for any super vector space V . If dimVi > 0 (i = 0, 1), then E(V )+, the even part
of E(V ), is isomorphic to the algebra of all endomorphisms of the form(

A 0
0 D

)
and so is isomorphic to E(V0) ⊕ E(V1), and its center is isomorphic to k ⊕ k. In
particular, the center of E(V )+ has two characters χi(i = 0, 1) where the notation
is such that χ1 is (c1, c2) 7−→ ci. So on V the center of E(V )+ acts through (χ1, χ2)
while on ΠV it acts through (χ2, χ1).

Proposition 5.2.6. For k arbitrary the super algebra E(V ) has precisely two simple
modules, namely V and ΠV . Every module for E(V ) is a direct sum of copies of
either V or ΠV . In particular, E(V ) is semisimple and any module for E(V ) is of
the form V ⊗W where W is a super vector space.

Proof. The ungraded algebra E(V ) is a full matrix algebra and it is classical that
it is simple, V is its only simple module up to isomorphism, and any module is a
direct sum of copies of V . The proposition extends these results to the super case
where the same results are true except that we have to allow for parity reversal.

Let W be a simple module for E(V ). Since E(V ) is simple as an ungraded
algebra, W is faithful, i.e., the kernel of E(V ) acting on W is 0. We first show that
W is simple for E(V ) regarded as an ungraded algebra. Indeed, let U be a subspace
stable under the ungraded E(V ). If u = u0 + u1 ∈ U with ui ∈ Wi, and we write
any element of E(V ) as

g =
(
A B
C D

)
then for gu = v = v0 + v1 we have v0 = Au0 + Bu1, v1 = Cu0 + Du1. Taking
A = I,B = C = D = 0 we see that u0, u1 ∈ U . Hence U has to be graded and so
U = 0 or V . Hence we have an isomorphism t(W −→ V ) as ungraded modules for
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the ungraded E(V ). Write t = t0 + t1 where p(ti) = i. Then t0a+ t1a = at0 + at1
for all a ∈ E(V ). As p(at0) = p(t0a) = p(a) and p(at1) = p(t1a) = 1 + p(a)
we see that at0 = t0a and at1 = t1a. If t0 6= 0, then t0 is a nonzero element of
HomE(V )(W,V ) as super modules and so, by the simplicity of V and W , we must
have that t0 is an isomorphism. Thus W ' V . If t1 6= 0, then t1 ∈ Hom(W,ΠV ) and
we argue as before that W ' ΠV . We have thus proved that a simple E(V )-module
is isomorphic to either V or ΠV .

It now remains to prove that an arbitrary module for E(V ) is a direct sum of
simple modules. As we have already observed, it is enough to do this for the left
regular representation. Now there is an isomorphism

V ⊗ V ∗ ' E(V ), v ⊗ v∗ 7−→ Rv,v∗ : w 7−→ v∗(w)v

of super vector spaces. If L ∈ E(V ), it is trivial to verify that RLv,v∗ = LRv,v∗ , and
so the above isomorphism takes L⊗ 1 to left multiplication by L in E(V ). Thus it
is a question of decomposing V ⊗ V ∗ as a E(V )-module for the action L 7−→ L⊗ 1.
Clearly V ⊗ V ∗ = ⊕e∗V ⊗ ke∗ where e∗ runs through a homogeneous basis for V ∗.
The map v 7−→ v⊗e∗ is an isomorphism of the action of E(V ) on V with the action
of E(V ) on V ⊗ ke∗. But this map is even for e∗ even and odd for e∗ odd. So the
action of E(V ) on V ⊗ ke∗ is isomorphic to V for even e∗ and to ΠV for odd e∗.
Hence the left regular representation of E(V ) is a direct sum of r copies of V and
s copies of ΠV if dim(V ) = r|s. The direct sum of r copies of V is isomorphic to
V ⊗W0 where W0 is purely even of dimension r. Since ΠV ' V ⊗ k0|1 the direct
sum of s copies of ΠV is isomorphic to V ⊗W1 where W1 is a purely odd vector
space of dimension s. Hence the left regular representation is isomorphic to V ⊗W
where W = W0 ⊕W1.

Theorem 5.2.7. Let V be an even dimensional quadratic vector space. Then the
Clifford algebra C(V ) is semisimple. Assume that either k is algebraically closed or
k is arbitrary but V is hyperbolic. Then C(V ) ' End(S), C(V ) has exactly two
simple modules S,ΠS, and any module for C(V ) is isomorphic to S ⊗W where W
is a super vector space.

Proof. By Theorem 3 we know that C(V ) is isomorphic to End(S). The result is
now immediate from the proposition above.

In which the vector space is odd dimensional. We shall now extend the above
results to the case when V has odd dimension. Let D be the super division algebra
k[ε] where ε is odd and ε2 = 1. We first rewrite Proposition 2 as follows.
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Theorem 5.2.8. Let dim(V ) = 2m + 1 and let k be algebraically closed. Then
ctr(C(V )) ' D and, for some purely even vector space S0 of dimension 2m,

C(V ) ' End(S0)⊗D, C(V )+ ' End(S0) (dim(S0) = 2m).

Proof. If (ei)0≤i≤2m is an ON basis for V and ε = ime0e1 . . . e2m where i = (−1)1/2,
then ε is odd, ε2 = 1, and ctr(C(V )) = D = k[ε], by Proposition 1. The theorem
is now immediate from Proposition 2 since C(V )+ is isomorphic to the ungraded
Clifford algebra in even dimension 2m and so is a full matrix algebra in dimension
2m.

Let k be arbitrary and let U be an even vector space of dimension r. Write
E(U) = End(U). Let A be the super algebra E(U)⊗D so that the even part A+ of
A is isomorphic to E(U). We construct a simple (super) module S for A as follows.
S = U ⊕U where S0 = U ⊕ 0 and S1 = 0⊕U (or vice versa). E(U) acts diagonally

and ε goes to the matrix
(

0 1
1 0

)
. It is obvious that S is simple. Notice that S is

not simple for the ungraded algebra underlying A since the diagonal (as well as the
anti-diagonal) are stable under A. S can be written as U ⊗ k1|1 where A+ acts on

the first factor and D on the second with ε acting on k1|1 by
(

0 1
1 0

)
. The action

of D on k1|1 is also isomorphic to the left regular representation of D on itself.

Proposition 5.2.9. Let k be arbitrary. Then, S is the unique simple module for
A = E(U) ⊗D where U is a purely even vector space over k. Any simple module
for A is a direct sum of copies of S and so is isomorphic to S ⊗W where W is a
purely even vector space.

From this is we get the following theorem.

Theorem 5.2.10. If V is an odd dimensional quadratic vector space, then C(V ) is
semisimple. For k algebraically closed, C(V ) ' End(S0) ⊗D has a unique simple
module S = S0 ⊗D up to isomorphism; and any module of C(V ) is isomorphic to
S ⊗W where W is a purely even vector space.

Proof. Theorem 10 follows from Proposition 9 and Theorem 8. It is therefore
enough to prove Proposition 9.

Let T be a simple module for A. As A+ ' E(U), we have T0 ' aU, T1 ' bU as
A+-modules for suitable integers a, b ≥ 0. But the action of ε commutes with that
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of A+ and ε2 = 1, so that ε(T0 −→ T1) is an isomorphism of A+–modules. Hence
we must have a = b ≥ 1. But if R is a submodule of T0, R ⊕ εR is stable for A
and so it has to equal T . Thus a = b = 1, showing that we can take T0 = T1 = U
and ε as (x, y) 7−→ (y, x). But then T = S. To prove that any module for A is a
direct sum of copies of S it is enough (as we have seen already) to do this for the
left regular representation. If A+ = ⊕1≤j≤rAj where Aj as a left A+–module is
isomorphic to U , it is clear that Aj ⊗D is isomorphic to U ⊗ k1|1 ' S as a module
for A, and A = ⊕j(Aj ⊗D).

Representations of C(V )+. We now obtain the representation theory of
C(V )+ over algebraically closed fields. Since this is an ungraded algebra the theory
is classical and not super.

Theorem 5.2.11. For any k, C(V )+ is semisimple. Let k be algebraically closed.
If dim(V ) = 2m + 1, C(V )+ ' End(S0) where S0 is a purely even vector space of
dimension 2m, and so C(V )+ has a unique simple module S0. Let dim(V ) = 2m,
let C(V ) ' End(S) where dim(S) = 2m−1|2m−1, and define S± to be the even and
odd subspaces of S; then C(V )+ ' End(S+)⊕End(S−). It has exactly two simple
modules, namely S±, with End(S±) acting as 0 on S∓, its center is isomorphic to
k ⊕ k, and every module is isomorphic to a direct sum of copies of S±.

Proof. Clear.

Center of the even part of the Clifford algebra of an even dimensional
quadratic space. For later use we shall describe the center of C(V )+ when V is
of even dimension D and k arbitrary. Let (ei)1≤i≤D be an orthogonal basis. Let

eD+1 = e1e2 . . . eD.

We have
eD+1ei = −eieD+1.

Then
ctr (C(V )+) = k ⊕ keD+1.

Moreover, if the ei are orthonormal, then

e2
D+1 = (−1)D/2.

It is in fact enough to verify the description of the center over k and so we may
assume that k is algebraically closed. We may then replace each ei by a suitable
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multiple so that the basis becomes orthonormal. Since eD+1 anticommutes with
all ei, it commutes with all eiej and hence lies in the center of C(V )+. If a =∑
|I| even aIeI lies in the center of C(V )+ and 0 < |I| < D, then writing I =

{i1, . . . , i2r}, we use the fact that eI anticommutes with ei1es if s /∈ I to conclude
that aI = 0. Thus a ∈ k1⊕ eD+1.

5.3. Spin groups and spin representations. In this section we shall define the
spin groups and the spin representations associated to real and complex quadratic
vector spaces V . We treat first the case when k = C and then the case when k = R.

Summary. The spin group Spin(V ) for a complex V is defined as the universal
cover of SO(V ) if dim(V ) ≥ 3. As the fundamental group of SO(V ) is Z2 when
dim(V ) ≥ 3 it follows that in this case Spin(V ) is a double cover of SO(V ). If
dim(V ) = 1 it is defined as Z2. For dim(V ) = 2, if we take a basis {x, y} such that
Φ(x, x) = Φ(y, y) = 0 and Φ(x, y) = 1, then SO(V ) is easily seen to be isomorphic
to C× through the map

t 7−→
(
t 0
0 t−1

)
.

The fundamental group of C× is Z and so SO(V ) in this case has a unique double
cover which is defined as Spin(V ). For any V we put C = C(V ) for the Clifford
algebra of V and C+ = C(V )+ its even part. We shall obtain for all V a natural
imbedding of Spin(V ) inside C+ as a complex algebraic group which lies as a double
cover of SO(V ); this double cover is unique if dim(V ) ≥ 3. So modules for C+

may be viewed by restriction as modules for Spin(V ). The key property of the
imbedding is that the restriction map gives a bijection between simple C+-modules
and certain irreducible Spin(V )-modules. These are precisely the spin and semi-
spin representations. Thus the spin modules are the irreducible modules for C+, or,
as we shall call them, Clifford modules. The algebra C+ is semisimple and so the
restriction of any module for it to Spin(V ) is a direct sum of spin modules. These
are called spinorial modules of Spin(V ).

Suppose now that V is a real quadratic vector space. If V = Rp,q, we denote
SO(V ) by SO(p, q); this group does not change if p and q are interchanged and so
we may assume that 0 ≤ p ≤ q. If p = 0 then SO(p, q) is connected; if p ≥ 1, it
has 2 connected components (see the Appendix). As usual we denote the identity
component of any topological group H by H0. Let VC be the complexification of
V . Then the algebraic group Spin(VC) is defined over R, and so it makes sense to
speak of the group of its real points. This is by definition Spin(V ) and we have an
exact sequence

1 −→ {±1} −→ Spin(V ) −→ SO(V )0 −→ 1.
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If dim(V ) = 1, Spin(V ) = {±1}. If V has signature (1, 1), then Spin(V ) has two
connected components. In all other cases it is connected and forms a double cover
of SO(V )0. If dim(V ) ≥ 2 is of signature (p, q) 6= (1, 1), then for min(p, q) ≤ 1,
SO(p, q) has Z2 or Z as its fundamental group, and so has a unique double cover; and
Spin(V ) is that double cover. If p, q are both ≥ 2, then Spin(p, q) is characterized
as the unique double cover which induces a double cover of both SO(p) and SO(q).
Finally, if dim(V ) ≥ 3, Spin(V ) is the universal cover of SO(V )0 if and only if
min(p, q) ≤ 1.

The relationship between the spin modules and modules for C+ persists in the
real case. The spinorial modules are the restriction to Spin(V ) of C+-modules. One
can also describe them as modules of Spin(V ) which are direct sums of the complex
spin modules when we complexify.

Spin groups in the complex case. Let V be a complex quadratic vector space.
A motivation for expecting an imbedding of the spin group inside C× may be given
as follows. If g ∈ O(V ), then g lifts to an automorphism of C which preserves parity.
If V has even dimension, C = End(S), and so this automorphism is induced by
an invertible homogeneous element a(g) of C = End(S), uniquely determined up
to a scalar multiple. It turns out that this element is even or odd according as
det(g) = ±1. Hence we have a projective representation of SO(V ) which can be
lifted to an ordinary representation of Spin(V ) (at least when dim(V ) ≥ 3), and
hence to a map of Spin(V ) into C+×. It turns out that this map is an imbedding,
and further that such an imbedding can be constructed when the dimension of V
is odd also. Infinitesimally this means that there will be an imbedding of so(V )
inside C+

L where C+
L is the Lie algebra whose elements are those in C+ with bracket

[a, b] = ab − ba. We shall first construct this Lie algebra imbedding and then
exponentiate it to get the imbedding Spin(V ) ↪→ C+×.

To begin with we work over k = R or C. It is thus natural to introduce the
even Clifford group Γ+ defined by

Γ+ = {u ∈ C+× | uV u−1 ⊂ V }

where C+× is the group of invertible elements of C+. Γ+ is a closed (real or
complex) Lie subgroup of C+×. For each u ∈ Γ+ we have an action

α(u) : v 7−→ uvu−1 (v ∈ V )

on V . Since
Q(uvu−1)1 = (uvu−1)2 = uv2u−1 = Q(v)1
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we have
α : Γ+ −→ O(V )

with kernel as the centralizer in C+× of C, i.e., k×.

If A is any finite dimensional associative algebra over k, the Lie algebra of A×

is AL where AL is the Lie algebra whose underlying vector space is A with the
bracket defined by [a, b]L = ab− ba(a, b ∈ A). Moreover, the exponential map from
AL into A× is given by the usual exponential series:

exp(a) = ea =
∑
n≥0

an

n!
(a ∈ A)

so that the Lie algebra of C+× is C+
L . Thus, Lie (Γ+), the Lie algebra of Γ+, is

given by
Lie(Γ+) = {u ∈ C+ | uv − vu ∈ V for all v ∈ V }.

For the map α from Γ+ into O(V ) the differential dα is given by

dα(u)(v) = uv − vu (u ∈ Lie(Γ+), v ∈ V ).

Clearly dα maps Lie(Γ+) into so(V ) with kernel as the centralizer in C+ of C, i.e.,
k.

We now claim that dα is surjective. To prove this it is convenient to recall
that the orthogonal Lie algebra is the span of the momenta in its 2-planes. First let
k = C. Then there is an ON basis (ei), the elements of the orthogonal Lie algebra
are precisely the skewsymmetric matrices, and the matrices

Mei,ej := Eij − Eji (i < j),

where Eij are the usual matrix units, form a basis for so(V ). The Mei,ej are
the infinitesimal generators of the group of rotations in the (ei, ej)-plane with the
matrices (

cos t sin t
− sin t cos t

)
.

Now a simple calculation shows that

Mei,ejv = Φ(ej , v)ei − Φ(ei, v)ej .

So, if we define, for any two x, y ∈ V ,

Mx,yv = Φ(y, v)x− Φ(x, v)y (v ∈ V ),
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then Mx,y is bilinear in x and y and so the Mx,y ∈ so(V ) for all x, y ∈ V and span
it. The definition of Mx,y makes sense for k = R also and it is clear that the Mx,y

span so(V ) in this case also. As the Mx,y are bilinear and skew symmetric in x and
y we see that there is a unique linear isomorphism of Λ2(V ) with so(V ) that maps
x ∧ y to Mx,y:

Λ2(V ) ' so(V ), x ∧ y 7−→Mx,y.

For x, y ∈ V , a simple calculation shows that

dα(xy)(v) = xyv − vxy = 2Mx,yv ∈ V (v ∈ V ).

Hence xy ∈ Lie(Γ+) and dα(xy) = 2Mx,y. The surjectivity of dα is now clear. Note
that xy is the infinitesimal generator of the one-parameter group exp(txy) which
must lie in Γ+ since xy ∈ Lie(Γ+). We have an exact sequence of Lie algebras

0 −→ k −→ Lie(Γ+) dα−→ so(V ) −→ 0 (5)

where k is contained in the center of Lie (Γ+). We now recall the following standard
result from the theory of semisimple Lie algebras.

Lemma 5.3.1. Let g be a Lie algebra over k, c a subspace of the center of g, such
that h := g/c is semisimple. Then c is precisely the center of g, g1 := [g, g] is a Lie
ideal of g, and g = c ⊕ g1 is a direct product of Lie algebras. Moreover g1 is the
unique Lie subalgebra of g isomorphic to h and g1 = [g1, g1]. In particular there
is a unique Lie algebra injection γ of h into g inverting the map g −→ h, and its
image is g1.

Proof. Since center of h is 0 it is immediate that c is precisely the center of g. For
X,Y ∈ g, [X,Y ] depends only on the images of X,Y in h and so we have an action
of h on g which is trivial precisely on c. As h is semisimple it follows that there is a
unique subspace h′ of g complementary to c which is stable under h. Clearly h′ is a
Lie ideal, g = c⊕h′ is a direct product, and, as h = [h, h], it follows that h′ coincides
with g1 = [g1, g1]. If a is a Lie subalgebra of g isomorphic to h, then a −→ h is an
isomorphism so that a is stable under the action of h and hence a = g1.

The quadratic subalgebra. We return to the exact sequence (5). Since xy + yx
is a scalar, we have

dα((1/4)(xy − yx)) = dα((1/2)xy) = Mx,y (x, y ∈ V ).

Let us therefore define

C2 = linear span of xy − yx (x, y ∈ V ) C2 ⊂ Lie(Γ+).
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Then dα maps C2 onto so(V ). Of course C2 = 0 if dim(V ) = 1. If x and y are
orthogonal, then xy − yx = 2xy from which it follows easily that C2 is the span of
the eres (r < s) for any orthogonal basis (ei) of V (orthogonal bases exist always,
they may not be orthonormal). We claim that C2 is a Lie subalgebra of C+

L which
may be called the quadratic subalgebra of C+

L . Since 2xy = xy − yx + a scalar, we
have, for x, y, z, t ∈ V ,

[xy − yx, zt− tz] = 4[xy, zt] = 8 (−Φ(t, x)zy + Φ(t, y)zx− Φ(z, x)yt+ Φ(y, z)xt)

after a simple calculation. For u, v ∈ V we have uv − vu = 2uv − 2Φ(u, v) so that

uv ≡ Φ(u, v) (mod C2).

Substituting in the preceding equation we find that

[xy − yx, zt− tz] ≡ 8([yz, xt] + [yt, zx]) ≡ 0 (mod C2).

We now claim that k1 and C2 are linearly independent. In fact, if (ei) is an orthog-
onal basis, the elements 1, eiej (i < j) are linearly independent, proving the claim.
Since dα maps C2 onto so(V ) it follows that

Lie(Γ+) = k ⊕ C2, dα : C2 ' so(V )

and the map
γ : Mx,y 7−→ (1/4)(xy − yx) (x, y ∈ V ) (6)

splits the exact sequence (5), i.e., it is a Lie algebra injection of so(V ) into Lie (Γ+)
such that

dα ◦ γ = id on so(V ).

We have
γ(so(V )) = C2.

Theorem 5.3.2. If dim(V ) ≥ 3, then C2 = [C2, C2] is the unique subalgebra of
Lie(Γ+) isomorphic to so(V ), and γ the only Lie algebra map splitting (5). If further
k = C and G is the complex analytic subgroup of Γ+ determined by C2, then (G,α)
is a double cover of SO(V ) and hence G ' Spin(V ). In this case G is the unique
connected subgroup of Γ+ covering SO(V ).

Proof. If dim(V ) ≥ 3, so(V ) is semisimple, and so it follows from the Lemma that
the exact sequence (5) splits uniquely and

γ(so(V )) = C2 = [C2, C2].
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Let k = C. The fact that G is the unique connected subgroup of Γ+ covering
SO(V ) follows from the corresponding uniqueness of C2. It remains to show that
G is a double cover. If x, y ∈ V are orthonormal we have (xy)2 = −1 and xy =
(1/2)(xy − yx) so that

a(t) := exp{t(xy − yx)/2} = exp(txy) = (cos t) 1 + (sin t) xy

showing that the curve t 7−→ (cos t) 1 + (sin t) xy lies in G. Taking t = π we see
that −1 ∈ G. Hence G is a nontrivial cover of SO(V ). But the universal cover of
SO(V ) is its only nontrivial cover and so G ' Spin(V ). This finishes the proof.

Explicit description of complex spin group. Let k = C. We shall see now
that we can do much better and obtain a very explicit description of G and also
take care of the cases when dim(V ) ≤ 2. This however requires some preparation.
We introduce the full Clifford group Γ defined as follows.

Γ = {u ∈ C× ∩ (C+ ∪ C−) | uV u−1 ⊂ V }.

Clearly
Γ = (Γ ∩ C+) ∪ (Γ ∩ C−), Γ ∩ C+ = Γ+.

We now extend the action α of Γ+ on V to an action α of Γ on V by

α(u)(x) = (−1)p(u)uxu−1 (u ∈ Γ, x ∈ V ).

As in the case of Γ+ it is checked that α is a homomorphism from Γ to O(V ).

Proposition 5.3.3. We have an exact sequence

1 −→ C×1 −→ Γ α−→ O(V ) −→ 1.

Moreover α−1(SO(V )) = Γ+ and

1 −→ C×1 −→ Γ+ α−→ SO(V ) −→ 1

is exact.

Proof. If v ∈ V and Q(v) = 1, we assert that v ∈ Γ− and α(v) is the reflection
in the hyperplane orthogonal to v. In fact, v2 = 1 so that v−1 = v, and, for
w ∈ V , α(v)(w) = −vwv−1 = −vwv = w − 2Φ(v, w)v. By a classical theorem
of E. Cartan (see the Appendix for a proof) any element of O(V ) is a product of
reflections in hyperplanes orthogonal to unit vectors. Hence α maps Γ onto O(V ).
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If α(u) = 1, then u lies in the super center of C and so is a scalar. This proves the
first assertion. By Cartan’s result, any element of SO(V ) is a product of an even
number of reflections and so, if G′ is the group of all elements of the form v1 . . . v2r

where the vi are unit vectors, then G′ ⊂ Γ+ and α maps G′ onto SO(V ). We first
show that α(Γ+) = SO(V ). In fact, if the image of Γ+ is more than SO(V ) it must
be all of O(V ) and so for any unit vector v ∈ V , α(v) must also be of the form
α(u) for some u ∈ Γ+. As the kernel of α is C×1 which is in C+, it follows that
v = cu where c is a scalar, hence that v ∈ Γ+ which is a contradiction. If u ∈ Γ and
α(u) ∈ SO(V ), then there is u′ ∈ Γ+ such that α(u′) = α(u) and so u = cu′ where
c is a scalar, showing that u ∈ Γ+ already. This finishes the proof.

Let us now introduce the unique antiautomorphism β of the ungraded Clifford
algebra which is the identity on V , called the principal or canonical antiautomor-
phism. Thus

β(x1 . . . xr) = xr . . . x1 (xi ∈ V ). (7)

Thus β preserves parity. We then have the following theorem which gives the explicit
description of Spin(V ) as embedded in C+× for all dimensions.

Theorem 5.3.4. The map x 7−→ xβ(x) is a homomorphism of Γ into C×1. Let G
be the kernel of its restriction to Γ+.

(i) If dim(V ) = 1, then G = {±1}.
(ii) If dim(V ) ≥ 2, then G is the analytic subgroup of C+× defined by C2 and

(G,α) is a double cover of SO(V ).

In particular,

Spin(V ) ' G = {x ∈ C+× | xV x−1 ⊂ V, xβ(x) = 1}. (8)

Proof. Given x ∈ Γ we can, by Cartan’s theorem, find unit vectors vj ∈ V such
that α(x) = α(v1) . . . α(vr) and so x = cv1 . . . vr for a nonzero constant c. But then

xβ(x) = c2v1 . . . vrvr . . . v1 = c2

so that xβ(x) ∈ C×1. If x, y ∈ C+×, then

xβ(x)(yβ(y)) = x(yβ(y))β(x) = xyβ(xy).

Hence x 7−→ xβ(x) is a homomorphism of Γ into C×1. Let G be the kernel of the
restriction to Γ+ of this homomorphism.
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If dim(V ) = 1 and e is a basis of V , then C+ is C so that Γ+ = C×. Hence
xβ(x) = x2 for x ∈ C× and so G = {±1}.

Let now dim(V ) ≥ 2. If g ∈ SO(V ) we can find u ∈ Γ+ such that α(u) = g.
If c ∈ C× is such that uβ(u) = c21 it follows that for v = c−1u ∈ Γ+ and α(v) =
α(u) = g. We thus see that α maps G onto SO(V ). If u ∈ G and α(u) = 1, then
u is a scalar and so, as uβ(u) = u2 = 1, we see that u = ±1. Since ±1 ∈ G it
follows that α maps G onto SO(V ) with kernel {±1}. We shall now prove that G is
connected; this will show that it is a double cover of SO(V ). For this it is enough
to show that −1 ∈ G0. If x, y ∈ V are orthogonal, we have, for all t ∈ C,

β(exp(txy)) =
∑
n≥0

tn

n!
β((xy)n) =

∑
n≥0

tn

n!
(yx)n = exp(tyx).

Hence, for all t ∈ C,

exp(txy)β(exp(txy)) = exp(txy) exp(tyx) = exp(txy) exp(−txy) = 1.

Thus exp(txy) lies in G0 for all t ∈ C. If x, y are orthonormal, then (xy)2 = −1
and so we have

exp(txy) = (cos t) 1 + (sin t) xy

as we have seen already. Therefore −1 = exp(πxy) ∈ G0. Hence G is a double cover
of SO(V ), thus isomorphic to Spin(V ).

The fact that G is the analytic subgroup of Γ+ defined by C2 when dim(V ) ≥ 3
already follows from Theorem 2. So we need only consider the case dim(V ) = 2.
Let x, y ∈ V be orthonormal. Then exp(txy) ∈ G for all t ∈ C. But

exp(txy) = exp(t(xy − yx)/2)

so that xy − yx ∈ Lie(G). Hence Lie(G) = Cxy = C(xy − yx) = C2. Since it is a
connected group of dimension 1 it follows that it is identical with the image of the
one-parameter group t 7−→ exp(txy).

We write Spin(V ) for G.

Proposition 5.3.5. Let V be arbitrary. Then

Spin(V ) =
{
x = v1v2 . . . v2r, vi ∈ V, Q(vi) = 1

}
. (9)
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Proof. The right side of the formula above describes a group which is contained in
Spin(V ) and its image by α is the whole of SO(V ) by Cartan’s theorem. It contains
−1 since −1 = (−u)u where u ∈ V with Q(u) = 1. So it is equal to Spin(V ).

Spin groups for real orthogonal groups. We now take up spin groups over the
reals. Let V be a quadratic vector space over R. Let VC be its complexification.
Then there is a unique conjugation x 7−→conj on the Clifford algebra C(VC) that
extends the conjugation on VC, whose fixed points are the elements of C(V ). This
conjugation commutes with β and so leaves Spin(VC) invariant. The corresponding
subgroup of Spin(VC) of fixed points for the conjugation is a real algebraic Lie
group, namely, the group of real points of Spin(VC). It is by definition Spin(V ):

Spin(V ) =
{
x ∈ Spin(VC), x = xconj

}
. (10)

Clearly −1 ∈ Spin(V ) always. If dim(V ) = 1, we have

Spin(V ) = {±1}.

Lemma 5.3.6. Let dim(V ) ≥ 2 and let x, y ∈ V be mutually orthogonal and
Q(x), Q(y) = ±1. Then etxy ∈ Spin(V )0 for all real t. Let Jxy be the element
of SO(V ) which is −1 on the plane spanned by x, y and +1 on the orthogonal
complement of this plane. Then

eπxy = −1 (Q(x)Q(y) > 0) α(e(iπ/2)xy) = Jxy (Q(x)Q(y) < 0).

In the second case eiπxy = −1.

Proof. We have already seen that etxy lies in Spin(VC) for all complex t. Hence
for t real it lies in Spin(V ) and hence in Spin(V )0. Suppose that Q(x)Q(y) > 0.
Then (xy)2 = −1 and so

etxy = (cos t) 1 + (sin t) xy

for real t. Taking t = π we get the first relation. Let now Q(x)Q(y) < 0. We have

α(eitxy) = eitdα(xy) = e2itMx,y .

Since Q(x)Q(y) < 0, the matrix of Mx,y on the complex plane spanned by x and y
is

±
(

0 1
1 0

)
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from which it follows that α(eitxy) is 1 on the complex plane orthogonal to x and
y, while on the complex span of x and y it has the matrix

cos 2t
(

1 0
0 1

)
± i sin 2t

(
0 1
1 0

)
.

Taking t = π/2 we get the second relation. Since (xy)2 = 1 we have,

etxy = (cosh t) 1 + (sinh t) xy

for all complex t, so that eiπxy = −1.

Theorem 5.3.7. Let V be a real quadratic vector space and let Spin(V ) be the
group of real points of Spin(VC). Then:

(i) If dim(V ) = 1 then Spin(V ) = {±1}.
(ii) If dim(V ) ≥ 2, Spin(V ) always maps onto SO(V )0. It is connected except

when dim(V ) = 2 and V is indefinite. In this exceptional case

(Spin(V ),SO(V )0, α) ' (R×, σ) (σ(u) = u2).

(iii) In all other cases Spin(V ) is connected and is a double cover of SO(V )0. If
V = Rp,q, then Spin(p, q) := Spin(V ) is characterized as the unique double
cover of SO(V )0 when one of p, q ≤ 2, and as the unique double cover
which is nontrivial over both SO(p) and SO(q), when p, q ≥ 2. In partic-
ular, Spin(V ) is the universal cover of SO(V )0 if and only if dim(V ) ≥ 3
and p = 0, 1.

Proof. We need only check (ii) and (iii). The Lie algebra map

dα : (1/4)(xy − yx) 7−→Mx,y

maps Lie(Γ+) onto so(V ). So, α maps Spin(V )0 onto SO(V )0, and Spin(V ) into
SO(V ) with kernel {±1}. Since the group SO(V ) remains the same if we interchange
p and q we may suppose that V = Rp,q where 0 ≤ p ≤ q and p+ q ≥ 2.

First assume that p = 0. Then SO(V ) is already connected. We can then
find mutually orthogonal x, y ∈ V with Q(x) = Q(y) = −1 and so, by the Lemma
above, −1 ∈ Spin(V )0. This proves that Spin(V ) is connected and is a double cover
of SO(V ).
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Let 1 ≤ p ≤ q. We shall first prove that Spin(V ) maps into (hence onto)
SO(V )0. Suppose that this is not true. Then the image of Spin(V ) under α is the
whole of SO(V ). In particular, if x, y ∈ V are mutually orthogonal and Q(x) =
1, Q(y) = −1, there is u ∈ Spin(V ) such that α(u) = Jxy. By the Lemma above
α(e(iπ/2)xy) = Jxy also, and so u = ±e(iπ/2)xy. This means that e(iπ/2)xy ∈ Spin(V )
and so must be equal to its conjugate. But its conjugate is e(−iπ/2)xy which is its
inverse and so we must have eiπxy = 1, contradicting the Lemma.

Assume now that we are not in the exceptional case (ii). Then q ≥ 2 and
so we can find mutually orthogonal x, y ∈ V such that Q(x) = Q(y) = −1. The
argument for proving that Spin(V ) is a double cover for SO(V )0 then proceeds as
in the definite case.

Suppose now that we are in the exceptional case (ii). Then this last argument
does not apply. In this case let x, y ∈ V be mutually orthogonal and Q(x) =
1, Q(y) = −1. Then (xy)2 = 1 and Spin(VC) coincides with the image of the
one-parameter group etxy for t ∈ C. But etxy = (cosh t) 1 + (sinh t) xy and such an
element lies in Spin(V ) if and only if cosh t, sinh t are both real. Thus

Spin(V ) = {±a(t) | t ∈ R} a(t) = cosh t 1 + sinh t xy.

On the other hand,

α(±a(t)) = e2tMx,y = (cosh 2t) 1 + (sinh 2t) Mx,y

so that SO(V )0 is the group of all matrices of the form

m(t) =
(

cosh 2t sinh 2t
sinh 2t cosh 2t

)
(t ∈ R).

This is isomorphic to R×+ through the map m(t) 7−→ e2t, while Spin(V ) ' R×

through the map ±a(t) 7−→ ±et. The assertion (ii) now follows at once.

It remains only to characterize the double cover when V is not exceptional. If
p = 0, the fundamental group of SO(V )0 is Z when q = 2 and Z2 when q ≥ 3; if
p = 1, the fundamental group of SO(V )0 is Z2 for q ≥ 2. Hence the double cover
of SO(V )0 is unique in these cases without any further qualification. We shall now
show that when 2 ≤ p ≤ q, Spin(p, q) is the unique double cover of S0 = SO(p, q)0

with the property described. If S is a double cover of S0, the preimages Lp, Lq
of SO(p),SO(q) are compact and for Lr(r = p, q) there are only two possibilities:
either (i) it is connected and a double cover of SO(r) or (ii) it has two connected
components and L0

r ' SO(r). We must show that Lp, Lq have property (i) and
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Spin(p, q) is the unique double cover possessing this property for both SO(p) and
SO(q).

To this end we need a little preparation. Let g be a real semisimple Lie algebra
and let G0 be a connected real Lie group with finite center (for instance a matrix
group) and Lie algebra g. Let us consider the category G of pairs (G, π) where G
is a connected real semisimple Lie group and π a finite covering map G −→ G0; G
then has finite center also. Morphisms f : (G1, π1) −→ (G2, π2) are finite covering
maps compatible with the πi(i = 1, 2). We generally suppress the maps π in the
discussion below. If Gi(i = 1, 2) are two objects in G there is a third group G that
covers both Gi finitely, for instance the fiber product G1 ×G0 G2. Any G in G has
maximal compact subgroups; these are all connected and mutually conjugate, and
all of them contain the center of G. If f : G1 −→ G2 and Ki is a maximal compact
of Gi, then f(K1) (resp. f−1(K2)) is a maximal compact of G2 (resp. G1). Fix
a maximal compact K0 of G0. Then for each G in G the preimage K of K0 is a
maximal compact of G and the maps G1 −→ G2 give maps K1 −→ K2 with the
kernels of the maps being the same. Suppose now that G,Gi(i = 1, 2) are in G and
G −→ Gi with kernel Fi(i = 1, 2). It follows form our remarks above that to prove
that there is a map G1 −→ G2 it is enough to prove that there is a map K1 −→ K2.
For the existence of a map K1 −→ K2 it is clearly necessary and sufficient that
F1 ⊂ F2.

In our case G0 = SO(p, q)0,K0 = SO(p) × SO(q). Then Spin(p, q) is in the
category G and Kp,q, the preimage of K0, is a maximal compact of it. Since both p
and q are ≥ 2, it follows from the lemma that −1 lies in the connected component of
the preimages of both SO(p) and SO(q). So if Kr is the preimage of SO(r)(r = p, q),
then Kr −→ SO(r) is a double cover. Let G1 be a double cover of G0 with preimages
Lp, Lq, Lp,q of SO(p),SO(q),K0 with the property that Lr is connected and Lr −→
SO(r) is a double cover. We must show that there is a map G1 −→ Spin(p, q)
above G0. By our remarks above this comes down to showing that there is a map
Lp,q −→ Kp,q above K0. Since the fundamental group of SO(r) for r ≥ 2 is Z
for r = 2 and Z2 for r ≥ 3, SO(r) has a unique double cover and so we have
isomorphisms Lr ' Kr above SO(r) for r = p, q.

The Lie algebra of K0 is the direct product of the Lie algebras of SO(p) and
SO(q). This implies that Lp, Lq, as well as Kp,Kq, commute with each other
and Lp,q = LpLq,Kp.q = KpKq. Let Mp,q = Spin(p) × Spin(q). Then we have
unique maps Mp,q −→ Lp,q,Kp,q with Spin(r) ' Lr,Kr, (r = p, q). To show that
we have an isomorphism Lp,q ' Kp.q it is enough to show that the kernels of
Mp,q −→ Lp,q,Kp,q are the same. The kernel of Mp,q −→ K0 is Z2 × Z2. Since
Spin(r) ' Lr,Kr it follows that the kernels of Mp,q −→ Lp,q,Kp,q, which are both
nontrivial, have the property that their intersections with Spin(p)×1 and 1×Spin(q)
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are trivial. But Z2×Z2 has only one nontrivial subgroup that has trivial intersection
with both of its factors, namely the diagonal. The uniqueness of this subgroup gives
the map Lp,q ' Kp,q that we want. This finishes the proof.

Remark. The above discussion also gives a description of Kp,q, the maximal com-
pact of Spin(p, q)0. Let us write εr for the nontrivial element in the kernel of
Kr −→ SO(r)(r = p, q). Then

Kp,q = Kp ×Kq/Z Z = {1, (εp, εq)}.

Thus a map of K + p×Kq factors through to Kp,q if and only if it maps εp and εq
to the same element.

We shall now obtain the analog of Proposition 5 in the real case.

Proposition 5.3.8. For p, q ≥ 0 we have

Spin(p, q) = {v1 . . . v2aw1 . . . w2b | vi, wj ∈ V,Q(vi) = 1, Q(wj) = −1}. (10)

Proof. By the results of Cartan5 (see the Appendix) we know that the elements of
SO(p, q)0 are exactly the products of an even number of space-like reflections and
an even number of time-like reflections; here a reflection in a hyperplane orthogonal
to a vector v ∈ V with Q(v) = ±1 is space-like or time-like according as Q(v) = +1
or −1. It is then clear that the right side of (10) is a group which is mapped by α
onto SO(p, q)0. As it contains −1 the result follows at once.

Spin representations as Clifford modules. We consider the following situation.
A is a finite dimensional associative algebra over the field k which is either R or C.
Let A× be the group of invertible elements of A. Then A× is a Lie group over k and
its Lie algebra is AL which is A with the bracket [a, b] = ab− ba. The exponential
map is the usual one:

exp(a) = ea =
∑
n≥0

an

n!
.

Let g ⊂ AL be a Lie algebra and G the corresponding analytic subgroup of A×.
We assume that A is generated as an associative algebra by the elements of g. The
exponential map g −→ G is the restriction of the exponential map from AL to A×.
A finite dimensional representation ρ(r) of g(G) is said to be of A-type if there is
a representation µ(m) of A such that µ(m) restricts to ρ(r) on g(G). Since g ⊂ A
and generates A as an associative algebra, we have a surjective map U(g) −→ A,
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where U(g) ⊃ g is the universal enveloping algebra of g, which is the identity on g.
So the representations of g of A-type, which are just the A-modules, are precisely
those whose extensions to U(g) factor through the map U(g) −→ A. We now have
the following elementary result.

Proposition 5.3.9. Let g generate A as an associative algebra. If r is a repre-
sentation of G of A-type, then ρ = dr is a representation of g of A-type and every
representation of g of A-type is uniquely obtained in this manner. Restriction to
G is thus a fully faithful functor from the category of A-modules to the category of
modules for G of A-type.

Proof. Given r and its extension m, we have, for ρ = dr the formula ρ(a) =
(d/dt)t=0(r(eta))(a ∈ g). Let µ(b) = (d/dt)t=0(m(etb))(b ∈ A). Since m(etb) =
etm(b) it follows that µ(b) = m(b) while obviously µ extends ρ. Hence ρ is of A-
type. Conversely, let ρ be of A-type and µ a representation of A that restricts to
ρ on g. Let r be the restriction of µ to G. Then, for a ∈ g, we have, (dr)(a) =
(d/dt)t=0(µ(eta)) = µ(a) = ρ(a). Hence r is of A-type and dr = ρ. Since g generates
A as an associative algebra, it is clear that the extensions m(µ) are unique, and it
is obvious that restriction is a fully faithful functor.

The imbedding

γ : so(V ) −→ C+
L , Mx,y 7−→ (1/2)(xy − yx)

has the property that its image generates C+ as an associative algebra. Indeed,
if (ei) is an ON basis for V , γ(Mei,ej ) = eiej and these generate C+. Hence the
conditions of the above proposition are satisfied with G = Spin(V ), g = so(V )
(identified with its image under γ) and A = C+. By a Clifford module we mean
any module for so(V ) or Spin(V ), which is the restriction to Spin(V ) or so(V ) of
a module for C+. Since we know the modules for C+, all Clifford modules are
known. These are, in the even dimensional case, direct sums of S±, and in the odd
dimensional case, direct sums of S.

Identification of the Clifford modules with the spin modules. We shall now
identify S± and S as the spin modules. In the discussion below we shall have to
use the structure theory of the orthogonal algebras. For details of this theory see12,
Chapter 4.

dim(V ) = 2m: We take a basis (ei)1≤i≤2m for V such that the matrix of the
quadratic form is (

0 I
I 0

)
.
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Thus
Φ(er, em+r) = 1 (1 ≤ r ≤ m)

and all other scalar products between the e’s are zero. In what follows we use
r, s, r′, . . . as indices varying between 1 and m. The matrices of so(V ) are those of
the form (

A B
C −At

)
(Bt = −B, Ct = −C)

where A,B,C,D are m×m matrices. In the usual structure theory of this classical
algebra the Cartan subalgebra is the set of diagonal matrices ' Cm via

(a1, . . . , am) 7−→ diag (a1, . . . , an,−a1, . . . ,−am).

We write E′ij for the usual matrix units of the m×m matrix algebra and define

Eij =
(
E′ij 0
0 −E′ji

)
, Fpq =

(
0 E′pq − E′qp
0 0

)
, Gpq =

(
0 0

E′pq − E′qp 0

)
.

Then the Eij , Fpq, Gpq are the root vectors with corresponding roots ai − aj , ap +
aq,−(ap + aq). For the positive system of root vectors we choose

Eij(i < j), Fpq(p < q).

Writing Mt,u for Met,eu , it is easy to check that

Mr,m+s = Ers, Mr,s = Frs, Mm+r,m+s = Grs, Mr,m+r = Err.

Thus the positive root vectors are

Mr,m+s (r < s), Mr,s (r < s).

The linear functions corresponding to the fundamental weights at the right extreme
nodes of the Dynkin diagram are

δ± := (1/2)(a1 + a2 + . . .+ am−1 ± am).

Since the ±ai are the weights of the defining representation in C2m, the weights of
the tensor representations are those of the form

k1a1 + k2a2 + . . .+ kmam
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where the ki are integers, and so it is clear that the irreducible representations with
highest weights δ± cannot occur in the tensors; this was Cartan’s observation. We
shall now show that the representations with highest weights δ± are none other than
the C+–modules S± viewed as modules for so(V ) through the injection so(V ) ↪→
C+
L .

The representation of the full algebra C as described in Theorem 2.4 acts on
ΛU∗ where U∗ is the span of the em+s. The duality between U , the span of the er
and U∗ is given by 〈er, em+s〉 = 2δrs. The action of C+ is through even elements and
so preserves the even and odd parts of ΛU∗. We shall show that these are separately
irreducible and are equivalent to the representations with highest weights δ±. To
decompose ΛU∗ we find all the vectors that are killed by the positive root vectors.
It will turn out that these are the vectors in the span of 1 and e2m. So 1 generates
the even part and e2m the odd part; the respective weights are δ+, δ− and so the
claim would be proved.

The action of C on ΛU∗ is as follows:

er : u∗ 7−→ ∂(er)(u∗), em+r : u∗ 7−→ em+r ∧ u∗.

The injection γ takes Mx,y to (1/4)(xy − yx) and so we have

γ(Mr,m+r) = (1/2)erem+r − (1/2), γ(Mt,u) = (1/2)eteu (1 ≤ t, u ≤ 2m).

We now have

γ(Mr,m+r)1 = 1/2, γ(Mr,m+r)e2m = ((1/2)− δrm)e2m.

Let us now determine all vectors v killed by

γ(Mr,m+s), γ(Mr,s) (r < s).

As diag(a1, . . . , am,−a1, . . . ,−am) =
∑
r arMr,m+r we see that 1 has weight δ+

while e2m has weight δ−. Since 1 is obviously killed by the positive root vectors we
may suppose that v has no constant term and has the form

v =
∑
|I|≥1

cIem+I .

We know that v is killed by all ∂(ej1)∂(ej2)(1 ≤ j1 < j2 ≤ m). If we apply
∂(ej1)∂(ej2) to a term em+I with |I| ≥ 2, we get em+I′ if I contains {j1, j2} where
I ′ = I \ {j1, j2}, or 0 otherwise, from which it is clear that cI = 0. So

v =
∑
j

cjem+j .
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Since γ(Mr,m+s)v = 0 for r < s we conclude that cr = 0 for r < m.

dim(V ) = 2m + 1: We take a basis (et)0≤t≤2m with the et(1 ≤ t ≤ 2m) as
above and e0 a vector of norm 1 orthogonal to them. If ft = ie0et, then fsft = eset
and so C+ is generated by the (ft) with the same relations as the et. This gives the
fact already established that C+ is the full ungraded Clifford algebra in dimension
2m and so is a full matrix algebra. It has thus a unique simple module S. We wish
to identify it with the irreducible module with highest weight δ corresponding to
the right extreme node of the diagram of so(V ). We take the module S for C+ to
be Λ(F ) where F is the span of the fm+s, with fr acting as ∂(fr) and fm+r acting
as multiplication by fm+r. Then, as eteu = ftfu, γ is given by

Mr,s 7→ (1/2)frfs Mm+r,m+s 7→ (1/2)fm+rfm+s, Mr,m+r 7→ (1/2)frfm+r − (1/2)

while
M0,s 7→ ( -i/2)fs, M0,m+s 7→ ( -i/2)fm+s.

We take as the positive system the roots ar−as,−(ar+as),−ar so that the positive
root vectors are

Mm+r,s (r < s), Mr,s (r < s), M0,r.

It is easy to show, as in the previous example, that 1 is of weight δ and is killed by

γ(Mr,s) (r 6= s), γ(Mm+r,s)

so that it generates the simple module of highest weight δ. To prove that this is all
of S it is enough to show that the only vectors killed by all the positive root vectors
are the multiples of 1. Now if v is such a vector, the argument of the previous case
shows that v = a1 + bf2m. But then ∂(fm)v = b = 0. This finishes the proof.

Let V be a complex quadratic vector space of dimension D. Then for D odd
the spin module has dimension 2

D−1
2 while for D even the semispin modules have

dimension 2
D
2 . Combining both we see that

dimension of the spin module(s) = 2[D+1
2 ]−1 (D ≥ 1) (11)

in all cases where [x] is the largest integer ≤ x.

Remark. The identification of the spin modules with Clifford modules has a very
important consequence. If V is a quadratic space and W a quadratic subspace, it is
obvious that the restriction of a C(V )+–module to C(W )+ splits as a direct sum of
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simple modules and so the restriction of a spinorial module for Spin(V ) to Spin(W )
is spinorial. There are many situations like this occuring in physics and one can
explicitly write down some of these “branching rules”8.

Centers of the complex and real spin groups. We shall now determine the
centers of the spin groups, both in the complex and real case. Let us first consider
the case of a complex quadratic space V of dimension D ≥ 3. If D is odd, SO(V )
has trivial center and so is the adjoint group, and its fundamental group is Z2. As
Spin(V ) is the universal cover of SO(V ), its center is Z2.

In even dimensions the determination of the center of Spin(V ) is more delicate.
If V above has even dimension D = 2m, the center of SO(V ) is Z2, consisting
of ±I, I being the identity endomorphism of V . Its preimage in Spin(V ), say
Z, is the center of Spin(V ), and is a group with 4 elements, hence is either Z4

or Z2 ⊕ Z2. We shall now determine in terms of D when these two possibilities
occur. For this we need to use the obvious fact that the center of Spin(V ) is
the subgroup that lies in the center of C(V )+. We have already determined the
center of C(V )+. If (ei)1≤i≤D is an orthonormal basis and eD+1 = e1e2 . . . eD,
then the center of C(V )+ is spanned by 1 and eD+1. Now e2

D+1 = (−1)m, eD+1

anticommutes with all ei, and β(eD+1) = (−1)meD+1, so that x = a + beD+1 lies
in the spin group if and only if xV x−1 ⊂ V and xβ(x) = 1. The second condition
reduces to a2 + b2 = 1, ab(1 + (−1)m) = 0, while the first condition, on using
the fact that x−1 = β(x), reduces to ab(1 − (−1)m) = 0. Hence we must have
ab = 0, a2 + b2 = 1, showing that

center(Spin(V )) = {±1,±eD+1}.

If m is even, e2
D+1 = 1 and so the center is Z2⊕Z2. For m odd we have e2

D=1 = −1
and so the center is Z4 generated by ±eD+1. Thus,

center(Spin(V )) '

{Z2 if D = 2k + 1
Z4 if D = 4k + 2
Z2 ⊕ Z2 if D = 4k.

Suppose now that V is a real quadratic vector space of D. If D is odd it is
immediate that the center of Spin(V ) is {±1} ' Z2. Let now D be even and let
V = Ra,b where a ≤ b and a + b = D. If a, b are both odd, −I /∈ SO(a) × SO(b)
and so the center of SO(V )0 is trivial. This means that the center of Spin(V ) is
{±1} ' Z2. Suppose that both a and b are even. Then −I ∈ SO(a)×SO(b) and so
the center of Spin(V )0 consists of ±I. Hence the center of Spin(V ) has 4 elements
and so coincides with Z, the center of Spin(VC). Thus we have the following:

center of Spin(Ra,b) '
{

Z2 if D = 2k + 1 or D = 2k, a, b odd
Z4 if D = 2k, a, b even.
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5.4. Reality of spin modules. For applications to physics, the theory of spin
modules over C, is not enough; one needs the theory over R. Representation theory
over R is a little more subtle than the usual theory over C because Schur’s lemma
takes a more complicated form. If V is a real vector space and A ⊂ EndR(V ) is
an algebra acting irreducibly on V , the commutant A′ of A, namely the algebra of
elements of EndR(V ) commuting with A, is a division algebra. Indeed, if R ∈ A′,
the kernel and image of R are submodules and so each is either 0 or V . So, if
R 6= 0, then both are 0 and so R is bijective, hence invertible, and R−1 ∈ A′.
Now R,C,H are all division algebras over R, H being the algebra of quaternions.
Examples can be given to show that all three arise as commutants of simple modules
of R–algebras. For instance, if A denotes anyone of these, it is a simple module for
the left regular representation, and its commutant is isomorphic to Aopp ' A. A
classical theorem of Frobenius asserts that these are the only (associative) division
algebras over R. So simple modules for a real algebra may be classified into 3 types
according to the division algebra arising as the commutants in their simple modules.
The main goal of this section is to determine the types of the simple modules for
the even parts of the Clifford algebras of real quadratic vector spaces. The main
result is that the types are governed by the signature of the quadratic space mod 8.
This is the first of two beautiful periodicity theorems that we shall discuss in this
and the next section.

It is not difficult to see that the types depend on the signature. Indeed, if we
replace V by V ⊕ W where W is hyperbolic, then C(V ⊕ W ) ' C(V ) ⊗ C(W )
and C(W ) is a full endomorphism super algebra of a super vector space U . One
can show that the simple modules for C(V ) and C(V ⊕W ) are S and S ⊗ U and
the commutants are the same. Hence the types for C(V ) and C(V ⊕W ) are the
same. Since two spaces V1, V2 have the same signature if and only if we can write
Vi = V ⊕Wi for i = 1, 2 where the Wi are hyperbolic, it is immediate that the types
of C(V1) and C(V2) are the same. A little more work is needed to come down to the
even parts. However one needs a much closer look to see that there is a periodicity
mod 8 here.

We shall actually work over an arbitrary field k of characteristic 0 and specialize
to k = R only at the very end. All algebras considered in this section are finite
dimensional with unit elements and all modules are finite dimensional. k ⊃ k is the
algebraic closure of k.

The Brauer group of a field. If A is an associative algebra over k and M is a
module for A, we write AM for the image of A in Endk(M). If M is simple, then
the commutant D = A′M of A in M is a division algebra as we have seen above.
However, unlike the case when k is algebraically closed this division algebra need
not be k. The classical theorem of Wedderburn asserts that AM is the commutant
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of D, i.e.,
AM = EndD(M).

We can reformulate this as follows. The definition m · d = dm(m ∈ M,d ∈ D)
converts M into a right vector space over Dopp, the division algebra opposite to D.
Let (mi)1≤i≤r be aDopp-basis forM . If we write, for any a ∈ AM , amj =

∑
imi·aij ,

then the map
a 7−→ (aij)

is an isomorphism of AM with the algebra Mr(Dopp) of all matrices with entries
from Dopp:

AM 'Mr(Dopp) 'Mr(k)⊗Dopp.

Here, for any field k′, Mr(k′) is the full matrix algebra over k′.

The classical theory of the Brauer group is well-known and we shall now give
a quick summary of its basic results. We shall not prove these here since we shall
prove their super versions here. Given an associative algebra A over k and a field
k′ ⊃ k we define

Ak′ = k′ ⊗k A.

We shall say that A is central simple (CS) if Ak is isomorphic to a full matrix
algebra:

A CS ⇐⇒ Ak 'M
r(k).

Since
Mr(k′)⊗Ms(k′) 'Mrs(k′)

it follows that if A,B are CS algebras so is A⊗B. Since

Mr(k′)opp 'Mr(k′)

it follows that for A a CS algebra, Aopp is also a CS algebra. The basic facts about
CS algebras are summarized in the following proposition. Recall that for an algebra
A over k and a module M for it, M is called semisimple if it is a direct sum of
simple modules. M is semisimple if and only if M := M ⊗k k is semisimple for
Ak = k ⊗k A. A itself is called semisimple if all its modules are semisimple. This
will be the case if A, viewed as a module for itself by left action, is semisimple. Also
we have an action of A ⊗ Aopp on A given by the morphism t from A ⊗ Aopp into
Endk(A) defined as follows:

t(a⊗ b) : x 7−→ axb (a, x ∈ A, b ∈ Aopp).

Proposition 5.4.1. The following are equivalent.
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(i) A is CS.
(ii) t : A⊗Aopp ' Endk(A).
(iii) ctr(A) = k and A is semisimple.
(iv) A = Mr(k)⊗K where K is a division algebra with ctr(K) = k.
(v) ctr(A) = k and A has no proper nonzero two-sided ideal.

In this case A has a unique simple module with commutant D and A ' Mr(k) ⊗
Dopp. Moreover, if M is any module for A and B is the commutant of A in M ,
then the natural map A −→ EndB(M) is an isomorphism:

A ' EndB(M).

Finally, in (iv), Kopp is the commutant of A in its simple modules.

An algebra A over k is central if its center is k, and simple if it has no nonzero
two-sided ideal. Thus CS is the same as central and simple. Two central simple
algebras over k are similar if the division algebras which are the commutants of
their simple modules are isomorphic. This is the same as saying that they are
both of the form Mr(k) ⊗K for the same central division algebra K but possibly
different r. Similarity is a coarser notion of equivalence than isomorphism since A
and Mr(k) ⊗ A are always similar. Write [A] for the similarity class of A. Since
Mr(k) has zero divisors as soon as r > 1, Mr(k) ⊗ K and K cannot both be
division algebras unless r = 1, and so it follows that for central division algebras
similarity and isomorphism coincide. Thus each similarity class contains a unique
isomorphisms class of central division algebras. On the set of similarity classes we
now define a multiplication, the so-called Brauer multiplication, by the rule

[A]·[B] = [A⊗B].

Since
(Mr(k)⊗A)⊗ (Ms(k)⊗B) = Mrs(k)⊗ (A⊗B)

it follows that Brauer multiplication is well-defined. In particular, if E,F are two
central division algebras, there is a central division algebra G such that E ⊗ F is
the full matrix algebra over G, and

[E]·[F ] = [G].

The relations

[Mr(k)⊗A] = [A], A⊗B ' B ⊗A A⊗Aopp 'Mr(k) (r = dim(A))
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show that Brauer multiplication converts the set of similarity classes into a com-
mutative group with [k] as its identity element and [Aopp] as the inverse of [A].
This group is called the Brauer group of the field k and is denoted by Br(k). If k
is algebraically closed, we have Br(k) = 1 since every CS algebra over k is a full
matrix algebra. For k = R we have

Br(R) = Z2.

In fact R and H are the only central division algebras over R (note that C as an
R-algebra is not central), and H is therefore isomorphic to its opposite. Hence the
square of the class of H is 1. For our purposes we need a super version of Brauer’s
theory because the Clifford algebras are CS only in the super category. However
the entire discussion above may be extended to the super case and will lead to a
treatment of the Clifford modules from the perspective of the theory of the super
Brauer group.

Central simple (CS) super algebras over a field. For any field k and any
u ∈ k× let D = Dk,u be the super division algebra k[ε] where ε is odd and ε2 = u.
It is obvious that the isomorphism class of Dk,u depends only on the image of u in
k×/k×

2. Clearly
Dopp
k,u = Dk,−u.

In particular, if Dk := Dk,1, then Dopp = k[ε0] where ε0 is odd and ε02 = −1. If k
is algebraically closed, Dk is the only super division algebra apart from k. To see
this let B be a super division algebra over k algebraically closed. If u is an odd
nonzero element, it is invertible and so multiplication by u is an isomorphism of B1

with B0. But B0 is an ordinary division algebra over k and so is k itself, so that
dim(B1) = 1. As u2 is nonzero and even, we have u2 = a1, and so replacing u by
ε = a−1/2u, we see that B = Dk. If there is no ambiguity about k we write D for
Dk. Because of this result we have

D ' Dopp (k algebraically closed ).

In imitation of the classical case and guided by the Clifford algebras we define
a super algebra A over k to be central simple (CS) if

Ak 'M
r|s(k) or 'Mn ⊗Dk. ( CS )

From our results on Clifford algebras we see that the Clifford algebra C(V ) of
a quadratic vector space over k is always central simple in the super category.
We shall prove presently the super version of Proposition 1 that will allow us to
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define the notions of similarity for CS super algebras and of Brauer multiplication
between them, and prove that this converts the set of similarity classes of CS super
algebras over a field into a commutative group, the super Brauer group of the field.
An explicit determination of the super Brauer group of R will then lead to the
classification of types of simple Clifford modules over R. This was first done by C.
T. C. Wall8.

We begin with some preparatory lemmas. If A,B are super algebras over k
and V,W are modules for A,B respectively, recall V ⊗W is a module for A⊗B if
we define

(a⊗ b)(v ⊗ w) = (−1)p(b)p(v)av ⊗ bw.

Let A be a sub super algebra of Endk(V ). The supercommutant A′ of A is the
super algebra whose homogeneous elements x are defined by

ax = (−1)p(a)p(x)xa (a ∈ A).

We must distinguish this from the super algebra, denoted by A′u, which is the
ordinary commutant, namely consisting of elements x ∈ Endk(V ) such that ax = xv
for all a ∈ A. We often write Au for A regarded as an ungraded algebra. Note
however that A′ and A′u have the same even part. If A is a super algebra and V a
super module for A, we write AV for the image of A in Endk(V ).

Lemma 5.4.2. We have

(A⊗B)′V⊗W = A′V ⊗B′W .

Furthermore,
sctr(A⊗B) = sctr(A)⊗ sctr(B).

Proof. We may identify A and B with their images in the respective spaces of
endomorphisms. It is an easy check that A′ ⊗ B′ ⊂ (A⊗ B)′. We shall now prove
the reverse inclusion. First we shall show that

(A⊗ 1)′ = A′ ⊗Endk(W ). (∗)

Let c =
∑
j aj ⊗ bj ∈ (A⊗ 1)′ where the bj are linearly independent in Endk(W ).

Then c(a⊗1) = (−1)p(c)p(a)(a⊗1)c for a in A. Writing this out and observing that
p(c) = p(aj) + p(bj) for all j we get∑

j

(−1)p(a)p(bj)
[
aaj − (−1)p(a)p(aj)aja

]
⊗ bj = 0.
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The linear independence of the bj implies that aj ∈ A′ for all j, proving (∗). If
now c ∈ (A⊗ B)′ we can write c =

∑
j aj ⊗ bj where the aj are in A′ and linearly

independent. Proceeding as before but this time writing out the condition that
c ∈ (1 ⊗ B)′ we get bj ∈ B′ for all j. Hence c ∈ A′ ⊗ B′. The second assertion is
proved in a similar fashion.

Our next result is the Wedderburn theorem in the super context.

Lemma 5.4.3. Let A a super algebra and V a semisimple module for A. Then,
primes denoting commutants,

AV = A′′V .

Proof. We may assume that A = AV . Let vj(1 ≤ j ≤ N) be homogeneous nonzero
elements in V . It is enough to prove that if L ∈ A′′, then there is a ∈ A such that
avj = Lvj for all j. Consider first the case when N = 1. Since V is a direct sum
of simple sub super modules it follows as in the classical case that any sub super
module W has a complementary super module and hence there is a projection
V −→ W , necessarily even, that lies in A′. Applying this to the submodule Av1

we see that there is a projection P (V −→ Av1) that lies in A′. By assumption L
commutes with P and so L leaves Av1 invariant, i.e., Lv1 ∈ Av1. This proves the
assertion for N = 1. Let now N > 1. Consider V N = V ⊗ U where U is a super
vector space with homogeneous basis (ej)1≤j≤N where ej has the same parity as
vj . Then V N , being the direct sum of the V ⊗ kej , is semisimple, and so is itself
semisimple. By Lemma 2, (A⊗ 1)′′ = A′′ ⊗ k. Let v =

∑
j vj ⊗ ej . Then v is even

and by what has been proved above, given L ∈ A′′ we can find a ∈ A such that
(L⊗ 1)v = (a⊗ 1)v, i.e., ∑

Lvj ⊗ ej =
∑

avj ⊗ ej .

This implies that Lvj = avj for all j, finishing the proof.

Lemma 5.4.4. If A is a super algebra and M a simple super module for A, then
the super commutant of AM is a super division algebra. If B is a super division
algebra over k which is not purely even, and V is a super vector space, then

Endk(V )⊗B ' Endk(V ′)⊗B

where V ′ is the ungraded vector space V and Endk(V ′) is the purely even algebra of
all endomorphisms of V ′. In particular

Mr|s(k)⊗B 'Mr+s ⊗B.
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Proof. Let L be a homogeneous element of A′M . Then the kernel and image of L
are sub super modules and the argument is then the same as in the classical Schur’s
lemma. For the second assertion we begin by regarding B as a module for Bopp by

b · b′ = (−1)p(b)p(b
′)b′b.

Clearly the commutant of this module is B acting by left multiplication on itself.
By Lemma 1 we therefore have, on V ⊗B,

(1⊗Bopp)′ = Endk(V )⊗B.

Choose now η 6= 0 in B1. Let vi form a basis of V with vi(i ≤ r) even and vi(i > r)
odd. Then, the even elements

v1 ⊗ 1, . . . , vr ⊗ 1, vr+1 ⊗ η, . . . , vr+s ⊗ η

form a Bopp-basis of V ⊗B. This implies that

V ⊗B ' V ′ ⊗B

as Bopp-modules. Since the commutant of 1⊗Bopp in V ′ ⊗B is Endk(V ′)⊗B the
result follows.

One can see easily from the definition that if A,B are CS super algebras, then
so are A ⊗ B and Aopp. To see this write Mr|s = Mr|s(k), D = Dk,1, Dk = Dk,1.
We then have the following.

Mr|s(k)⊗Mp|q(k) 'Mrp+sq|rq+sp(k)

Mr|s(k)⊗ (Mn(k)⊗Dk) 'Mnr|ns(k)⊗Dk 'Mn(r+s)(k)⊗Dk

(Mm(k)⊗Dk)⊗ (Mn ⊗Dk)opp 'Mmn(k)⊗M1|1(k) 'Mmn|mn(k).

Taking k instead of k and remembering that Dopp ' D we see that A⊗B is CS if
A,B are CS. In the second relation we are using Lemma 4. The verification of the
third comes down to seeing that

Dk ⊗Dopp
k 'M1|1.

This last relation is proved as follows. For any super algebra A, we have an action
t = tA of A⊗Aopp on A given by

t(a⊗ b)(x) = (−1)p(b)p(x)axb (a, x ∈ A, b ∈ Aopp).
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Thus
t : A⊗Aopp −→ Endk(A)

is a morphism of super algebras. In the special case when A = Dk we can compute
t explicitly and verify that it is an isomorphism. In the basis 1, ε for Dk we have,
for the action of t,

t(1⊗ 1) =
(

1 0
0 1

)
, t(1⊗ ε) =

(
0 −1
1 0

)
,

t(ε⊗ 1) =
(

0 1
1 0

)
, t(ε⊗ ε) =

(
1 0
0 −1

)
.

So the result is true in this case. To see that the opposite of a CS super algebra is
also CS we first prove that

Endk(V )opp ' Endk(V ).

Let V ∗ be the dual of V and for T ∈ Endk(V ) let us define T ∗ ∈ Endk(V ∗) by

(T ∗v∗)(v) = (−1)p(T
∗)p(v∗)v∗(Tv).

It is then easily checked that p(T ∗) = p(T ) and

(T1T2)∗ = (−1)p(T1)p(T2)T ∗2 T
∗
1

which proves that the map T 7−→ T ∗ is an isomorphism of Endk(V ) with
Endk(V ∗)opp. However we have, noncanonically, V ' V ∗, and so

Endk(V ) ' Endk(V ∗)opp ' Endk(V )opp.

Next, as D ' Dopp for k algebraically closed, we have

(Mn ⊗D)opp 'Mn ⊗D

where we are using the easily proved fact that (A⊗B)opp ' Aopp ⊗Bopp.

We shall now prove the super version of Proposition 1. Recall that for a super
algebra, the complete reducibility of all its modules is equivalent to the complete
reducibility of the left regular representation, and that we have called such super
algebras semisimple.

Proposition 5.4.5. The following are equivalent.
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(i) A is CS.
(ii) t : A⊗Aopp −→ Endk(A) is an isomorphism.
(iii) sctr(A) = k and the ungraded algebra A is semisimple.
(iv) sctr(A) = k and the super algebra A is semisimple.
(v) sctr(A) = k and A has no proper nonzero two-sided homogeneous ideal.
(vi) A = Mr(k)⊗K where K is a super division algebra with sctr(K) = k.
(vii) sctr(A) = k and A has a faithful semisimple representation.

Proof. (i) =⇒ (ii). Since the map t is already well-defined, the question of its
being an isomorphism can be settled by working over k. Hence we may assume that
k is already algebraically closed. We consider two cases.

Case 1: A ' Mr|s. Let Eij be the matrix units with respect to the usual
homogeneous basis of kr|s. Then

t(Eij ⊗ Eq`) : Emn 7−→ (−1)[p(q)+p(`)][p(m)+p(n)]δjmδnqEi`,

and so t(Eij ⊗Eq`) takes Ejq to ±Ei` and Emn to 0 if (m,n) 6= (j, q). This proves
that the image of t is all of Endk(A). Computing dimensions we see that t is an
isomorphism.

Case 2: A ' Endk(V ) ⊗ D where V is a purely even vector space. We have
already verified that t is an isomorphism when V = k, i.e., A = D. If we write
tA⊗B , tA, tB for the maps associated to A⊗B,A,B, then a simple calculation shows
(after the identifications (A ⊗ B) ⊗ (A ⊗ B)opp ' (A ⊗ Aopp) ⊗ (B ⊗ Bopp) and
tA⊗B ' tA ⊗ tB) that

tA⊗B = tA ⊗ tB .

Hence the result for A = Endk(V )⊗D follows from those for Endk and D.

(ii) =⇒ (iv). Let x ∈ sctr(A). Then xa = (−1)p(x)p(a)xa for all a ∈ A. We now
assert that x⊗ 1 is in the super center of A⊗Aopp. In fact,

(x⊗ 1)(a⊗ b) = xa⊗ b = (−1)p(x)p(a)ax⊗ b = (−1)p(x)p(a⊗b)(a⊗ b)(x⊗ 1)

proving our claim. So x⊗ 1 ∈ k, showing that x ∈ k. We must now show that the
left regular representation of the super algebra A is completely reducible. Let L
be a (graded) subspace of A stable and irreducible under left translations. Then,
under our assumption (ii), the spaces t(a ⊗ b)[L] = Lb span A as b varies among
the homogeneous elements of A. This means that the spaces Lb span A. Right
multiplication by b is a map of L with Lb commuting with the left action and so Lb
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is a quotient of L or ΠL according as b is even or odd, thus irreducible as a super
module for the left regular representation. Thus A is the sum of simple sub super
modules for the left action and hence A is semisimple.

(iv) =⇒ (ii). We begin by remarking that if L and M are simple nonzero sub super
modules of A under the left action, then M = Lb for some homogeneous b ∈ A if
and only if either M ' L or M ' ΠL. Indeed, if M = Lb then left multiplication by
b is a nonzero element of HomA(L,M) if b is even and HomA(ΠL,M) if M is odd,
and hence is an isomorphism. For the reverse result, write A = L ⊕ L1 . . . where
L,L1, . . . are simple sub super modules of A for the left action. Let T (L −→ M)
be a homogeneous linear isomorphism L ' M as A–modules. Define T as 0 on
L1, . . .. Then T is homogeneous and commutes with left action. If T1 = b, then b
is homogeneous and Ta = ab. Hence M = Lb as we wished to show.

This said, let us write A = ⊕Ai where the Ai are simple sub super modules
of A for the left action. We write i ∼ j if Ai is isomorphic under left action to Aj
or ΠAj . This is the same as saying, in view of our remark above, that for some
homogeneous b, Aj = Aib; and ∼ is an equivalence relation. Let I, J, . . . be the
equivalence classes and AI = ⊕i∈IAi. Each AI is graded and AI does not change if
we start with another Aj with i ∼ j. Moreover AI is invariant under left as well as
right multiplication by elements of A and so invariant under the action of A⊗Aopp.
We now claim that each AI is irreducible as a super module under the action of
A⊗Aopp. To show this it is enough to prove that if M is a graded subspace of AI
stable and irreducible under the left action, then the subspaces Mb for homogeneous
b span AI . Now AI is a sum of submodules all equivalent to Ai for some i ∈ I,
and so M has to be equivalent to Ai also. So, by the remark made at the outset,
Ai = Mb0 for some homogeneous b0; but then as the Aib span AI it is clear that
the Mb span AI . Thus AI is a simple module for A ⊗ Aopp. Since A =

∑
I AI it

follows that the action of A ⊗ Aopp on A is semisimple. So Lemma 3 is applicable
to the image R of A ⊗ Aopp in Endk(A). Let T ∈ R′ and T1 = `. The condition
on T is that

t(a⊗ b)T = (−1)p(T )p(t(a⊗b))Tt(a⊗ b) (∗)

for all a, b ∈ A. Since t(a ⊗ b)(x) = ±axb it follows that p(t(a ⊗ b)) = p(a ⊗ b) =
p(a) + p(b). Moreover as T1 = `, we have p(T ) = p(`). Hence applying both sides
of (∗) to 1 we get

(−1)p(b)p(`)a`b = (−1)p(`)[p(a)+p(b)]T (ab).

Taking a = 1 we see that Tb = `b so that the above equation becomes

(−1)p(b)p(`)a`b = (−1)p(`)[p(a)+p(b)]`ab.
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Taking b = 1 we get a` = (−1)p(a)p(`)`a, showing that ` lies in the super center of
A. So ` ∈ k. But then R′′ = Endk(A) so that the map t : A⊗Aopp −→ Endk(A) is
surjective. By counting dimensions we see that this must be an isomorphism. Thus
we have (ii).

(iv) =⇒ (v). It is enough to prove that (v) follows from (ii). But, under (ii), A,
as a module for A ⊗ Aopp, is simple. Since 2-sided homogeneous ideals are stable
under t, we get (v).

(v) =⇒ (vi). By (v) we know that any nonzero morphism of A into a super algebra
is faithful. Take a simple module M for A. Its super commutant is a super division
algebra D and by Lemma 3 we have AM = EndD(M). The map A −→ AM is
faithful and so

A ' EndD(M).

This implies that
A 'Mr|s(k)⊗K, K = Dopp.

Since the super center of a product is the product of super centers we see that the
super center of K must reduce to k. Thus we have (vi).

(vi) =⇒ (i). It is enough to prove that if K is a super division algebra whose
super center is k, then K is CS. Now the left action of K on itself is simple and
so semisimple. Thus K is semisimple. We now pass to the algebraic closure k of
k. Then K = K

k
is semisimple and has super center k. Thus K satisfies (iv), and

hence (v) so that any nonzero morphism of K is faithful. Let M be a simple module
for K and E the super commutant in M . Then, with F = Eopp, K ' Mr|s ⊗ F .
For F there are only two possibilities: F = k,D. In the first case K ' Mr|s while
in the second case K 'Mr+s ⊗D by Lemma 4. Hence K is CS.

(iii) ⇐⇒ (i). It is enough to prove (i) =⇒ (iii) when k is algebraically closed. It
is only a question of the semisimplicity of A as an ungraded algebra. If A = Mr|s

then the ungraded A is Mr+s and so the result is clear. If A = Mn ⊗ D, then it
is a question of proving that the ungraded D is semisimple. But as an ungraded
algebra, D ' k[u] where u2 = 1 and so D ' k ⊕ k, hence semisimple.

For the converse, let us suppose (iii) is true. Let us write Au for A regarded as
an ungraded algebra. We shall show that A is semisimple as a super algebra. This
will give us (iv) and hence (i). We shall assume that k is algebraically closed. We
first argue as in the proof of (iv) =⇒ (ii) above that Au is semisimple as a module
for Au ⊗Aopp

u . Take now a filtration of homogeneous left ideals

A0 = A ⊃ A1 ⊃ . . . ⊃ Ar ⊃ Ar+1 = 0
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where each Mi := Ai/Ai+1 is a simple super module. Let R be the set of elements
which map to the zero endomorphism in each Mi. Then R is a homogeneous two-
sided ideal. If x ∈ R, then xAi ⊂ Ai+1 for all i, and so xr = 0. Now, the ungraded
algebra Au is semisimple by assumption. Hence as R is stable under Au ⊗Aopp

u we
can find a two-sided ideal R′ such that A = R ⊕ R′. Since RR′ ⊂ R ∩ R′ = 0 we
have RR′ = R′R = 0. Write 1 = u+ u′ where u ∈ R, u′ ∈ R′. Then uu′ = u′u = 0
and so 1 = (u + u′)r = ur + u′

r = u′
r, showing that 1 ∈ R′. Hence R = R1 = 0.

This means that Au, and hence A, acts faithfully in ⊕iMi.

The kernel of A in Mi and Mj are the same if either Mi 'Mj or Mi ' ΠMj .
Hence, by omitting some of the Mi we may select a subfamily Mi(1 ≤ i ≤ s) such
that for i 6= j we have Mi 6'Mj ,ΠMj , and that A acts faithfully on M = ⊕1≤i≤s.
We may thus suppose that A = AM . Let Pi(M −→ Mi) be the corresponding
projections. If A′u is the ordinary commutant of Au it is clear that Pi ∈ A′u for all
i. We claim that Pi ∈ (A′u)′u for all i. Let S ∈ A′u be homogeneous. Then S[Mi]
is a super module for A which is a quotient of Mi or ΠMi and so is either 0 or
equivalent to Mi or ΠMi. Hence it cannot be equivalent to any Mj for j 6= i and
so S[Mi] ⊂ Mi for all i. So S commutes with Pi for all i. Thus Pi ∈ (A′u)′u for all
i. But Au, being semisimple, we have Au = (A′u)′u and so Pi ∈ A for all i. Hence
Pi ∈ A ∩ A′ = sctr(A) = k for all i. Thus there is only one index i and Pi = 1 so
that M is simple. But then A = EndK(M) where K is the super commutant of A
in M . B is a super division algebra with super center k and so we have (vi). But
then as (vi) implies (i) we are done.

(vii) ⇐⇒ (i). The argument in the preceding implication actually proves that (vii)
implies (i). The reverse is trivial since the left action of A on itself is semisimple
and faithful if A is CS.

This completes the proof of the entire proposition.

Proposition 5.4.6. Let k be arbitrary and A a CS super algebra over k. Let M be
any module for A and let B be the commutant of A in M . Then the natural map
A −→ EndB(M) is an isomorphism:

A ' EndB(M).

Moreover, the commutants in the simple modules for A are all isomorphic. If B
is such a commutant, then B a super division algebra with super center k, and
A 'Mr|s(k)⊗Bopp. Finally, if A = Mr|s⊗K where K is a super division algebra
with super center k, Kopp is the commutant of A in its simple modules.

Proof. The first assertion is immediate from Lemma 3 since A is semisimple by
Proposition 5. To prove the second assertion let M,N be two simple modules for
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A. Let M,N be their extensions to k as modules for A := Ak. We consider two
cases.

Case 1: A ' End(V ) where V is a super vector space over k. Then M ' V ⊗
R,N ' V ⊗S where R, S are super vector spaces. Unless one of R, S is purely even
and the other purely odd, we have HomA(M,N) 6= 0. Hence HomA(M,N) 6= 0,
and so as M and N are simple we must have M ' N . In the exceptional case we
replace N by ΠN to conclude as before that M ' ΠN . So to complete the proof
we must check that the commutants of A in M and ΠM are isomorphic. But parity
reversal does not change the action of A and hence does not change the commutant.

Case 2: Ak ' Endk(V )⊗D where V is a purely even vector space. In this case
we have seen that there is a unique simple module and so the result is trivial.

For the last assertion let A = Mr|s ⊗ K where K is a super division algebra
with k as super center. Let M = kr|s ⊗K viewed as a module for A in the obvious
manner, K acting on K by left multiplication. It is easy to check that this is a
simple module. The commutant is 1⊗Kopp ' Kopp as we wanted to show.

The super Brauer group of a field. Let k be arbitrary. We have seen that if
A is a CS super algebra, then A is isomorphic to Mr|s(k) ⊗ B where B is a CS
super division algebra, i.e., a super division algebra with super center k. B is also
characterized by the property that Bopp is the super commutant of A in its simple
modules. Two CS super algebras A1, A2 are said to be similar if their associated
division algebras are isomorphic, i.e., if Ai ' Mri|si(k) ⊗ D where D is a central
super division algebra. Similarity is an equivalence relation which is coarser than
isomorphism and the similarity class of A is denoted by [A]. We define Brauer
multiplication of the similarity classes as before by

[A] · [B] = [A⊗B].

It is obvious that this depends only on the classes and not on the representative
super algebras in the class. This is a commutative product and has [k] as the unit
element. The relation

A⊗Aopp ' Endk(A)

shows that [Aopp] is the inverse of [A]. Thus the similarity classes from a commu-
tative group. This is the super Brauer group of k, denoted by sBr(k). Our goal is
to get information about the structure of sBr(k) and the subset of classes of the
Clifford algebras inside it. We shall in fact show that

sBr(R) = Z8 = Z/8Z.
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This will come out of some general information on sBr(k) for arbitrary k and special
calculations when k = R. We shall also show that the classes of the Clifford algebras
exhaust sBr(R). Finally by looking at the even parts of the Clifford algebras we
shall determine the types of the Clifford modules over R.

First of all we have, for k algebraically closed,

sBr(k)(k) = {[k], [D]} = Z2.

In fact this is clear from the fact that

(Mn ⊗D)⊗ (Mn ⊗D) 'Mn2
⊗ (D ⊗Dopp) 'Mn2

⊗M1|1 'Mn2|n2

so that [Mn ⊗D]2 = 1. For arbitrary k, going from k to k gives a homomorphism

sBr(k) −→ Z2.

This is surjective because [Dk] goes over to [D]. The kernel is the subgroup H of
sBr(k) of those similarity classes of CS super algebras which become isomorphic
to Mr|s over k. For example, the Clifford algebras of even dimensional quadratic
vector spaces belong to H. In what follows when we write A ∈ H we really mean
[A] ∈ H.

Fix A ∈ H. Then, A = Ak ' Endk(S) and so, over k, A has two simple super
modules, namely S and ΠS. Let dim(S) = r|s and let

I(A) = {S,ΠS}.

Changing S to ΠS we may assume that r > 0. We may view these as modules for
A over k. Let L denote one of these and let σ ∈ Gk := Gal(k/k). In S we take a
homogeneous basis and view L as a morphism of A into Mr|s(k). Then a 7−→ L(a)σ

is again a representation of A in k, and its equivalence class does not depend on the
choice of the basis used to define Lσ. Lσ is clearly simple and so is isomorphic to
either S or ΠS. Hence Gk acts on I(A) and so we have a map αA from Gk to Z2

identified with the group of permutations of I(A). If A is purely even, i.e., s = 0,
then it is clear that Sσ ' S for any σ ∈ Gk. So αA(σ) acts as the identity on I(A)
for all σ for such A. Suppose now that A is not purely even so that r > 0, s > 0.
Let Z+ be the center of A+ and Z

+
its extension to k, the center of A

+
. Then Z

+

is canonically isomorphic, over k, to k⊕ k, and has two characters χ1, χ2 where the
notation is chosen so that Z

+
acts on S by χ1⊕χ2; then it acts on ΠS by χ2⊕χ1.

So in this case we can identify I(A) with {χ1, χ2} so that S 7→ ΠS corresponds to
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(χ1, χ2) 7→ (χ2, χ1). Now Gk acts on Z
+

and hence on {χ1, χ2}, and this action
corresponds to the action on I(A). In other words, if we write, for any k–valued
character χ of Z+, χσ for the character

χσ(z) = χ(z)σ (z ∈ Z+),

then σ fixes the elements of I(A) or interchanges them according as

(χσ1 , χ
σ
2 ) = (χ1, χ2) or (χσ1 , χ

σ
2 ) = (χ2, χ1).

Proposition 5.4.7. The map A 7−→ αA is a homomorphism of H into the group
Hom(Gk,Z2). It is surjective and its kernel K is Br(k). In particular we have an
exact sequence

1 −→ Br(k) −→ H −→ k×/(k×)2 −→ 1.

Proof. For any simple module S of a super algebra A, the identity map is an odd
bijection interchanging S with ΠS, while for arbitrary linear homogeneous maps we
have p(x⊗y) = p(x)+p(y). So, if A1, A2 ∈ H and {Si,ΠSi} are the simple modules
for Ai, then A1⊗A2 ∈ H and its simple modules are S1⊗S2 ' ΠS1⊗ΠS2,Π(S1⊗
S2) ' S1 ⊗ ΠS2 ' ΠS1 ⊗ S2. This shows that αA1⊗A2(σ) = αA1(σ)αA2(σ) for all
σ ∈ Gk.

To prove the surjectivity of A 7−→ αA let f ∈ Hom(Gk,Z2). We may assume
that f is not trivial. The kernel of f is then a subgroup of Gk of index 2 and so
determines a quadratic extension k′ = k(

√
a) of k for some a ∈ k× \ k×2. We must

find A ∈ H such that the corresponding αA is just f , i.e., Sσ ' S if and only if
σ fixes b =

√
a. Let V = k ⊕ k with the quadratic form Q = x2 − ay2. If f1, f2

is the standard basis for V , then Q(f1) = 1, Q(f2) = −a while Φ(f1, f2) = 0. Let
e1 = bf1 + f2, e2 = (1/4a)(bf1 − f2). Then, writing Q,Φ for the extensions of Q,Φ
to V ′ = k′⊗kV , and remembering that Q(x) = Φ(x, x), we have Q(e1) = Q(e2) = 0
and Φ(e1, e2) = 1/2. The simple module S for C(V ′) has then the basis {1, e2} with

e1 7−→
(

0 1
0 0

)
, e2 7−→

(
0 0
1 0

)
.

Since 2bf1 = e1 + 4ae2, 2f2 = e1 − 4ae2, we have

f1 7→
(

0 1/2b
2a/b 0

)
, f2 7−→

(
0 1/2
−2a 0

)
.
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The algebra C(V ′)+ = k′[f1f2] is already abelian and so coincides with k′ ⊗k Z+.
In the module S we have

f1f2 7−→
(
−a/b 0

0 a/b

)
.

If now σ is the nontrivial element of Gal(k′/k), then σ changes b to −b, so that in
Sσ we have

f1f2 7−→
(
a/b 0
0 −a/b

)
.

Thus
Sσ ' ΠS

which is exactly what we wanted to show.

It remains to determine the kernel K of the homomorphism A 7−→ αA. Cer-
tainly A is in K if it is purely even. Suppose that A is not purely even and A

isomorphic to Mr|s with r > 0, s > 0. Using the characters of Z
+

to differentiate
between S and ΠS we see that for αA to be the identity element of Hom(Gk,Z2)
it is necessary and sufficient that χσi = χi on Z+, i.e., the χi take their values
in k. So they are k-valued characters of Z+. It is then obvious that the map
(χ1, χ2) : Z+ −→ k ⊕ k is an isomorphism. Conversely if Z+ ' k ⊕ k it is obvious
that αA is the identity. So we obtain the result that A lies in K if and only if either
A is purely even or the center of its even part is isomorphic over k to k ⊕ k.

We shall now prove that K is isomorphic to Br(k). For A in K let D be a
super division algebra with super center k such that [A] = [D]. Then D+, which is
a division algebra over k, cannot contain a subalgebra isomorphic to k ⊕ k and so
D must be purely even. For any purely even division algebra D with center k, the
algebra A = Mr|s(k)⊗D is, for s = 0, purely even and is a classical central simple
algebra in the similarity class of the central division algebra D, while for s > 0,

A+ ' (Mr|s(k))+ ⊗D ' (Mr(k)⊗D)⊕ (Ms(k)⊗D)

and so its center is ' k ⊕ k. Thus the elements of K are the precisely the classical
similarity classes of purely even division algebras with center k with multiplication
as Brauer multiplication. So the kernel is isomorphic to Br(k).

To complete the proof it only remains to identify Hom(Gk,Z2) with k×/(k×)2.
The nontrivial elements in Hom(Gk,Z2) are in canonical bijection with the sub-
groups of Gk of index 2, and these in turn are in canonical bijection with the
quadratic extensions of k, and so, by standard results in Galois theory, in corre-
spondence with k×/(k×)2. We need only verify that this correspondence is a group
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map. Given a ∈ k×, make a fixed choice of
√
a in k and write b =

√
a. For σ ∈ Gk,

b/bσ is independent of the choice of the square root of a and so it depends only
on a. Let χa(σ) = b/bσ. Then, as bσ = ±b it follows that χa takes values in Z2.
Moreover, the map a 7−→ χa is a group homomorphism and χa = 1 if and only if
a ∈ (k×)2. Thus we have the group isomorphism

k×/(k×)2 ' Hom(Gk,Z2).

This finishes the proof.

We suggested earlier that when k = R the type of Clifford modules of a real
quadratic vector space depends only on the signature. For arbitrary k there is a
similar result that relates the super Brauer group with the Witt group of the field.
Recall that W (k), the Witt group of k, is the group F/R where F is the free additive
abelian group generated by the isomorphism classes of quadratic vector spaces over
k and R is the subgroup generated by the relations

[V ⊕ Vh]− [V ] = 0

where Vh is hyperbolic, i.e., of the form (V1, Q1) ⊕ (V1,−Q1). If L is an abelian
group and V 7−→ f(V ) a map of quadratic spaces into L, it will define a morphism
of W (k) into L if and only if

f(V ⊕ Vh) = f(V ).

We write [V ]W for the Witt class of V . As an example let us calculate the Witt
group of R. Any real quadratic space V of signature (p, q) is isomorphic to Rp,q;
we write sign(V ) = p− q. It is obvious that in W (R),

[R0,1]W = −[R1,0]W , [Rp,q]W = (p− q)[R1,0]W .

Clearly sign(Vh) = 0 and so sign(V ⊕Vh) = sign(V ). Thus sign induces a morphism
s from W (R) into Z. We claim that this is an isomorphism. To see this let t be the
morphism from Z to W (R) that takes 1 to [R1,0]W . Clearly st(1) = 1 and so st is
the identity. Also s([Rp,q]W ) = p− q so that

ts([Rp,q]W ) = t(p− q) = (p− q)t(1) = (p− q)[R1,0]W = [Rp,q]W

by what we saw above. So ts is also the identity. Thus

W (R) ' Z.
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Now we have a map
V 7−→ [C(V )]

from quadratic spaces into the super Brauer group of k and we have already seen
that C(Vh) is a full matrix super algebra over k. Hence [C(Vh)] is the identity and
so

[C(V ⊕ Vh)] = [C(V )⊗ C(Vh)] = [C(V )].

Thus by what we said above we have a map

f : W (k) −→ sBr(k)

such that for any quadratic vector space V ,

f([V ]W ) = [C(V )].

The representation theory of the even parts of CS super algebras. For
applications we need the representation theory of the algebra C+ where C is a
Clifford algebra. More generally let us examine the representation theory of algebras
A+ where A is a CS super algebra over k. If A is purely even there is nothing more
to do as we are already in the theory of the classical Brauer group. Thus all simple
modules of A over k have commutants Dopp where D is the (purely even) central
division algebra in the similarity class of A. So we may assume that A is not purely
even. Then we have the following proposition.

Proposition 5.4.8. Let A be a CS super algebra which is not purely even and write
A = Mr|s(k)⊗B where B is the central super division algebra in the similarity class
of A. Then we have the following.

(i) If B is purely even, A+ 'Mr(B)⊕Ms(B) where Mp(B) = Mp ⊗B.
(ii) If B is not purely even, then

A 'Mr+s(B), A+ 'Mr+s(B+).

In particular, A+ is always semisimple as a classical algebra, and the types of its
simple modules depend only on the class of A in sBr(k). In case (i) A has two
simple modules both with commutants Bopp while in case (ii) A has a unique simple
module with commutant B+opp.

Proof. Obvious.
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Remark. It must be noted that when B is not purely even, B+ need not be central.

The case of the field of real numbers. Let us now take k = R. Then
R×/R×2 = Z2 while Br(R) = Z2 also. Hence, by Proposition 7,

|sBr(R)| = 8.

On the other hand, as W (R) ' R, there is a homomorphism f of Z into sBr(R)
such that if V is a real quadratic space, then

[C(V )] = f(sign(V ))

where sign(V ) is the signature of V . Since sBr(R) is of order 8 it follows that the
class of C(V ) depends only on the signature mod 8.

It remains to determine sBr(R) and the map V −→ [C(V )]. We shall show that
sBr(R) is actually cyclic, i.e., it is equal to Z8 = Z/8Z, and that f is the natural
map Z −→ Z8. We shall show that R[ε] has order 8. If V is a real quadratic space
of dimension 1 containing a unit vector, C(V ) is the algebra R[ε] where ε is odd
and ε2 = 1. Its opposite is R[ε0] where ε0 is odd and ε02 = −1:

R[ε]opp = R[ε0].

Both R[ε] and R[ε0] are central super division algebras and so, as the order of
sBr(R) is 8, their orders can only be 2, 4 or 8. We wish to exclude the possibilities
that the orders are 2 and 4. We consider only R[ε]. Write A = R[ε].

By direct computation we see that A ⊗ A is the algebra R[ε1, ε2] where the
εi are odd, ε2

i = 1, and ε1ε2 = −ε2ε1. We claim that this is a central super
division algebra. It is easy to check that the super center of this algebra is just
R. We claim that it is a super division algebra. The even part is R[ε1ε2], and as
(ε1ε2)2 = −1 it is immediate that it is ' C, hence a division algebra. On the other
hand (uε1 + vε2)2 = u2 + v2 and so uε1 + vε2 is invertible as soon as (u, v) 6= (0, 0).
Thus R[ε1, ε2] is a central super division algebra. We claim that its square, namely
the class of [A]4 is nontrivial and in fact is purely even and represented by H, the
purely even algebra of quaternions. First of all if [A]4 were trivial we should have
[A]2 = [Aopp]2 which would mean that the corresponding super division algebras
must be isomorphic. Thus R[ε1, ε2] ' R[ε1

0, ε2
0]. Then we should be able to

find a, b ∈ R such that (aε1 + bε2)2 = a2 + b2 = −1 which is impossible. So
[A]4 6= 1. Hence [A] must be of order 8, proving that sBr(R) is cyclic of order 8
and is generated by R[ε].
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The central super division algebras corresponding to the powers [R[ε]]m(0 ≤
m ≤ 7) are thus the representative elements of sBr(R). These can now be written
down. For m = 2 it is R[ε1, ε2]. Now, [R[ε]]2 becomes isomorphic over C to
D ⊗ D ' M1|1. If we go back to the discussion in Proposition 7 we then see
that [A]2 ∈ H and [A]4 ∈ Br(R); as [A]4 is a nontrivial element of Br(R), the
corresponding division algebra must be purely even and isomorphic to H. Thus for
m = 4 it is purely even and H. For m = 6 it is the opposite of the case m = 2
and so is R[ε0

1, ε
0
2]. We now consider the values m = 3, 5, 7. But [A]7 = [Aopp]

and [A]5 = [Aopp]3. Now [A]5 = [A]4 · [A] and so H ⊗R[ε] is in the class [A]5, H
being viewed as purely even. It is immediate that H⊗R[ε] = H⊕Hε is already a
super division algebra and so is the one defining the class [A]5. Consequently, [A]3

corresponds to the super division algebra H ⊗ R[ε0]. We have thus obtained the
following result.

Theorem 5.4.9. The group sBr(R) is cyclic of order 8 and is generated by [R[ε]]. If
V is a real quadratic space then [C(V )] = [R[ε]]sign(V ) where sign(V ) is the signature
of V . The central super division algebras D(m) in the classes [R[ε]]m(0 ≤ m ≤ 7)
are given as follows.

m D(m)

0 R
1 R[ε]
2 R[ε1, ε2]
3 R[ε0]
4 H
5 H⊗R[ε]
6 R[ε0

1, ε
0
2]

7 R[ε0]

In the above R[ε1, ε2] is the (super division) algebra generated over R by ε1, ε2 with
ε2
j = 1 (j = 1, 2), ε1ε2 = −ε2ε1, while R[ε0

1, ε
0
2] is the (super division) algebra

generated over R by ε0
1, ε

0
2 with ε0

j
2 = −1 (j = 1, 2), ε0

1ε
0
2 = −ε0

2ε
0
1.

Reality of Clifford modules. We are now in a position to describe the repre-
sentation theory of the Clifford modules over R, namely the types of the simple
modules for C(V )+ where V is a real quadratic vector space. Here we have to go
from C(V ) to C(V )+ and we use Proposition 8 for this purpose. We must remember
during the following discussion that the dimension and signature of a real quadratic
vector space are of the same parity. The only purely even central super division
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algebras over R are R and H. If the class of C(V ) corresponds to R (resp. H), then
Proposiiton 8 shows that C(V )+ has two simple modules with commutant R (resp.
H). From Theorem 9 we see that this happens if and only if sign(V ) ≡ 0 (mod 8)
(resp. ≡ 4 (mod 8)) and the corresponding commutant is R (resp. H). For the
remaining values of the signature, the class of C(V ) is not purely even. For the
values (mod 8) 1, 3, 5, 7 of the signature of V , the commutant of the simple module
is respectively R,H,H,R and for these values C+ has a unique simple module with
commutant respectively R,H,H,R. For the values 2, 6 (mod 8) of the signature of
V , C(V )+ has a unique simple module with commutant C. Hence we have proved
the following theorem.

Theorem 5.4.10. Let V be a real quadratic vector space and let s = sign(V ) be its
signature. Then C(V )+ is semisimple and the commutants of the simple modules
of C(V )+, which are also the commutants of the simple spin modules of Spin(V ),
are given as follows:

s mod 8 commutant

0 R, R

1, 7 R

2, 6 C

3, 5 H

4 H, H

Remark. One may ask how much of this theory can be obtained by arguments of
a general nature. Let us first consider the case when dim(V ) is odd. Then C(V )+

C

is a full matrix algebra. So we are led to the following general situation. We have a
real algebra A with complexification Ac which is a full matrix algebra. So AC has
a unique simple module S and we wish to determine the types of simple modules
of A over R. The answer is that A also has a unique simple module over R, but
this may be either of real type or quaternionic type. To see this we first make the
simple remark that if M,N are two real modules for a real algebra and MC, NC are
their complexifications, then

HomAC
(MC, NC) 6= 0 =⇒ HomA(M,N) 6= 0.

Indeed, there is a natural conjugation in the complex Hom space (f(m) = f(m))
and the real Hom space consists precisely of those elements of the complex Hom
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space fixed by it, so that the real Hom spans the complex Hom over C. This proves
the above implication. This said, let SR be a real simple module for A and SC its
complexification. If SR is of type R, then SC is simple and so ' S. If S′ is another
simple real module of type R, its complexification S′C is also ' S, and so by the
remark above, Hom(SR, S

′) 6= 0 showing that S′ ' SR. If S′ were to be of type H,
its commutant is of dimension 4 and so S′C = 2S; but then 2S has two real forms,
namely, 2SR, S

′, hence Hom(S′, 2SR) 6= 0, a contradiction. If S′ is of type C its
commutant is of dimension 2 and so the same is true for S′C; but the commutant in
aS is of dimension a2, so that this case does not arise. Thus A has also a unique
simple module but it may be either of type R or type H. Now, for a Clifford algebra
C over R of odd dimension, C+

C is a full matrix algebra and so the above situation
applies. The conclusion is that there is a unique simple spin module over R which
may be of type R or H.

In the case when V has even dimension 2m, the argument is similar but slightly
more involved because the even part of the Clifford algebra now has two simple
modules over the complexes, say S±. In fact, if

S : C(V )C ' End
(
C2m−1|2m−1

)
then

S(a) =
(
S+(a) 0

0 S−(a)

)
(a ∈ C(V )+

C)

and S± are the two simple modules for C(V )+
C. However these two are exchanged

by inner automorphisms of the Clifford algebra that are induced by real invertible
odd elements. Let g be a real invertible odd element of C(V ). Then

S(g) =
(

0 α
β 0

)
and we find

S(gag−1) =
(
αS−(a)α−1 0

0 βS+(a)β−1

)
(a ∈ C(V )+

C)

so that

S+g ' S−, S−
g ' S+ (S±g(a) = S±(gag−1), a ∈ C(V )+

C).

If now g is real, i.e., g ∈ C(V ), then the inner automorphism by g preserves C(V )+

and exchanges S±. Such g exist: if u ∈ V has unit norm, then u2 = 1 so that u is
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real, odd, and invertible (u−1 = u). The situation here is therefore of a real algebra
A with complexification AC which is semisimple and has two simple modules S±

which are exchanged by an automorphism of A. In this case A has either two or
one simple modules: if it has two, both are of the same type which is either R or
H. If it has just one, it is of type C.

To prove this we remark first that if S′ is a simple module for A, S′C is S±, S+⊕
S−, 2S± according as S′ is of type R,C,H. This statement is obvious for the real
type. If the type is C the commutant has dimension 2; the complexification is
mS+ ⊕ nS−, whose commutant has dimension m2 + n2 and this is 2 only when
m = n = 1. If S′ is of type H, the commutant is of dimension 4 and m2 + n2 = 4
only for m = 2, n = 0 or m = 0, n = 2. This said, assume first that SR is a simple
module for A of type R. Then its complexification is either S+ or S−. Using the
automorphism g we obtain a second simple module of type R whose complexification
is the other of S±. So we have simple modules S±R of type R with complexifications
S±. There will be no other simple modules of type R, and in fact, no others of
other types also. For, if S′ is simple of type C, its complexification is S+ ⊕ S−
which has 2 real forms, namely S+

R ⊕ S
−
R as well as S′ which is impossible by our

remark. If S′ is quaternionic, the same argument applies to 2S+ ⊕ 2S−.

If A has a simple module of complex type, it has to be unique since its com-
plexification is uniquely determined as S+ ⊕ S−, and by the above argument A
cannot have any simple module of type R. But A cannot have a simple module of
type H also. For, if S′ were to be one such, then the complexification of S′ is 2S±,
and the argument using the odd automorphism g will imply that A will have two
simple modules S±H with complexifications 2S±; but then 2S+ ⊕ 2S− will have two
real forms, S+

H ⊕ S
−
H and 2S′ which is impossible.

Finally, if SR is of type H, then what we have seen above implies that A has
two simple modules of type H and no others.

However these general arguments cannot decide when the various alternatives
occur nor will they show that these possibilities are governed by the value of the
signature mod 8. That can be done only by a much closer analysis.

The method of Atiyah–Bott–Shapiro. They worked with the definite case,
and among many other things, they determined in7 the structure of the Clifford
algebras and their even parts over the reals. Now all signatures are obtained from
the definite quadratic spaces by adding hyperbolic components. In fact,

Rp,q =
{

Rp,p ⊕R0,q−p (0 ≤ p ≤ q)
Rq,q ⊕Rp−q,0 (0 ≤ q ≤ p), [Rm,0] = −[R0,m].
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It is therefore enough to determine the types of the Clifford algebras where the
quadratic form is negative definite. This is what is done in7. We shall present a
variant of their argument in what follows. The argument is in two steps. We first
take care of the definite case, and then reduce the general signature (p, q) to the
signature (0, q′).

We first consider only negative definite quadratic vector spaces and it is always
a question of ungraded algebras and ungraded tensor products. We write Cm for
the ungraded Clifford algebra of the real quadratic vector space R0,m. It is thus
generated by (ej)1≤j≤m with relations

e2
j = −1 (1 ≤ j ≤ m), eres + eser = 0 (r 6= s).

Let us write Mr for the matrix algebra Mr(R). The algebra generated by e1, e2

with the relations
e2

1 = e2
2 = 1, e1e2 + e2e1 = 0,

is clearly isomorphic to M2 by

e1 7−→
(

0 1
1 0

)
, e2 7−→

(
1 0
0 −1

)
.

On the other hand, if F± = R[e] where e2 = ±1, then

F+ ' R⊕R, a+ be 7−→ (a+ b, a− b), F− ' C, a+ be 7−→ a+ ib.

Hence for any algebra A, we have

A⊗ F+ = A[e] = A⊕A.

Finally we have the obvious isomorphisms of Clifford algebras

C1 ' C, C2 ' H.

In what follows we write C for the complex numbers viewed as an R-algebra.

We consider first the case when m = 2n is even. Then we know that the center
of C2n is R. Let

f1 = e1 . . . e2n−2e2n−1, f2 = e1 . . . e2n−2e2n.

It is then immediate that the fi commute with the ej(1 ≤ j ≤ 2n− 2), while

f2
1 = f2

2 = (−1)n, f1f2 + f2f1 = 0.
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Hence the algebra An generated by f1, f2 is isomorphic to C2 if n is odd and to M2

if n is even. Moreover
C2n = C2n−2 ⊗An.

We therefore have

C4n+2 = C4n ⊗H, C4n = C4n−2 ⊗M2.

Using the fact that H⊗H = H⊗H0 = M4 we obtain

C4n = C4n−2 ⊗M2 = C4n−4 ⊗M2 ⊗H = C4n−6 ⊗M4 ⊗H = C4n−8 ⊗M16

C4n+2 = C4n ⊗H = C4n−8 ⊗M16 ⊗H = C4n−6 ⊗M16.

Thus we have the periodicity

C2n+8 = C2n ⊗M16.

Moreover,

C2 = H, C4 = H⊗M2, C6 = H⊗M2 ⊗H = M8, C8 = M8 ⊗M2 = M16.

We thus obtain the following table:

C2 = H C4 = M2 ⊗H

C6 = M8 C8 = M16 C2n+8 = C2n.

We take up next the Cm with odd m = 2n + 1. Take the basis as ej(0 ≤ j ≤
2n+ 1) and let

γ = e0e1 . . . e2n.

Then by Proposition 2.1. γ commutes with all the ej(1 ≤ j ≤ 2n) and

γ2 = (−1)n+1.

Moreover,
C2n+1 ' C2n, C2n+1 ' C2n ⊗R[γ]

by Proposition 2.2. Hence we have

C4n+1 = C4n ⊗C, C4n+3 = C4n+2 ⊗ F = C4n+2 ⊕ C4n+2.
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Thus, writing A for C or F , we have

C2n+9 = C2n+8 ⊗A = C2n ⊗A⊗M16 = C2n+1 ⊗M16

since 2n+ 9 and 2n+ 1 have the same residue mod 4. So there is again periodicity
mod 8. Now C5 = H⊗C⊗M2 while H⊗C, viewed as a complex algebra, is just
M2(C) = M2 ⊗C, so that C5 = M4 ⊗C. Hence we have the following table:

C1 = C C3 = H⊕H

C5 = M4 ⊗C C7 = M8 ⊕M8 C2n+9 = C2n+1 ⊗M16.

Combining the odd and even cases we thus have finally the table:

C1 = C C2 = H

C3 = H⊕H C4 = M2 ⊗H Cm+8 = Cm

C5 = M4 ⊗C C6 = M8

C7 = M8 ⊕M8 C8 = M16.

It only remains to determine the structure of the even parts. We have

C+
n+1 = Cn

since the e0ej(1 ≤ j ≤ n) generate C+
n+1 and they generate also Cn. Also

C+
1 = R.

Hence we have the table:

C+
1 = R C+

2 = C

C+
3 = H C+

4 = H⊕H C+
m+8 = C+

m ⊗M16

C+
5 = M2 ⊗H C+

6 = M4 ⊗C

C+
7 = M8 C+

8 = M8 ⊕M8.

We now take up the case of the general signature (p, q). Once again it is a
matter of ungraded algebras and tensor products. We write Cp,q for the ungraded
Clifford algebra of Rp,q, namely, the algebra with generators ei(1 ≤ i ≤ D = p+ q)
and relations e2

i = εi, eiej + ejei = 0(i 6= j); here the εi are all ±1 and exactly q of
them are equal to −1. We also write, for typographical reasons, M(r) for Mr(R),
and 2A for A⊕A. By convention C0,0 = C+

0,0 = R.
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We first note that C+
p,q is generated by the gr = e1er(2 ≤ r ≤ D), with the

relations
g2
r = −ε1εr, grgs + gsgr = 0 (r 6= s).

If both p and q are ≥ 1 we can renumber the basis so that ε1 takes both values ±1,
and in case one of them is 0, we have no choice about the sign of ε1. Hence we have

C+
p,q = C+

q,p = Cp,q−1 = Cq,p−1 (p, q ≥ 0, p+ q ≥ 1)

with the convention that when p or q is 0 we omit the relation involving Ca,b where
one of a, b is < 0.

First assume that D is even and ≥ 2. Then Cp,q is a central simple algebra.
As in the definite case we write

f1 = e1 . . . eD−2eD−1, f2 = e1 . . . eD−2eD.

Then it is immediate that the fj commute with all the ei(1 ≤ i ≤ D − 2), while
f1f2 + f2f1 = 0 and

f2
1 = (−1)

D
2 −1ε1 . . . εD−2εD−1, f2

2 = (−1)
D
2 −1ε1 . . . εD−2εD.

If εj(j = D − 1, D) are of opposite signs, the algebra generated by f1, f2 is C1,1

while the algebra generated by the ei(1 ≤ i ≤ D − 2) is Cp−1,q−1. Hence we get

Cp,q = Cp−1,q−1 ⊗M(2).

Repeating this process we get

Cp,q =
{
C0,q−p ⊗M(2p) (1 ≤ p ≤ q, D = p+ q is even)
Cp−q,0 ⊗M(2q) (1 ≤ q ≤ p, D = p+ q is even).

Let us now take up the case when D is odd. Let γ = e1e2 . . . eD. By Proposi-
tions 2.1 and 2.2, γ2 = (−1)

p−q−1
2 and Cp,q = C+

p,q⊗ctr(Cp,q) while ctr(Cp,q) = R[γ].
We have already seen that C+

p,q = Cp,q−1 while R[γ] = R ⊕R or C according as
q − p is of the form 4`+ 3 or 4`+ 1. Hence

Cp,q =
{

2C+
p,q if p− q = 4`+ 1

C+
p,q ⊗C if p− q = 4`+ 3.

From this discussion it is clear that the structure of Cp,q can be determined for all
p, q.
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We are now in a position to determine the types of the simple modules of C+
p,q

using our results for the algebras C0,n and C+
0,n, especially the periodicity mod 8

established for them. It is enough to consider the case p ≤ q.

D odd : If p < q, then C+
p,q = Cp,q−1 is a central simple algebra and so has a unique

simple module. Since Cp,q−1 = C0,q−p−1 ⊗M(2p), it is immediate that the type of
the simple modules of C+

p,q is determined by q− p mod 8; it is R or H according as
q − p ≡ 1, 7 mod 8 or q − p ≡ 3, 5 mod 8.

D even: We first assume that 0 < p < q so that q ≥ p+ 2. Then

C+
p,q = Cp,q−1 =

{
2Cp,q−2 if q − p = 4`
Cp,q−2 ⊗C if q − p = 4`+ 2.

Since Cp,q−2 = C0,q−p−2⊗M(2p) it is now clear that C+
p,q has two simple modules,

both with the same commutant, when q− p ≡ 0, 4 mod 8, the commutant being R
when q − p ≡ 0 mod 8, and H when q − p ≡ 4 mod 8. If q − p ≡ 2, 6 mod 8, there
is a unique simple module with commutant C.

There remains the case p = q. In this case C+
p,p is a direct sum of two copies of

M(2p−1) and so there are two simple modules of type R.

Theorem 10 is now an immediate consequence. The following table summarizes
the discussion.

q − p mod 8 Cp,q C+
p,q

0 M(2D/2) 2M(2(D−2)/2)

1 M(2(D−1)/2)⊗C M(2(D−1)/2)

2 M(2(D−2)/2)⊗H M(2(D−2)/2)⊗C

3 2M(2(D−3)/2)⊗H M(2(D−3)/2)⊗H

4 M(2(D−2)/2)⊗H 2M(2(D−4)/2)⊗H

5 M(2(D−1)/2)⊗C M(2(D−3)/2)⊗H

6 M(2D/2) M(2(D−2)/2)⊗C

7 2M(2(D−1)/2) M(2(D−1)/2)).
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5.5. Pairings and morphisms. For various purposes in physics one needs to
know the existence and properties of morphisms

S1 ⊗ S2 −→ Λr(V ) (r ≥ 0)

where S1, S2 are irreducible spin modules for a quadratic vector space V and Λr(V )
is the rth exterior power with Λ0(V ) = k, k being the ground field. For applications
to physics the results are needed over k = R, but to do that we shall again find
it convenient to work over C and then use descent arguments to come down to R.
Examples of questions we study are the existence of Spin(V )-invariant forms on
S1 × S2 and whether they are symmetric or skewsymmetric, needed for writing the
mass terms in the Lagrangian; the existence of symmetric morphisms S ⊗ S −→ V
as well as S⊗S −→ Λr(V ) needed for the construction of super Poincaré and super
conformal algebras we need; and the existence of morphisms V ⊗S1 −→ S2 needed
for defining the Dirac operators and writing down kinetic terms in the Lagrangians
we need. Our treatment follows closely that of Deligne8.

We begin by studying the case r = 0, i.e., forms invariant under the spin groups
(over C). Right at the outset we remark that if S is an irreducible spin module,
the forms on S, by which we always mean nondegenerate bilinear forms on S × S,
define isomorphisms of S with its dual and so, by irreducibility, are unique up to
scalar factors (whenever they exist). The basic lemma is the following.

Lemma 5.5.1. Let V be a complex quadratic vector space and S a spinorial module,
i.e., a C(V )+-module. Then a form (·, ·) is invariant under Spin(V ) if and only if

(as, t) = (s, β(a)t) (s, t ∈ S, a ∈ C(V )+) (∗)

where β is the principal antiautomorphism of C(V ).

Proof. We recall that β is the unique antiautomorphism of C(V ) which is the
identity on V . If the above relation is true, then taking a = g ∈ Spin(V ) ⊂ C(V )+

shows that (gs, t) = (s, g−1t) since β(g) = g−1. In the other direction, if (·, ·) is
invariant under Spin(V ), we must have (as, t)+(s, at) = 0 for a ∈ C2 ' Lie(so(V )).
But, for a = uv− vu where u, v ∈ V , we have β(a) = −a so that (as, t) = (s, β(a)t)
for a ∈ C2. Since C2 generates C(V )+ as an associative algebra we have (∗).

It is not surprising that information about invariant forms is controlled by
antiautomorphisms. For instance, suppose that U is a purely even vector space and
A = End(U); then there is a bijection between antiautomorphisms β of A and forms
(·, ·) on U defined up to a scalar multiple such that

(as, t) = (s, β(a)t) (s, t ∈ U, a ∈ A).
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In fact, if (·, ·) is given, then for each a ∈ A we can define β(a) by the above equation
and then verify that β is an antiautomorphism of A. The form can be changed to
a multiple of it without changing β. In the reverse direction, suppose that β is an
antiautomorphism of A. Then we can make the dual space U∗ a module for A by
writing

(as∗)[t] = s∗[β(a)t]

and so there is an isomorphism Bβ : U ' U∗ of A-modules. The form

(s, t) := Bβ(s)[t]

then has the required relationship with β. Since Bβ is determined up to a scalar,
the form determined by β is unique up to a scalar multiple. If (s, t)′ := (t, s), it
is immediate that (as, t)′ = (s, β−1(a)t)′ and so (·, ·)′ is the form corresponding to
β−1. In particular, β is involutive if and only if (·, ·)′ and (·, ·) are proportional, i.e.,
(·, ·) is either symmetric or skewsymmetric. Now suppose that U is a super vector
space and A = End(U); then for even β U∗ is a super module for A and so is
either isomorphic to U or its parity reversed module ΠU , so that Bβ above is even
or odd. Hence the corresponding form is even or odd accordingly. Recall that for
an even (odd) form we have (s, t) = 0 for unlike(like) pairs s, t. Thus we see that
if A ' Mr|s and β is an involutive even antiautomorphism of A, we can associate
to (A, β) two invariants coming from the form associated to β, namely, the parity
π(A, β) of the form which is a number 0 or 1, and the symmetry σ(A, β) which is
a sign ±, + for symmetric and − for skewsymmetric forms.

In view of these remarks and the basic lemma above we shall base our study
of invariant forms for spin modules on the study of pairs (C(V ), β) where C(V )
is the Clifford algebra of a complex quadratic vector space and β is its principal
antiautomorphism, namely the one which is the identity on V . Inspired by the
work in §4 we shall take a more general point of view and study pairs (A, β) where
A is a CS super algebra over C and β is an even involutive antiautomorphism
of A. If A = C(V ) then the symbol β will be exclusively used for its principal
antiautomorphism. The idea is to define the notion of a tensor product and a
similarity relation for such pairs and obtain a group, in analogy with the super
Brauer group, a group which we shall denote by B(C). It will be proved that
B(C) ' Z8, showing that the theory of forms for spin modules is governed again by
a periodicity mod 8; however this time it is the dimension of the quadratic vector
space mod 8 that will tell the story. The same periodicity will be shown to persist
for the theory of morphisms.

If (Ai, βi)(i = 1, 2) are two pairs, then

(A, β) = (A1, β1)⊗ (A2, β2)
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is defined by

A = A1 ⊗A2, β = β1 ⊗ β2, β(a1 ⊗ a2) = (−1)p(a1)p(a2)β1(a1)⊗ β2(a2).

The definition of β is made so that it correctly reproduces what happens for Clifford
algebras. In fact we have the following.

Lemma 5.5.2. If Vi(i = 1, 2) are quadratic vector spaces and V = V1 ⊕ V2, then

(C(V ), β) = (C(V1), β)⊗ (C(V2), β).

Proof. If ui(1 ≤ i ≤ p) ∈ V1, vj(1 ≤ j ≤ q) ∈ V2, then

β(u1 . . . up . . . v1 . . . vq) = vq . . . v1up . . . u1 = (−1)pqβ(u1 . . . up)β(v1 . . . vq)

which proves the lemma.

We need to make a remark here. The definition of the tensor product of two
β’s violates the sign rule. One can avoid this by redefining it without altering the
theory in any essential manner (see Deligne8), but this definition is more convenient
for us. As a result, in a few places we shall see that the sign rule gets appropriately
modified. The reader will notice these aberrations without any prompting.

For the pairs (A, β) the tensor product is associative and commutative as is
easy to check. We now define the pair (A, β) to be neutral if A 'Mr|s and the form
corresponding to β which is defined over Cr|s is even and symmetric. We shall say
that (A, β), (A′, β′) are similar if we can find neutral (B1, β1), (B2, β2) such that

(A, β)⊗ (B1, β1) ' (A′, β′)⊗ (B2, β2).

If (A, β) is a pair where A ' Mr|s, we write π(A, β), σ(A, β) for the parity and
symmetry of the associated form on Cr|s. When we speak of the parity and sign
of a pair (A, β) it is implicit that A is a full matrix super algebra. Notice that on
a full matrix super algebra we can have forms of arbitrary parity and symmetry.
Indeed, forms are defined by invertible matrices x, symmetric or skewsymmetric, in
the usual manner, namely ϕx(s, t) = sTxt. The involution βx corresponding to x is

βx(a) = x−1aTx (a ∈Mr|s).
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Note that βx is even for x homogeneous and involutive if x is symmetric or skewsym-
metric. We have the following where in all cases βx is even and involutive:

A = Mr|r, x =
(
I 0
0 I

)
, ϕx = even and symmetric

A = Mr|r, x =
(

0 I
I 0

)
, ϕx = odd and symmetric

A = M2r|2r, x =
(
J 0
0 J

)
, J =

(
0 I
−I 0

)
, ϕx = even and skewsymmetric

A = M2r|2r, x =
(

0 I
−I 0

)
, ϕx = odd and skewsymmetric.

Lemma 5.5.3. Let π, σi be the parity and symmetry of (Ai, βi)(i = 1, 2). Then for
the parity π and symmetry σ of the tensor product (A1 ⊗A2, β1 ⊗ β2) we have

π = π1 + π2, σ = (−1)π1π2σ1σ2.

Proof. It is natural to expect that the form corresponding to β1 ⊗ β2 is the tensor
product of the corresponding forms for the βi. But because the definition of the
tensor product has violated the sign rule one should define the tensor product of
forms with suitable sign factors so that this can be established. Let Ai = End(Si).
Let us define

(s1 ⊗ s2, t1 ⊗ t2) = C(s1, s2, t1, t2)(s1, t1)(s2, t2)

where C is a sign factor depending on the parities of the si, tj . The requirement
that this corresponds to β1 ⊗ β2 now leads to the equations

C(s1, s2, β1(a1)t1, β2(a2)t2) = (−1)p(a2)[p(s1)+p(t1)+p(a1)]C(a1s1, a2s2, t1, t2)

which is satisfied if we take

C(s1, s2, t1, t2) = (−1)p(s2)[p(s1)+p(t1)].

Thus the correct definition of the tensor product of two forms is

(s1 ⊗ s2, t1 ⊗ t2) = (−1)p(s2)[p(s1)+p(t1)](s1, t1)(s2, t2).
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If (s, t) 6= 0 then π = p(s) + p(t) and so choosing (si, ti) 6= 0 we have π = p(s1) +
p(s2) + p(t1) + p(t2) = π1 + π2. For σ we get

σ = (−1)[p(s1)+p(t1)][p(s2)+p(t2)]σ1σ2 = (−1)π1π2σ1σ2.

It follows from this that if the (Ai, βi) are neutral so is their tensor product.
From this we see that similarity is an equivalence relation, obviously coarser than
isomorphism, and that similarity is preserved under tensoring. In particular we can
speak of similarity classes and their tensor products. The similarity classes form
a commutative semigroup and the neutral elements form the identity element of
this semigroup. We denote it by B(C). The parity and symmetry invariants do
not change when tensored by a neutral pair so that they are really invariants of
similarity classes.

We wish to prove that B(C) is a group and indeed that it is the cyclic group
Z8 of order 8. Before doing this we define, for the parity group P = {0, 1} and sign
group Σ = {±1}, their product P × Σ with the product operation defined by the
lemma above:

(π1, σ1)(π2, σ2) = (π1 + π2, (−1)π1π2σ1σ2).

It is a trivial calculation that P × Σ is a group isomorphic to Z4 and is generated
by (1,+). Let B0(C) be the semigroup of classes of pairs (A, β) where A ' Mr|s.
The map

ϕ : (A, β) 7−→ (π, σ)

is then a homomorphism of B0(C) into P × Σ. We assert that ϕ is surjective. It
is enough to check that (1,+) occurs in its image. Let V2 be a two-dimensional
quadratic vector space with basis {u, v} where Φ(u, u) = Φ(v, v) = 0 and Φ(u, v) =
1/2, so that u2 = v2 = 0 and uv + vu = 1. Then C(V2) ' M1|1 via the standard
representation that acts on C⊕Cv as follows:

v ∼
(

0 0
1 0

)
: 1 7→ v, v 7→ 0, u ∼

(
0 1
0 0

)
: 1 7→ 0, v 7→ 1.

The principal involution β is given by(
a b
c d

)
7−→

(
d b
c a

)
=
(

0 1
1 0

)(
a b
c d

)T ( 0 1
1 0

)
.

The form corresponding to β is then defined by the invertible symmetric matrix(
0 1
1 0

)
and so is odd and symmetric. Thus (C(V2), β) gets mapped to (1,+) by
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ϕ. Thus ϕ is surjective. Moreover the kernel of ϕ is just the neutral class. Hence
B0(C) is already a group isomorphic to Z4 and is generated by the class of the
Clifford algebra in dimension 2. In particular the parity and symmetry of the forms
determine the class of any element of B0(C).

Proposition 5.5.4. B(C) is a group isomorphic to the cyclic group Z8 of order 8
and is generated by the class of the Clifford algebra in dimension 1, namely (C[ε], β),
where ε is odd and ε2 = 1, and β(ε) = ε. The subgroup B0(C) ' Z4 is generated
by the class of the Clifford algebra in dimension 2.

Proof. If A is a complex CS super algebra which is not a full matrix algebra, then
it is of the form Mn⊗C[ε] and so A⊗A 'Mn2|n2

. Thus the square of any element
x in B(C) is in B0(C) and hence x8 = 1. This proves that B(C) is a group and
B(C)/B0(C) ' Z2. The square of the class of the Clifford algebra in dimension 1
is the Clifford algebra in dimension 2 which has been shown to be a generator of
B0(C). Thus (C[ε], β) generates B(C) and has order 8.

Corollary 5.5.5. The inverse of the class of (C[ε], β) is the class of (C[ε], β0)
where β0(ε) = −ε.

Proof. Since C[ε] is its own inverse in the super Brauer group sBr(C), the inverse in
question has to be (C[ε], β′) where β′ = β or β0. The first alternative is impossible
since (C[ε], β) has order 8, not 2.

There is clearly a unique isomorphism of B(C) with Z8 such that the class
of (C[ε], β) corresponds to the residue class of 1. We shall identify B(C) with Z8

through this isomorphism. We shall refer to the elements of B0(C) as the even
classes and the elements of B(C) \ B0(C) as the odd classes. For D-dimensional
VD the class of (C(VD), β) is in B0(C) if and only if D is even. Since the class of
(C(VD), β) is the Dth power of the class of (C(V1), β) = (C[ε], β), it follows that
the class of (C(V8), β) is 1 and hence that (C(VD), β) and (C(VD+8), β) are in the
same class, giving us the periodicity mod 8. The structure of invariant forms for
the Clifford algebras is thus governed by the dimension mod 8. The following table
gives for the even dimensional cases the classes of the Clifford algebras in terms of
the parity and symmetry invariants. Let D = dim(V ) and let D be its residue class
mod 8.
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Table 1

D π σ

0 0 +
2 1 +
4 0 −
6 1 −

However for determining the nature of forms invariant under Spin(V ) we must
go from the Clifford algebra to its even part. We have the isomorphism C(VD) '
End(S) where S is an irreducible super module for C(VD). The above table tells us
that for D = 0, 4 there is an even invariant form for S, respectively symmetric and
skewsymmetric. Now under the action of C(V2m)+ we have S = S+ ⊕ S− where
S± are the semispin representations. So both of these have invariant forms which
are symmetric for D = 0 and skewsymmetric for D = 4. For D = 2, 6 the invariant
form for S is odd and so what we get is that S± are dual to each other. In this case
there will be no invariant forms for S± individually; for, if for example S+ has an
invariant form, then S+ is isomorphic to its dual and so is isomorphic to S− which
is impossible. When the form is symmetric the spin group is embedded inside the
orthogonal group of the spin module, while in the skew case it is embedded inside
the symplectic group. Later on we shall determine the imbeddings much more
precisely when the ground field is R. Thus we have the table

Table 2

D forms on S±

0 symmetric on S±

2 S± dual to each other
4 skewsymmetric on S±

6 S± dual to each other

We now examine the odd classes in B(C). Here the underlying algebras A are
of the form M ⊗Z where M is a purely even full matrix algebra and Z is the center
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(not super center) of the algebra, with Z ' C[ε]:

A ' A+ ⊗ Z, Z = C[ε], ε odd, ε2 = 1.

Note that Z is a super algebra. If β is an even involutive antiautomorphism of A
then β leaves Z invariant and hence also Z±. It acts trivially on Z+ = C and as a
sign s(β) on Z−. We now have the following key lemma.

Lemma 5.5.6. We have the following.

(i) Let (A, β), (A′, β′) be pairs representing an odd and even class respectively
in B(C). Then

s(β ⊗ β′) = (−1)πs(β)

where π′ is the parity of the form corresponding to β′. In particular the
sign s(β) depends only on the similarity class of (A, β).

(ii) With the identification B(C) ' Z8 (written additively), the elements x+, x
of B(C) corresponding to (A+, β) and (A, β) respectively are related by

x+ = x− s(β)1.

In particular the similarity class of (A+, β) depends only on that of (A, β).

Proof. Let (A′′, β′′) = (A, β)⊗ (A′, β′). The center of A′′ is again of dimension 1|1.
If A′ is purely even, then Z is contained in the center of A′′ and so has to be its
center and the actions of β, β′′ are then the same. Suppose that A′ = Mr|s where
r, s > 0. Let

η =
(

1 0
0 −1

)
∈ A′.

It is trivial to check that η commutes with A′+ and anticommutes with A′−, and
that it is characterized by this property up to a scalar multiple. We claim that ε⊗η
lies in the odd part of the center of A′′. This follows from the fact that ε and η
commute with A ⊗ 1 and 1 ⊗ A′+, while they anticommute with 1 ⊗ A′−. Hence
ε⊗ η spans the odd part of the center of A′′. Now

β′′(ε⊗ η) = β(ε)⊗ β′(η).

The first factor on the right side is s(β)ε. On the other hand, by the characterization
of η mentioned above, we must have β′(η) = cη for some constant c, and so to prove
(i) we must show that c = (−1)π

′
. If the form corresponding to β′ is even, there
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are even s, t such that (s, t) 6= 0; then (s, t) = (ηs, t) = (s, cηt) = c(s, t), so that
c = 1. If the form is odd, then we can find even s and odd t such that (s, t) 6= 0;
then (s, t) = (ηs, t) = (s, cηt) = −c(s, t) so that c = −1. This finishes the proof of
(i).

For proving (ii) let x, x+, z be the elements of B(C) corresponding to
(A, β), (A+, β), (Z, β) respectively. Clearly x = x+ + z. If s(β) = 1, (Z, β) is
the class of the Clifford algebra in dimension 1 and so is given by the residue class
of 1. Thus x+ = x − 1. If s(β) = −1, then (Z, β) is the inverse of the class of the
Clifford algebra in dimension 1 by Corollary 5 and hence x+ = x+ 1.

For the odd classes of pairs (A, β) in B(C) we thus have two invariants: the
sign s(β) and the symmetry s(A+) of the form associated to the similarity class of
(A+, β). We then have the following table:

Table 3

Residue class s(A+) s(β)

1 + +
3 − −
5 − +
7 + −

To get this table we start with (C[ε], β) with β(ε) = ε for which the entries are
+,+. For 7 the algebra remains the same but the involution is β0 which takes ε
to −ε, so that the entries are +,−. From Table 1 we see that the residue class 4
in B0(C) is represented by any full matrix super algebra with an even invariant
skewsymmetric form; we can take it to be the purely even matrix algebra M = M2

in dimension 2 with the invariant form defined by the skewsymmetric matrix(
0 1
−1 0

)
.

Let βM be the corresponding involution. Then 5 is represented by (M,βM ) ⊗
(C[ε], β). Using Lemma 3 we see that the signs of the form and the involution are
−,+. To get the invariants of the residue class 3 we remark that as 3 = 4− 1 it is
represented by (M,βM )⊗ (C[ε], β0) and so its invariants are −,−.
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If D = 2m + 1 is odd, (C(VD), β) is similar to the Dth power of the class of
(C[ε], β). Hence there is periodicity in dimension mod 8 and the invariants for the
residue classes of D mod 8 are the same as in the above table. For the symmetry
of the Spin(V )-invariant forms we simply read the first column of the above table.
We have thus the following theorem.

Theorem 5.5.7. The properties of forms on the spin modules associated to complex
quadratic vector spaces V depend only on the residue class D of D = dim(V ) mod
8. The forms, when they exist, are unique up to scalar factors and are given by the
following table.

D forms on S, S±

0 symmetric on S±

1, 7 symmetric on S
2, 6 S± dual to each other
3, 5 skewsymmetric on S
4 skewsymmetric on S±

When S± are dual to each other, there are no forms on S± individually.

Forms in the real case. We shall now extend the above results to the case of
real spin modules. The results are now governed by both the dimension and the
signature mod 8.

We are dealing with the following situation. SR is a real irreducible module
for C(V )+ where C(V ) is the Clifford algebra of a real quadratic vector space V ;
equivalently SR is an irreducible module for Spin(V ). The integers p, q are such
that V ' Rp,q, D = p + q,Σ = p − q, D and Σ having the same parity. D,Σ
are the residue classes of D,Σ mod 8. We write σ for the conjugation of SC that
defines SR, SC being the complexification of SR. If SR is of type R then SC is the
irreducible spin module S or S±; if SR is of type H then SC = S ⊗W where S
is an irreducible complex spin module and dim(W ) = 2, C(V )+ acting on SC only
through the first factor. If SR is of type C, this case occuring only when D is even,
then SC = S+ ⊕ S−.

Let A be the commutant of the image of C(V )+ in End(SR). Then A ' R,H,
or C. We write A1 for the group of elements of norm 1 in A. Notice that this is
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defined independently of the choice of the isomorphism of A with these algebras,
and

A1 ' {±1},SU(2), T

in the three cases, T being the multiplicative group of complex numbers of absolute
value 1. If β is any invariant form for SR, and a ∈ A1,

a·β : (u, v) 7−→ β(a−1u, a−1v)

is also an invariant form for SR. Thus we have an action of A1 on the space of
invariant forms for SR. We shall determine this action also below. Actually, when
A = R, we have A1 = {±1} and the action is trivial, so that only the cases
A = H,C need to be considered.

The simplest case is when SR is of type R. This occurs when Σ = 0, 1, 7. If
Σ = 1, 7 then D is odd and the space of invariant bilinear forms for S is of dimension
1. It has a conjugation B 7→ Bσ defined by Bσ(s, t) = B(sσ, tσ)conj and if B is a real
element, then B spans this space and is an invariant form for SR. The symmetry of
the form does not change and the conclusions are given by the first column of the
first table of Theorem 10 below. If Σ = 0 the conclusions are again the same for
the spin modules S±R for D = 0, 4. When D = 2, 6, S± are in duality which implies
that S±R are also in duality. We have thus verified the first column of the second
table of Theorem 10 below.

To analyze the remaining cases we need some preparation. For any complex
vector space U we define a pseudo conjugation to be an antilinear map τ of U such
that τ2 = −1. For example, if U = C2 with standard basis {e1, e2}, then

τ : e1 7−→ e2, e2 7−→ −e1

defines a pseudo conjugation. For an arbitrary U , if τ is a pseudo conjugation
or an ordinary conjugation, we have an induced conjugation on End(U) defined by
a 7−→ τaτ−1 (conjugations of End(U) have to preserve the product by definition). If
we take τ to be the conjugation of C2 that fixes the ei, then the induced conjugation
on End(C2) = M2(C) is just a 7−→ aconj with the fixed point algebra M2(R), while
for the pseudo conjugation τ defined above, the induced conjugation is given by

a =
(
α β
γ δ

)
7−→

(
δ −γ
−β α

)
so that its fixed points form the algebra of matrices of the form(

α β
−β α

)
(α, β ∈ C).
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If α = a0 + ia1, β = a2 + ia3, (aj ∈ R), then(
α β
−β α

)
7−→ a0 + a1i + a2j + a3k

is an isomorphism of the above algebra with H and the elements of H1 correspond
to SU(2). If U = C2m, then, with (ei) as the standard basis,

τ : ej 7→ em+j , em+j 7→ −ej (1 ≤ j ≤ m)

is a pseudo conjugation. Pseudo conjugations cannot exist if the vector space is odd
dimensional. Indeed, on C, any antilinear transformation is of the form z 7→ czconj,
and its square is z 7→ |c|2z, showing that it can never be −1. The same argument
shows that no pseudo conjugation of an arbitrary vector space U can fix a line. If
T is a pseudo conjugation on U , then for any nonzero u, the span U ′ of u, Tu is of
dimension 2 and stable under T , and so T induces a pseudo conjugation on U/U ′;
an induction on dimension shows that pseudo conjugations do not exist when U is
odd dimensional. Any two conjugations of U are equivalent; if Ui are the real forms
defined by two conjugations σi(i = 1, 2), then for any element g ∈ GL(U) that
takes U1 to U2 we have gσ1g

−1 = σ2. In particular any conjugation is equivalent
to the standard conjugation on Cm. The same is true for pseudo conjugations
also. Indeed if dim(U) = 2m and τ is a pseudo conjugation, let W be a maximal
subspace of U such that W ∩ τ(W ) = 0; we claim that U = W ⊕ τ(W ). Otherwise,
if u /∈W ′ := W ⊕ τ(W ), and L is the span of u and τu, then L∩W ′ is τ -stable and
so has to have dimension 0 or 2, hence has dimension 0 as otherwise we will have
L ⊂ W ′. The span W1 of W and u then has the property that W1 ∩ τ(W1) = 0,
a contradiction. So U = W ⊕ τ(W ). It is then clear that τ is isomorphic to the
pseudo conjugation of C2m defined earlier.

Lemma 5.5.8. Any conjugation of End(U) is induced by a conjugation or a pseudo
conjugation of U which is unique up to a scalar factor of absolute value 1.

Proof. Choose some conjugation θ of U and let a 7→ aθ be the induced conjugation
of End(U):

aθ = θaθ, aθu = (auθ)θ (u ∈ U, a ∈ End(U)).

Let a 7→ a∗ be the given conjugation of End(U). Then a 7→ (aθ)∗ is an automor-
phism and so we can find an x ∈ GL(U) such that (aθ)∗ = xax−1. Replacing a by
aθ this gives a∗ = xaθx−1. So a = (a∗)∗ = xxθa(xxθ)−1 showing that xxθ = c1
for a constant c, and hence that xxθ = xθx = c1. Thus c is real, and replacing x

80



by |c|−1/2x we may assume that xxθ = ±1. Let τ be defined by uτ = xuθ(u ∈ U).
Then τ is antilinear and τ2 = ±1. Clearly ∗ is induced by τ . If τ ′ is another such,
then τ ′−1τ induces the identity automorphism on End(U) and so τ = cτ ′ where c
is a scalar. Since τ2 = |c|2τ ′2 we must have |c| = 1.

For any conjugation or pseudo conjugation α of U we write α̂ for the induced
conjugation a 7→ αaα−1 of End(U).

Lemma 5.5.9. Let SR be of type H and let SC, S,W, σ be as above. Then σ = τ⊗τ1
where τ (resp. τ1) is a pseudo conjugation of S (resp. W ). τ and τ1 are unique
up to scalar factors of absolute value 1 and τ commutes with the action of C(V )+.
Conversely if S is an irreducible spin module for Spin(VC) and Spin(V ) commutes
with a pseudo conjugation, the real irreducible spin module(s) is of type H.

Proof. The complexifications of the image of C(V )+ in End(SR) and its commutant
are End(S) ' End(S) ⊗ 1 and End(W ) ' 1 ⊗ End(W ) respectively. Hence the
conjugation σ̂ of End(SC) induced by σ leaves both End(S) and End(W ) invariant.
So, by the above lemma there are conjugations or pseudo conjugations τ, τ1 on S,W
inducing the restrictions of σ̂ on End(S) and End(W ) respectively. Since End(S)
and End(W ) generate End(SC) we have σ̂ = τ̂ ⊗ τ̂1 = (τ ⊗ τ1)̂. It follows that for
some c ∈ C with |c| = 1 we must have σ = c(τ ⊗ τ1). Replacing τ1 by cτ1 we may
therefore assume that σ = τ ⊗ τ1. Since σ commutes with the action of C(V )+

and C(V )+ acts on S ⊗W only through the first factor, it follows easily that τ
commutes with the action of C(V )+. Now the subalgebra of End(W ) fixed by τ̂1 is
H and so τ1 must be a pseudo conjugation. Hence, as σ is a conjugation, τ must
also a pseudo conjugation.

For the converse choose a W of dimension 2 with a pseudo conjugation τ − 1.
Let τ be the pseudo conjugation on S commuting with Spin(V ). Then σ = τ⊗τ−1
is a conjugation on S ⊗W commuting with Spin(V ) and so 2S has a real form S′R.
This real form must be irreducible; for otherwise, if S′R is a proper irreducible
constituent, then S”C ' S which will imply that S has a real form. So Spin(V )
must commute with a conjugation also, an impossibility. This proves the entire
lemma.

Suppose now that S has an invariant form. The space of these invariant forms
is of dimension 1, and τ , since it commutes with C(V )+, induces a conjugation
B 7→ Bτ on this space where Bτ (s, t) = B(sτ , tτ )conj. Hence we may assume that
S has an invariant form B = Bτ . The space of invariant forms for S ⊗W is now
B⊗J where J is the space of bilinear forms for W which is a natural module for A1

and which carries a conjugation, namely the one induced by τ1. We select a basis
e1, e2 for W so that τ1(e1) = e2, τ1(e2) = −e1. Then A1 = SU(2) and its action on
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W commutes with τ1. Clearly J = J1⊕ J3 where Jk carries the representation k of
dimension k, where J1 is spanned by skewsymmetric forms while J3 is spanned by
symmetric forms, and both are stable under τ1. Hence

Hom(SR ⊗ SR,C) = B ⊗ Jτ1

where B = Bτ is an invariant form for S and Jτ1 is the subspace of J fixed by
the conjugation induced by τ1. For a basis of J1 we can take the symplectic form
b0 = bτ10 given by b0(e1, e2) = 1. Then BR,0 = B ⊗ b0 is invariant under σ and
defines an invariant form for SR, fixed by the action of A1, and is unique up to a
scalar factor. If bj , j = 1, 2, 3 are a basis for Jτ13 , then BR,j = B⊗ bj are symmetric
invariant forms for SR, defined up to a transformation of SO(3). The symmetry of
BR,0 is the reverse of that of B while those of the BR,j are the same as that of
B. This takes care of the cases Σ = 3, 5, D arbitrary, and Σ = 4, D = 0, 4. In the
latter case the above argument applies to S±R.

Suppose that Σ = 4, D = 2, 6. Then S+ and S− are dual to each other. We
have the irreducible spin modules S±R with complexifications S±C = S± ⊗W± and
conjugations σ± = τ± ⊗ τ±1 (with the obvious notations). The invariant form

B : S+
C × S

−
C −→ C

is unique up to a scalar factor and so, as before, we may assume that B = Bconj

where
Bconj(s+, s−) = B((s+)τ

+
, (s−)τ

−
)
conj

(s± ∈ S±C).

For any form b(W+×W− −→ C) such that bconj = b where the conjugation is with
respect to τ±1 ,

B ⊗ b : S+
C ⊗W

+ × S−C ⊗W
− −→ C

is an invariant form fixed by σ and so restricts to an invariant form

S+
R ⊗ S

−
R −→ R.

Thus S+
R and S−R are in duality. As before there are no invariant forms on S±R×S

±
R

separately.

In this case, although there is no question of symmetry for the forms, we can
say a little more. We may clearly take W+ = W− = W, τ+

1 = τ−1 = τ1. Then we can
identify the H1–actions onW± with the standard action of SU(2) onW = Ce1+Ce2

where τ(e1) = e2, τ(e2) = −e1. The space of forms on S+
R × S

−
R is then B± ⊗ Jτ1
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where B± = B±
τ is a basis for the space of forms on S+ × S−. We then have a

decomposition

Hom(S+
R ⊗ S

−
R,R) = (B± ⊗ Jτ11 )⊕ (B± ⊗ Jτ13 ).

We have thus verified the second column in the two tables of Theorem 10 below.

The case Σ = 2, 6 when the real spin modules SR are of type C remains. In
this case SC = S+ ⊕ S− and is self dual. We have a conjugate linear isomorphism
u 7−→ u∗ of S+ with S− and

σ : (u, v∗) 7−→ (v, u∗)

is the conjugation of SC that defines SR. The space of maps from SC to its dual is of
dimension 2 and so the space spanned by the invariant forms for SC is of dimension
2. This space as well as its subspaces of symmetric and skewsymmetric elements are
stable under the conjugation induced by σ. Hence the space of invariant forms for
SR is also of dimension 2 and spanned by its subspaces of symmetric and skewsym-
metric forms. If D = 0 (resp. 4), S± admit symmetric (resp. skewsymmetric)
forms, and so we have two linearly independent symmetric (resp. skewsymmetric)
forms for SR. If D = 2, 6, S± are dual to each other. The pairing between S± then
defines two invariant forms on S+⊕S−, one symmetric and the other skewsymmet-
ric. Hence both the symmetric and skewsymmetric subspaces of invariant forms for
SC have dimension 1. So SR has both symmetric and skewsymmetric forms.

It remains to determine the action of A1 = T on the space of invariant forms
for SR. For b ∈ T its action on SR is given by

(u, u∗) 7−→ (bu, bconju∗).

D = 0, 4. In this case the space of invariant forms for S+ is nonzero and has a
basis β. The form

β∗ : (u∗, v∗) 7−→ β(u, v)conj

is then a basis for the space of invariant forms for S−. The space of invariant forms
for SC is spanned by β, β∗ and the invariant forms for SR are those of the form

βc = cβ + cconjβ∗(c ∈ C).

The induced action of T is then given by

βc 7−→ βb−2c.
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Thus the space of invariant forms for SR is the module 2 for T given by

2 : eiθ 7−→
(

cos 2θ sin 2θ
− sin 2θ cos θ

)
with respect to the basis β1, βi. In particular there are no forms fixed by T .

D = 2, 6. In this case we have a bilinear duality of S± given by

(u, v∗) 7−→ 〈u, v∗〉.

The space of invariant forms for SC is spanned by

((u, v∗), (u′, v′∗)) 7−→ 〈u, v′∗〉 ± 〈u′, v∗〉.

The space of invariant forms for SR is then spanned by

((u, u∗), (u′, u′∗)) 7−→ 〈u, u′∗〉 ± 〈u′, u∗〉.

Clearly these are both invariant for the action (u, u∗) 7−→ (bu, bconju∗).

We now have the following Theorem. Note that when S±R are dual, there are no
forms on S±R individually. For the second columns in the two tables k denotes the
representation of dimension k for SU(2) while for the third column in the second
table the number k denotes the representation of T in which eiθ goes over to the
rotation by 2kθ. The notation ±[k] means that the space of forms with symmetry
± carries the representation [k] of A1. When there is no number attached to a
symmetry it means that the form is unique up to a real scalar factor.

Theorem 5.5.10 The forms for the real irreducible spin modules are given by
the following tables. Here D,Σ denote the residue class of D,Σ mod 8, and dual
pair means that S±R are dual to each other. Also + and − denote symmetric and
skewsymmetric forms, and d.p. means dual pair.

D\Σ 1, 7(R) 3, 5(H)

1, 7 + −[1],+[3]

3, 5 − +[1],−[3]
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D\Σ 0(R,R) 4(H,H) 2, 6(C)

0 + −[1],+[3] +[2]

4 − +[1],−[3] −[2]

2, 6 d.p. d.p.[1]⊕ [3] +[0],−[0]

Morphisms from spinors, spinors to vectors and exterior tensors. As
mentioned earlier we need to know, for real irreducible spin modules S1, S2, the
existence of symmetric morphisms S1 ⊗ S2 −→ V in the construction of super
spacetimes, and more generally morphisms S1 ⊗ S2 −→ Λr(V ) in the construction
of super Poincaré and super conformal algebras. We shall now study this question
which is also essentially the same as the study of morphisms Λr(V ) ⊗ S1 −→ S2

(for r = 1 these morphisms allow one to define the Dirac or Weyl operators). Here
again we first work over C and then come down to the real case.

Let D = dim(V ). We shall first assume that D is even. In this case we have the
two semispin modules S± and their direct sum S0 which is a simple super module
for the full Clifford algebra. Write ρ for the isomorphism

ρ : C(V ) ' End(S0) dim(S0) = 2(D/2)−1|2(D/2)−1.

Since (S±)∗ = S± or S∓ where ∗ denotes duals, it is clear that S0 is self dual. Since
−1 ∈ Spin(V ) goes to −1 in S0 it follows that −1 goes to 1 in S0⊗S0 and so S0⊗S0

is a SO(V )-module. We have, as Spin(V )-modules,

S0 ⊗ S0 ' S0 ⊗ S∗0 ' End(S0)

where End(S0) is viewed as an ungraded algebra on which g ∈ Spin(V ) acts by
t 7−→ ρ(g)tρ(g)−1 = ρ(gtg−1). Since ρ is an isomorphism of C(V ) with End(S0)
(ungraded), it follows that the action of Spin(V ) on C(V ) is by inner automorphisms
and so is the one coming from the action of the image of Spin(V ) in SO(V ). Thus

S0 ⊗ S0 ' C(V ).

Lemma 5.5.11. If D is even then S0 is self dual and

S0 ⊗ S0 ' 2
(
⊕0≤r≤D/2−1Λr(V )

)
⊕ ΛD/2(V ).
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In particular, as the Λr(V ) are irreducible for r ≤ D/2− 1, we have,

dim (Hom(S0 ⊗ S0,Λr(V ))) = 2 (0 ≤ r ≤ D/2− 1).

Proof. In view of the last relation above it is a question of determining the SO(V )-
module structure of C(V ). This follows from the results of Section 2. The Clifford
algebra C = C(V ) is filtered and the associated graded algebra is isomorphic to
Λ = Λ(V ). The skewsymmetrizer map (see Section 2)

λ : Λ −→ C

is manifestly equivariant with respect to Spin(V ) and so we have, with Λr = Λr(V ),

λ : Λ = ⊕0≤r≤DΛr ' C (1)

is an isomorphism of SO(V )-modules. If we now observe that Λr ' ΛD−r and that
the Λr are irreducible for 0 ≤ r ≤ D/2− 1 the lemma follows immediately.

Suppose now A,B,L are three modules for a group G. Then Hom(A,B) '
Hom(A ⊗ B∗,C), where α(A −→ B) corresponds to the map (also denoted by α)
of A⊗B∗ −→ C given by

α(a⊗ b∗) = b∗(α(a)).

So
Hom(A⊗B,L) ' Hom(A⊗B ⊗ L∗,C) ' Hom(B ⊗ L∗, A∗).

If A and L have invariant forms we can use these to identify them with their duals,
and obtain a correspondence

Hom(A⊗B,L) ' Hom(L⊗B,A) γ′ ↔ γ

where the corresponding elements γ′, γ of the two Hom spaces are related by

(γ(`⊗ b), a) = (γ′(a⊗ b), `) (a ∈ A, b ∈ B, ` ∈ L).

We remark that the correspondence γ′ ↔ γ depends on the choices of invariant forms
on A and L. We now apply these considerations to the case when G = Spin(V ) and
A = B = S0, L = Λr. The invariant form on V lifts to one on Λr. Now the Clifford
algebra C = C(V ) is isomorphic to End(S0) and so, the theory of the B-group
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discussed earlier associates to (C, β) the invariant form (·, ·) on S0 × S0 for which
we have (as, t) = (s, β(a)t)(a ∈ C). We then have a correspondence

γ′ ↔ γ, γ′ ∈ Hom(S0 ⊗ S0,Λr), γ ∈ Hom(Λr ⊗ S0, S0)

such that
(γ′(s⊗ t), v) = (γ(v ⊗ s), t) (s, t ∈ S, v ∈ Λr).

Let (see Section 2) λ be the skewsymmetrizer map (which is Spin(V )-
equivariant) of Λ onto C. The action of C on S0 then gives a Spin(V )-morphism

γ0 : v ⊗ s 7−→ λ(v)s.

Let Γ0 be the element of Hom(S0 ⊗ S0,Λr) that corresponds to γ0. We then have,
with respect to the above choices of invariant forms,

(Γ0(s⊗ t), v) = (λ(v)s, t) = (s, β(λ(v))t) (s, t ∈ S, v ∈ Λr). (∗)

Note that Γ0, γ0 are both nonzero since λ(v) 6= 0 for v 6= 0. To the form on S0 we
can associate its parity π and the symmetry σ. Since λ(v) has parity p(r), it follows
that (λ(v)s, t) = 0 when p(r) + p(s) + p(t) + π = 1. Thus Γ0(s ⊗ t) = 0 under the
same condition. In other words, Γ0 is even or odd, and

parity (Γ0) = p(r) + π.

Since
β(λ(v)) = (−1)r(r−1)/2λ(v) (v ∈ Λr)

it follows that Γ0 is symmetric or skewsymmetric and

symmetry (Γ) = (−1)r(r−1)/2σ.

The parity and symmetry of Γ0 are thus dependent only on D.

In case Γ0 is even, i.e., when π = p(r), Γ0 restricts to nonzero maps

Γ± : S± × S± −→ Λr.

To see why these are nonzero, suppose for definiteness that Γ+ = 0. Then Γ0(s⊗t) =
0 for s ∈ S+, t ∈ S± and so (λ(v)s, t) = 0 for s ∈ S+, t ∈ S0, v ∈ Λr. Then λ(v) = 0
on S+ for all v ∈ Λr which is manifestly impossible because if (ei) is an ON basis
for V and v = ei1 ∧ . . . ∧ eir , then λ(v) = ei1 . . . eir is invertible and so cannot
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vanish on S+. The maps Γ± may be viewed as linearly independent elements of
Hom(S0 ⊗ S0,Λr). Since this Hom space has dimension 2 it follows that Γ+,Γ−

form a basis of this Hom space. It follows that

Hom(S± ⊗ S±,Λr) = CΓ±, Hom(S± ⊗ S∓,Λr) = 0.

If π = p(r) = 0 then S± are self dual. Let γ± be the restrictions of γ0 to S±

and
Hom(Λr ⊗ S±, S±) = Cγ±, Hom(Λr ⊗ S±, S∓) = 0.

From Table 1 we see that π = 0 when D = 0, 4, and then σ = +,− respectively.
Thus Γ± have the symmetry (−1)r(r−1)/2 and −(−1)r(r−1)/2 respectively in the two
cases.

If π = p(r) = 1 then S± are dual to each other, γ± map Λr ⊗ S± to S∓, and
we argue similarly that

Hom(Λr ⊗ S±, S∓) = Cγ±, Hom(Λr ⊗ S±, S±) = 0.

We see from Table 1 that π = 1 when D = 2, 6 with σ = +,− respectively. Thus
Γ± have the symmetry (−1)r(r−1)/2 and −(−1)r(r−1)/2 respectively in the 2 cases.

If Γ is odd, i.e., when π = p(r) + 1, the discussion is entirely similar. Then Γ0

is 0 on S±⊗S± and it is natural to define Γ± as the restrictions of Γ0 to S±⊗S∓.
Thus

Γ± : S± × S∓ −→ Λr

and these are again seen to be nonzero. We thus obtain as before

Hom(S± ⊗ S∓,Λr) = CΓ±, Hom(S± ⊗ S±,Λr) = 0.

If π = 1, p(r) = 0 then S± are dual to each other, and

Hom(Λr ⊗ S±, S±) = Cγ±, Hom(Λr ⊗ S±, S∓) = 0.

This happens when D = 2, 6 and there is no symmetry.

If π = 0, p(r) = 1 then S± are self dual, γ maps Λr ⊗ S± to S∓, and

Hom(Λr ⊗ S±, S∓) = Cγ±, Hom(Λr ⊗ S±, S±) = 0.

This happens when D = 0, 4 and there is no symmetry.
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This completes the treatment of the case when D, the dimension of V , is even.

We turn to the case when D is odd. As usual the center Z of C(V ) now enters
the picture. We have Z = C[ε] where ε is odd, ε2 = 1, and C(V ) = C = C+ ⊗ Z.
The even algebra C+ is isomorphic to End(S) where S is the spin module and S⊕S
is the simple super module for C in which C+ acts diagonally and ε acts as the

matrix
(

0 1
1 0

)
. The basic lemma here is the following.

Lemma 5.5.12. If D is odd then S is self dual and

S ⊗ S ' ⊕0≤r≤(D−1)/2Λr

is the decomposition of S⊗S into irreducible components under SO(V ). In particular
the maps

S ⊗ S −→ Λr, Λr ⊗ S −→ S

are unique up to a scalar factor.

Proof. The skewsymmetrizer isomorphism λ of Λ(V ) with C takes Λeven :=
⊕0≤k≤(D−1)/2Λ2k onto C+. We have

S ⊗ S ' End(S) ' C+ ' Λeven.

But now r and D−r have opposite parity and so exactly one of them is even. Hence

Λeven ' ⊕0≤r≤(D−1)/2Λr.

This proves the decomposition formula for S ⊗ S and gives

dim(Hom(S ⊗ S,Λr)) = dim(Hom(Λr ⊗ S, S)) = 1.

The rest of the discussion is essentially the same as in the case of even D. The
form (·, ·) on S is such that (as, t) = (s, β(a)t) for all a ∈ C+, s, t ∈ S.

If r is even, we have λ(v) ∈ C+ for all v ∈ Λr, and so the map γ : v⊗s 7−→ λ(v)s
is a nonzero element of Hom(Λr⊗S, S). We then obtain Γ ∈ Hom(S⊗S,Λr) defined
by

(Γ(s⊗ t), v) = (λ(v)s, t) (s, t ∈ S, v ∈ Λr, r even ).

There is no question of parity as S is purely even and

symmetry (Γ) = (−1)r(r−1)/2σ
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where σ is the symmetry of (·, ·). We use Table 3 for the values of σ which depend
only on D. Since Hom(S ⊗ S,Λr) has dimension 1 by Lemma 12, we must have

Hom(S ⊗ S,Λr) = CΓ, Hom(Λr ⊗ S, S) = Cγ.

The symmetry of Γ is (−1)r(r−1)/2 or −(−1)r(r−1)/2 according as D = 1, 7 or 3, 5.

If r is odd, ελ(v) ∈ C+ for all v ∈ Λr and so, if we define

γε : v ⊗ s 7−→ ελ(v)s,

then
0 6= γε ∈ Hom(Λr ⊗ S, S).

We now define Γε by

(Γε(s⊗ t), v) = (ελ(v)s, t) (s, t ∈ S, v ∈ Λr, r odd)

and obtain as before

Hom(S ⊗ S,Λr) = CΓε,Hom(Λr ⊗ S, S) = Cγε.

To calculate the symmetry of Γε we must note that β acts on ε by β(ε) = s(β)ε
and so

(ελ(v)s, t) = s(β)(−1)r(r−1)/2(s, ελ(v)t).

Hence
symmetry (Γ) = (−1)r(r−1)/2s(β)σ.

We now use Table 3 for the values of σ and s(β). The symmetry of γε is (−1)r(r−1)/2

or −(−1)r(r−1)/2 according as D = 1, 3 or 5, 7.

We can summarize our results in the following theorem. Here S1, S2 denote the
irreducible spin modules S± when D is even and S when D is odd. Also r ≤ D/2−1
or r ≤ (D − 1)/2 according as D is even or odd. Let

σr = (−1)r(r−1)/2.

Theorem 5.5.13. For complex quadratic vector spaces V the existence and sym-
metry properties of maps

Γ : S1 ⊗ S2 −→ Λr(V ) γ : Λr ⊗ S1 −→ S2

90



depend only on the residue class D of D = dim(V ) mod 8. The maps, when they
exist, are unique up to scalar factors and are related by

(Γ(s1 ⊗ s2), v) = (γ(v ⊗ s1), s2).

The maps γ exist only when S1 = S2 = S (D odd), S1 = S2 =
S± (D, r both even), S1 = S±, S2 = S∓ (D even and r odd). In all cases the γ
are given up to a scalar factor by the following table.

r \ D even odd

even γ(v ⊗ s±) = λ(v)s± γ(v ⊗ s) = λ(v)s

odd γ(v ⊗ s±) = λ(v)s± γε(v ⊗ s) = ελ(v)s

Here ε is a nonzero odd element in the center of C(V ) with ε2 = 1. The maps Γ
do not exist except in the cases described in the tables below which also give their
symmetry properties.

D maps symmetry

r even 0 S± ⊗ S± → Λr σr

1, 7 S ⊗ S → Λr σr

2, 6 S± ⊗ S∓ → Λr

3, 5 S ⊗ S → Λr −σr
4 S± ⊗ S± → Λr −σr

D maps symmetry

r odd 0, 4 S± ⊗ S∓ → Λr

1, 3 S ⊗ S → Λr σr

2 S± ⊗ S± → Λr σr

5, 7 S ⊗ S → Λr −σr
6 S± ⊗ S± → Λr −σr
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Morphisms over the reals. The story goes along the same lines as it did for
the forms. V is now a real quadratic vector space and the modules Λr are real and
define conjugations on their complexifications. For a real irreducible spin module
SR the space of morphisms SR ⊗ SR −→ Λr carries, as in the case of forms, an
action by A1. In this case the space of morphisms Λr ⊗ SR −→ SR also carries an
action of A1 and the identification of these two Hom spaces respects this action.

Let SR be of type R, i.e., Σ = 1, 7, 0. The morphisms from S⊗S, S±⊗S±, S±⊗
S∓ to Λr over C span one-dimensional spaces stable under conjugation. Hence we
can choose basis elements for them which are real. The morphisms Λr⊗SR −→ SR

defined in Theorem 13 make sense over R (we must take ε to be real) and span the
corresponding Hom space over R. The results are then the same as in the complex
case. The symmetries remain unchanged.

Let SR be of type H, i.e., Σ = 3, 5, 4. Let B(A1, A2 : R) be the space of
morphisms A1 ⊗ A2 −→ R. The relevant observation is that if S1, S2 are complex
irreducible spin modules and U is a Spin(VC)-module such that dim(B(S1, S2 :
U)) = 0 or 1, then the space of morphisms (S1 ⊗W1) ⊗ (S2 ⊗W2) −→ U is just
B(S1, S2 : U)⊗B(W1,W2 : C). The arguments are now the same as in the case of
scalar forms; all one has to do is to replace the complex scalar forms by the complex
maps into VC. The symmetries follow the same pattern as in the case of r = 0.

The last case is when SR is of type C, i.e., Σ = 2, 6. The morphisms SC ⊗
SC −→ Λr(VC) form a space of dimension 2, and this space, as well as its subspaces
of symmetric and skewsymmetric elements, are stable under the conjugation on the
Hom space. From this point on the argument is the same as in the case r = 0.

Theorem 5.5.14 (odd dimension). For a real quadratic vector space V of odd
dimension D the symmetry properties of morphisms SR ⊗ SR −→ Λr are governed
by the residue classes D,Σ as in the following table. If no number is attached to a
symmetry sign, then the morphism is determined uniquely up to a real scalar factor.

D\Σ 1, 7(R) 3, 5(H)

r even 1, 7 σr −σr[1], σr[3]

3, 5 −σr σr[1],−σr[3]

r odd 1, 3 σr −σr[1], σr[3]

5, 7 −σr σr[1],−σr[3].
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Theorem 5.5.15 (even dimension). For real quadratic vector spaces V of even
dimension D the symmetry properties of the maps S±R⊗S

±
R, SR⊗SR −→ Λr are de-

scribed in the following table. The notation d.p. means that the morphism goes from
S±R ⊗ S

∓
R to Λr. If no number is attached to a symmetry sign, then the morphism

is determined uniquely up to a real scalar factor.

D\Σ 0(R,R) 4(H,H) 2, 6(C)

r even 0 σr −σr[1], σr[3] σr[2]

2, 6 d.p. d.p.[1]⊕ [3] +[0],−[0]

4 −σr σr[1],−σr[3] −σr[2]

r odd 0, 4 d.p. d.p.[1|]⊕ [3] +[0],−[0]

2 σr −σr[1], σr[3] σr[2]

6 −σr σr[1],−σr[3] −σr[2].

Symmetric morphisms from spinor, spinor to vector in the Minkowski
case. An examination of the tables in Theorems 14 and 15 reveals that when V
has signature (1, D − 1) and SR is a real spin module irreducible over R, there
is always a unique (up to a real scalar factor) non-trivial symmetric morphism
Γ : SR ⊗ SR −→ V invariant with respect to the action of A1. Indeed, the cases
where there is a unique A1-invariant symmetric morphism SR⊗SR −→ V are given
by

Σ = 1, 7, D = 1, 3; Σ = 3, 5, D = 5, 7; Σ = 2, 6, D = 0, 4; Σ = 0, D = 2; Σ = 4, D = 6

which include all the cases when the signature is Minkowski since this case corre-
sponds to the relations D ± Σ = 2. It turns out (see Deligne8) that this morphism
is positive definite in a natural sense. Let V ± be the sets in V where the quadratic
form Q of V is > 0 or < 0, and let (·, ·) be the bilinear form associated to Q.

Theorem 5.5.16. Let V be a real quadratic vector space of dimension D and
signature (1, D − 1), and let SR be a real spin module irreducible over R. Then
there is a non-trivial A1-invariant symmetric morphism

Γ : SR ⊗ SR −→ V
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which is unique up to a real scalar factor. Moreover we can normalize the sign of
the scalar factor so that for 0 6= s ∈ SR we have

(v,Γ(s, s)) > 0 (v ∈ V +).

Finally, whether SR is irreducible or not, there is always a non-trivial symmetric
morphism SR ⊗ SR −→ V .

Proof. We have already remarked that the existence and (projective) uniqueness
of Γ follows from the tables of Theorems 14 and 15. It is thus a question of of
proving the positivity. Write S = SR for brevity.

For this we give the argument of Deligne8. First of all we claim that the form
bv(s, t) = (Γ(s, t), v) cannot be identically 0 for any v 6= 0; for if this is true for
some v, it is true for all g.v(g ∈ Spin(V )) and so, by irreducibility of S, for all
elements of V . This is a contradiction. Fix now a v ∈ V such that Q(v) > 0. Then
bv is invariant with respect to the stabilizer K of v in Spin(V ). Because V is of
Minkowski signature, it follows that K ' Spin(D − 1) and is a maximal compact
of Spin(V ). If D = 2 so that V ' R1,8k+1, Σ = 0 so that we have two simple
spin modules for Spin(V ), S±R, of type R. The dimensions of S±R are equal to 24k

which is also the dimension of the spin module of Spin(8k+ 1). Since spin modules
restrict on quadratic subspaces to spinorial modules, the restrictions to K of S±R
are irreducible. But K is compact and so leaves a unique (up to a scalar) definite
form invariant, and hence bv is definite. We are thus done when D = 2. In the
general case we consider V0 = V ⊕ V1 where V1 is a negative definite quadratic
space so that dim(V0) ≡ 2 (8). By the above result there are positive A1-invariant
symmetric morphisms Γ±0 : S±0,R −→ V0. Let P be the projection V0 −→ V . Now
the representation S+

0,R ⊕ S
−
0,R is faithful on C(V0)+, hence on C(V )+. We claim

that SR is contained in 2S+
0,R ⊕ 2S−0,R. Indeed, let U be S+

0,R ⊕ S
−
0,R viewed as

a C(V )+-module. Then UC, being faithful on C(VC)+, contains all the complex
irreducibles of C(VC)+. If SR is of type R or C, we have SC = S, S± and so
Hom(SC, UC) 6= 0, showing that Hom(SR, U) 6= 0. If SR is of type H, then
SC = 2S± and so Hom(Sc, 2UC) 6= 0. Thus we have S ↪→ S+

0,R or S ↪→ S−0,R.
Then we can define

Γ(s, t) = PΓ±0 (s, t) (s, t ∈ S ↪→ S±0,R).

It is obvious that Γ is positive. This finishes the proof in the general case.

5.6. Image of the real spin group in the complex spin module. From
Theorem 5.10 we find that when D = 1,Σ = 1 the spin module SR is of type R
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and has a symmetric invariant form and so the spin group Spin(V ) is embedded in
a real orthogonal group. The question naturally arises as to what the signature of
this orthogonal group is. More generally, it is a natural question to ask what can
be said about the image of the real spin group in the spinor space. This question
makes sense even when the complex spin representation does not have a real form.
In this section we shall try to answer this question. The results discussed here can
be found in10. They are based on E. Cartan’s classification of the real forms of
complex simple Lie algebras11 and a couple of simple lemmas.

Let V be a real quadratic vector space. A complex irreducible representation
of Spin(V ) is said to be strict if it does not factor through to a representation of
SO(V )0. The spin and semispin representations are strict but so are many oth-
ers. Indeed, the strict representations are precisely those that send the nontrivial
central element of the kernel of Spin(V ) −→ SO(V )0 to −1 in the representation
space. If D = dim(V ) = 1, Spin(V ) is {±1} and the only strict representation is
the spin representation which is the nontrivial character. In dimension 2, if V is
definite, we have Spin(V ) = U(1) with Spin(V ) −→ SO(V )0 ' U(1) as the map
z 7−→ z2, and the strict representations are the characters z −→ zn where n is
an odd integer; the spin representations correspond to n = ±1. If V is indefi-
nite, Spin(V ) = R×,SO(V )0 = R×+, and the covering map is t 7−→ t2; the strict
representations are the characters t −→ sgn (t)|t|z where z ∈ C, and the spin rep-
resentations correspond to z = ±1. In dimension 3 when Spin(V ) = SL(2,C), the
strict representations are the nontrivial representations of even dimension; the spin
representation is the one with dimension 2.

Lemma 5.6.1. If D > 2, the spin representations are precisely the strict represen-
tations of minimal dimension, i.e., if a representation is strict and different from
the spin representation, its dimension is strictly greater than the dimension of the
spin representation.

Proof. We go back to the discussion of the basic structure of the orthogonal Lie
algebras in Section 3. Let g = so(V ).

g = D`: The positive roots are

ai − aj (1 ≤ i < j ≤ `), ap + aq (1 ≤ p < q ≤ `).

If b1, . . . , b` are the fundamental weights then we have

bi = a1 + . . .+ ai (1 ≤ i ≤ `− 2)

while
b`−1 =

1
2

(a1 + . . .+ a`−1 − a`) b` =
1
2

(a1 + . . .+ a`−1 + a`).
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For any dominant integral linear form λ we write πλ for the irreducible represen-
tation with highest weight λ. The weights of V are (±ai) and it is not difficult to
verify (see12, Chapter 4) that

Λr ' πbr (1 ≤ r ≤ `− 2), Λ`−1 ' πb`−1+b` , Λ` ' π2b`−1 ⊕ π2b` .

The most general highest weight is λ = m1b1 + . . .+m`b` where the mi are integers
≥ 0. Expressing it in terms of the ai we see that it is an integral linear combination
of the ai if and only if m`−1 and m` have the same parity, and this is the condition
that the representation πλ occurs among the tensor spaces over V . So the strictness
condition is that m`−1 and m` have opposite parities. The semispin representations
correspond to the choices where mi = 0 for 1 ≤ i ≤ ` − 2 and (m`−1,m`) = (1, 0)
or (0, 1). If m`−1 and m` have opposite parities, then one of m`−1,m` is odd and
so ≥ 1. Hence

(m1, . . . ,m`) =
{

(m1, . . . ,m`−2,m`−1 − 1,m`) + (0, . . . , 0, 1, 0) (m`−1 ≥ 1)
(m1, . . . ,m`−1,m` − 1) + (0, . . . , 0, 1) (m` ≥ 1).

The result follows if we remark that the Weyl dimension formula for πµ implies that

dim(πµ+ν) > dim(πµ) (ν 6= 0)

where µ, ν are dominant integral.

g = B`: The positive roots are

ai − aj (1 ≤ i < j ≤ `), ap + aq (1 ≤ p < q ≤ `), ai (1 ≤ i ≤ `).

If b1, . . . , b` are the fundamental weights then we have

bi = a1 + . . .+ ai (1 ≤ i ≤ `− 1), b` =
1
2

(a1 + . . .+ a`).

For a dominant integral λ = m1b1 + . . .+m`b` we find that it is an integral linear
combination of the ai’s if and only if m` is even. So the strictness condition is that
m` should be odd. If m` is odd we can write

(m1, . . . ,m`) = (m1, . . . ,m`−1,m` − 1) + (0, . . . , 0, 1)

from which the lemma follows again by using Weyl’s dimension formula.

Let d0 = 1 and let dp (p ≥ 1) be the dimension of the spin module(s) of Spin(p).
Recall from Section 3 that

dp = 2[ p+1
2 ]−1 (p ≥ 1).
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Lemma 5.6.2. Let π be a representation of Spin(p, q) in a vector space U with
the property that π(ε) = −1 where ε is the nontrivial element in the kernel of
Spin(p, q) −→ SO(p, q)0, and let Kp,q be the maximal compact of Spin(p, q) lying
above K0 = SO(p) × SO(q). If W is any nonzero subspace of U invariant under
π(Kp,q) then

dim(W ) ≥ dpdq.

In particular, if H is a real connected semisimple Lie subgroup of GL(U) such that
π(Kp,q) ⊂ H, and L a maximal compact subgroup of H, then for any nonzero
subspace of U invariant under L, we have

dim(W ) ≥ dpdq.

Proof. The cases p = 0, 1, q = 0, 1, 2 are trivial since the right side of the inequality
to be established is 1. We separate the remaining cases into p = 0 and p > 0.

a) p = 0, 1, q ≥ 3: Then Kp,q = Spin(q). We may obviously assume that W is
irreducible. Then we have a strict irreducible representation of Spin(q) in W and
hence, by Lemma 1, we have the desired inequality.

b) 2 ≤ p ≤ q: In this case we use the description of Kp,q given in the remark
following Theorem 3.7 so that εr maps on ε for r = p, q. We can view the restriction
of π to Kp,q as a representation ρ of Spin(p) × Spin(q) acting irreducibly on W .
Then ρ ' ρp × ρq where ρr is an irreducible representation of Spin(r), (r = p, q).
Since ρ(εp) = ρ(εq) = −1 by our hypothesis it follows that ρp(εp) = −1, ρ(εq) =
−1. Hence ρr is a strict irreducible representation of Spin(r), (r = p, q) so that
dim(ρr) ≥ dr, (r = p, q). But then

dim(W ) = dim(ρp) dim(ρq) ≥ dpdq.

This proves the first statement.

Choose a maximal compact M of H containing π(Kp,q); this is always possible
because π(Kp,q) is a compact connected subgroup of H. There is an element h ∈ H
such that hLh−1 = M . Since W is invariant under L if and only if h[W ] is invariant
under hLh−1, and dim(W ) = dim(h[W ]), it is clear that we may replace L by M .
But then W is invariant under π(Kp,q) and the result follows from the first assertion.
This finishes the proof of the lemma.

Corollary 5.6.3. Suppose π is the irreducible complex spin representation. Let
N = dim(π) and let H,L be as in the lemma. Then, for any nonzero subspace W
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of U invariant under L we have

dim(W ) ≥
{
N
2 if one of p, q is even
N if both p, q are odd.

In particular, when both p and q are odd, the spin module of Spin(p, q) is already
irreducible when restricted to its maximal compact subgroup.

Proof. We can assume p is even for the first case as everything is symmetric
between p and q. Let p = 2k, q = 2` or 2` + 1, we have dp = 2k−1, dq = 2`−1 or
2` while N = 2k+`−1 or 2k+` and we are done. If p = 2k + 1, q = 2` + 1 then
dp = 2k, dq = 2`, N = 2k+` and hence dpdq = N . This implies at once that U is
already irreducible under Kp,q.

Real forms. If g is a complex Lie algebra, by a real form of g we mean a real Lie
algebra g0 ⊂ g such that g ' C⊗Rg0. This comes to requiring that there is a basis of
g0 over R which is a basis of g over C. Then the map X+iY 7−→ X−iY (X,Y ∈ g)
is a conjugation of g, i.e., a conjugate linear map of g onto itself preserving brackets,
such that g0 is the set of fixed points of this conjugation. If G is a connected complex
Lie group, a connected real Lie subgroup G0 ⊂ G is called a real form of G if Lie(G0)
is a real form of Lie(G). E. Cartan determined all real forms of complex simple Lie
algebras g up to conjugacy by the adjoint group of g, leading to a classification
of real forms of the complex classical Lie groups. We begin with a summary of
Cartan’s results11. Note that if ρ is any conjugate linear transformation of Cn, we
can write ρ(z) = Rzσ where R is a linear transformation and σ : z 7→ zconj is the
standard conjugation of Cn; if R = (rij), then the rij are defined by ρej =

∑
i rijei.

We have RR = ±1 according as ρ is a conjugation or a pseudo conjugation. We
say ρ corresponds to R; the standard conjugation corresponds to R = In. If we

take R =
(

0 −In
In 0

)
we get the standard pseudo conjugation τ of C2n given by

τ : (z, w) 7−→ (−w, z). If L is an endomorphism of Cn, then L commutes with the
antilinear transformation defined by R if and only if LR = RL.

G = SL(n,C).

The real forms are

(σ) SL(n,R), SU(a, b)(a ≤ b, a+ b = n), (τ) SU∗(2m) ' SL(m,H) (n = 2m)

where the notation is the usual one and the symbol placed before the real form means
that it is the subgroup commuting with the conjugation or pseudo conjugation
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described. We write SU(n) for SU(0, n). It is the unique (up to conjugacy) compact
real form. The isomorphism

SU∗(2m) ' SL(m,H)

needs some explanation. If we identify C2 with the quaternions H by (z, w) 7−→
z+jw then the action of j from the right on H corresponds to the pseudo conjugation
(z, w) 7−→ (−w, z). If we make the identification of C2m with Hm by

(z1, . . . , zm, w1, . . . , wm) 7−→ (z1 + jw1, . . . , zm + jwm)

then we have an isomorphism between GL(m,H) and the subgroup G of GL(2m,C)
commuting with the pseudo conjugation τ . It is natural to call the subgroup of
GL(m,H) that corresponds to G∩SL(2m,C) under this isomorphism as SL(m,H).
The group G is a direct product of H = G ∩ U(2m) and a vector group. If J is as
above, then H is easily seen to be the subgroup of U(2m) preserving the symplectic
form with matrix J and so is Sp(2m), hence connected. So G is connected. On
the other hand, the condition gJ = Jg implies that det(g) is real for all elements
of G. Hence the determinant is > 0 for all elements of G. It is clear then that
G is the direct product of G ∩ SL(2m,C) and the positive homotheties, i.e., G '
G ∩ SL(2m,C)×R×+. Thus GL(m,H) ' SL(m,H)×R×+.

G = SO(n,C).

The real forms are

(σa) SO(a, b)(a ≤ b, a+ b = n), (τ) SO∗(2m) (n = 2m).

σa is the conjugation corresponding to Ra =
(
Ia 0
0 −Ib

)
; if x =

(
Ia 0
0 iIb

)
then

it is easily verified that xSO(a, b)x−1 is the subgroup of SO(n,C) fixed by σa. It is
also immediate that

gT g = I2m, gJ2m = J2mg ⇐⇒ gT g = I2m, gTJ2mg = J2m

so that SO∗(2m) is also the group of all elements of SO(2m,C) that leave invariant
the skew hermitian form

−z1zm+1 + zm+1z1 − z2zm+2 + zm+2z2 − . . .− zmz2m + z2mzm.

We write SO(n) for SO(0, n); it is the compact form.

Sp(2n,C).
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We remind the reader that this is the group of all elements g in GL(2n,C) such
that gTJ2ng = J2n where J2n is as above. It is known that Sp(2n,C) ⊂ SL(2n,C).
Its real forms are

(σ) Sp(2n,R), (τa) Sp(2a, 2b)(a ≤ b, a+ b = n)

where τa is the pseudo conjugation

τa : z 7−→ Jaz, Ja =


0 0 Ia 0
0 0 0 −Ib
−Ia 0 0 0

0 Ib 0 0


and it can be shown as in the previous case that the subgroup in question is also
the subgroup of Sp(2n,C) preserving the invariant Hermitian form zTBa,bz where

Ba,b =


Ia 0 0 0
0 −Ib 0 0
0 0 Ia 0
0 0 0 −Ib

 .

We write Sp(2n) for Sp(0, 2n). It is the compact form.

The groups listed above are all connected and the fact that they are real forms
is verified at the Lie algebra level. Cartan’s theory shows that there are no others.

Lemma 5.6.4. Let G be a connected real Lie group and let G ⊂ M where M is
a complex connected Lie group. If M = SO(n,C) (resp. Sp(2n,C)), then for G
to be contained in a real form of M it is necessary that G commute with either a
conjugation or a pseudo conjugation of Cn (resp. C2n); if G acts irreducibly on
Cn (resp. C2n), this condition is also sufficient and then the real form containing
G is unique and is isomorphic to SO(a, b) (resp. Sp(a, b)). If M = SL(n,C),
then for G to be contained in a real form of M it is necessary that G commute
with either a conjugation or a pseudo conjugation of Cn or G leave invariant a
nondegenerate Hermitian form on Cn. If G acts irreducibly on Cn and does not
leave a nondegenerate Hermitian form invariant, then the above condition is also
sufficient and the real form, which is isomorphic to either SL(n,R) or SU∗(n)(n =
2m), is then unique.

Proof. The first assertion is clear since the real forms of SO(n,C) and Sp(2n,C)
are those that commute with either a conjugation or a pseudo conjugation of the
underlying vector space. Let M = SO(n,C) or Sp(2n,C) and suppose that G acts
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irreducibly. If G commutes with a conjugation σ, then the space of invariant forms
for G is one dimensional, and so this space is spanned by the given form on Cn or
C2n in the two cases. This means that the given form transforms into a multiple
of itself under σ and hence M is fixed by σ. But then G ⊂ Mσ showing that G
is contained in a real form of M . If there is another real form containing G, let
λ be the conjugation or pseudo conjugation commuting with G. Then σ−1λ is an
automorphism of Cn or C2n commuting with G and so must be a scalar c as G
acts irreducibly. Thus λ = cσ, showing that Mσ = Mλ. Let M = SL(n,C). The
necessity and sufficiency are proved as before, and the uniqueness also follows as
before since we exclude the real forms SU(a, b).

Theorem 5.6.5. Let V be a real quadratic space of dimension D. When D = 1 the
spin group is {±1} and its image is O(1). If D = 2 we have Spin(2) ' U(1) and the
spin representations are the characters z 7−→ z, z−1, while Spin(1, 1) ' GL(1,R) '
R× and the spin representations are the characters a 7−→ a, a−1. In all other cases
the restriction of the complex spin representation(s) to Spin(V ) is contained in a
unique real form of the appropriate classical group of the spinor space according to
the following tables.

N = dimension of the complex spin module(s) .

Spin(V ) noncompact

real quaternionic complex

orthogonal SO(N2 ,
N
2 ) SO∗(N) SO(N,C)R

symplectic Sp(N,R) Sp(N2 ,
N
2 ) Sp(N,C)R

dual pair SL(N,R) SU∗(N) SU(N2 ,
N
2 )

Spin(V ) compact

real quaternionic complex

SO(N) Sp(N) SU(N)
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Proof. The arguments are based on the lemmas and corollary above. Let us
consider first the case when the Spin group is noncompact so that V ' Rp,q with
1 ≤ p ≤ q. Let Γ be the image of Spin(V ) in the spinor space.

Spin representation(s) orthogonal (orthogonal spinors). This means D =
0, 1, 7. Then Γ is inside the complex orthogonal group and commutes with either a
conjugation or a pseudo conjugation according as Σ = 0, 1, 7 or Σ = 3, 4, 5. In the
second case Γ ⊂ SO∗(N) where N is the dimension of the spin representation(s).
In the first case Γ ⊂ SO(a, b)0 and we claim that a = b = N/2. Indeed, we first
note that p and q cannot both be odd; for, if D = 1, 7, p − q is odd, while for
D = 0, both p + q and p − q have to be divisible by 8 which means that p and q
are both divisible by 4. For SO(a, b)0 a maximal compact is SO(a) × SO(b) which
has invariant subspaces of dimension a and b, and so, by Corollary 3 above we must
have a, b ≥ N/2. Since a + b = N we see that a = b = N/2. There still remains
the case Σ = 2, 6, i.e., when the real spin module is of the complex type. But the
real forms of the complex orthogonal group commute either with a conjugation or
a pseudo conjugation and this cannot happen by Lemma 5.9. So there is no real
form of the complex orthogonal group containing Γ. The best we can apparently
do is to say that the image is contained in SO(N,C)R where the suffix R means
that it is the real Lie group underlying the complex Lie group.

Spin representation(s) symplectic (symplectic spinors). This means that
D = 3, 4, 5. Here Γ is inside the complex symplectic group of spinor space. Then
Γ commutes with either a conjugation or a pseudo conjugation according as Σ =
0, 1, 7 or Σ = 3, 4, 5. In the first case Γ ⊂ Sp(N,R). In the second case we have
Γ ⊂ Sp(2a, 2b) with 2a+ 2b = N . The group S(U(a)×U(b)) is a maximal compact
of Sp(2a, 2b) and leaves invariant subspaces of dimension 2a and 2b. Moreover in
this case both of p, q cannot be odd; for, if D = 3, 5, p− q is odd, while, for D = 4,
both p − q and p + q are divisible by 4 so that p and q will have to be even. By
Corollary 3 above we have 2a, 2b ≥ N/2 so that 2a = 2b = N/2. Once again in
the complex case Γ ⊂ Sp(N,C)R. We shall see below that there is equality for
Spin(1, 3).

Dimension is even and the spin representations are dual to each other
(linear spinors). Here D = 2, 6. If the spin representations are real, then they
admit no invariant bilinear forms and the only inclusion we have is that they are
inside the special linear group of the spinor space. Hence, as they commute with
a conjugation, we have, by the lemma above, Γ ⊂ SL(N,R). If the spin represen-
tations are quaternionic, Γ commutes with a pseudo conjugation τ while admitting
no invariant bilinear form. We claim that Γ does not admit an invariant Hermitian
form either. In fact, if h is an invariant Hermitian form, then s, t 7−→ h(s, τ(t)) is
an invariant bilinear form which is impossible. So we must have Γ ⊂ SU∗(N). If the
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real spin representation is of the complex type the argument is more interesting. Let
S be the real irreducible spin module so that SC = S+ ⊕ S−. Let J be the conju-
gation in SC that defines S. Then JS± = S∓. There exists a pairing (·, ·) between
S±. Define b(s+, t+) = (s+, Jt+), (s+, t+ ∈ S+). Then b is a Spin+(V )-invariant
sesquilinear form; as S+ is irreducible, the space of invariant sesquilinear forms is
of dimension 1 and so b is a basis for this space. Since this space is stable under
adjoints, b is either Hermitian or skew Hermitian, and replacing b by ib if necessary
we may assume that S+ admits a Hermitian invariant form. Hence Γ ⊂ SU(a, b).
The maximal compact argument using Corollary 3 above implies as before that
a, b ≥ N/2. Hence Γ ⊂ SU(N2 ,

N
2 ). This finishes the proof of the theorem when

Spin(V ) is noncompact.

Spin group compact. This means that p = 0 so that D = −Σ. So we consider the
three cases when the real spin module is of the real, quaternionic or complex types.
If the type is real, the spin representation is orthogonal and so Γ ⊂ SO(N). If the
type is quaternionic, Γ is contained in a compact form of the complex symplectic
group and so Γ ⊂ Sp(N). Finally if the real spin module is of the complex type,
the previous discussion tells us that Γ admits a Hermitian invariant form, and so
as the action of γ is irreducible, this form has to be definite (since the compactness
of γ implies that it admits an invariant definite hermitian form anyway). Hence
γ ⊂ SU(N). This finishes the proof of the theorem.

Low dimensional isomorphisms.

In dimensions D = 3, 4, 5, 6, 8 the dimension of the spin group is the same as the
dimension of the real group containing its image in spinor space and so the spin
representation(s) defines a covering map. We need the following lemma.

Lemma 5.6.6. Let V be a real quadratic space of dimension D 6= 4. Then the spin
representation(s) is faithful except when D = 4k and V ' Ra,b where both a and
b are even. In this case the center of Spin(V ) ' Z2 ⊕ Z2 in such a way that the
diagonal subgroup is the kernel of the covering map Spin(V ) −→ SO(V )0, and the
two semispin representations have kernels as the two subgroups of order 2 in the
center which are different from the diagonal subgroup.

Proof. If D is odd, Spin(VC) has center C ' Z2. Since so(VC) is simple, the
kernel of the spin representation is contained in C. It cannot be C as then the spin
represents would descend to the orthogonal group. So the spin representation is
faithful.

For D even the situation is more delicate. Let C be the center of Spin(VC)
(see end of Section 3). If D = 4k + 2, we have C ' Z4 and the nontrivial element
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of the kernel of Spin(VC) −→ SO(VC) is the unique element of order 2 in C, and
this goes to −1 under the (semi)spin representations. It is then clear that they are
faithful on C, and the simplicity argument above (which implies that their kernels
are contained in C) shows that they are faithful on the whole group.

If D = 4k, then C ' Z2 ⊕ Z2. From our description of the center of Spin(VC)
in Section 3 we see that after identifying Z2 with {0, 1}, the nontrivial element z of
the kernel of the covering map Spin(VC) −→ SO(VC) is (1, 1). Let z1 = (1, 0), z2 =
(0, 1). Since z = z1z2 goes to −1 under the semispin representations S±, each of
S± must map exactly one of z1, z2 to 1. They cannot both map the same zi to 1
because the representation S+⊕S− of C(VC)+ is faithful. Hence the kernels of S±

are the two subgroups of order 2 inside C other than the diagonal subgroup. We
now consider the restriction to Spin(V ) of S±. Let V = Ra,b with a + b = D. If
a, b are both odd, and I is the identity endomorphism of V , −I /∈ SO(a) × SO(b)
and so the center of SO(V )0 is trivial. This means that the center of Spin(V ) is
Z2 and is {1, z}. So the semispin representations are again faithful on Spin(V ).
Finally suppose that both a and b are even. Then −I ∈ SO(a)× SO(b) and so the
center of Spin(V )0 consists of ±I. Hence the center of Spin(V ) has 4 elements and
so coincides with C, the center of Spin(VC). Thus the earlier discussion for complex
quadratic spaces applies without change and the two spin representations have as
kernels the two Z2 subgroups of C that do not contain z. This finishes the proof of
the lemma.

The case D = 4 is a little different because the orthogonal Lie algebra in
dimension 4 is not simple but splits into two simple algebras. Nevertheless the
table remains valid and we have

Spin(0, 4) −→ SU(2), Spin(2, 2) −→ SL(2,R).

The groups on the left have dimension 6 while those on the left are of dimension 3,
and so the maps are not covering maps. The case of Spin(1, 3) is more interesting.
We can identify it with SL(2,C)R where the suffix R means that the group is the
underlying real Lie group of the complex group. LetH be the space of 2×2 hermitian
matrices viewed as a quadratic vector space with the metric h 7−→ det(h)(h ∈ H).
If we write

h =
(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
(xµ ∈ R)

then
det(h) = x2

0 − x2
1 − x2

2 − x2
3

so that H ' R1,3. The action of SL(2,C) on H is given by

g, h 7−→ ghgT
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which defines the covering map

SL(2,C)R −→ SO(1, 3)0.

The spin representations are

2 : g 7−→ g, 2 : g 7−→ g

and their images are exactly SL(2,C)R.

The following special isomorphisms follow from the lemma above. The symbol
A

2−→ B means that A is a double cover of B.

D = 3

Spin(1, 2) ' SL(2,R)
Spin(3) ' SU(2)

D = 4

Spin(1, 3) ' SL(2,C)R

D = 5

Spin(2, 3) ' Sp(4,R)
Spin(1, 4) ' Sp(2, 2)

Spin(5) ' Sp(4)

D = 6

Spin(3, 3) ' SL(4,R)
Spin(2, 4) ' SU(2, 2)
Spin(1, 5) ' SU∗(4) ' SL(2,H)

Spin(6) ' SU(4)
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D = 8

Spin(4, 4) 2−→ SO(4, 4)

Spin(2, 6) 2−→ SO∗(8)

Spin(8) 2−→ SO(8)

Finally, the case D = 8 deserves special attention. In this case the Dynkin
diagram has three extreme nodes and so there are 3 fundamental representations
of Spin(V ) where V is a complex quadratic vector space of dimension 8. They
are the vector representation and the two spin representations. They are all of
dimension 8 and their kernels are the three subgroups of order 2 inside the center
C of Spin(V ). In this case the group of automorphisms of the Dynkin diagram is
S3, the group of permutations of {1, 2, 3}. This is the group of automorphisms of g
modulo the group of inner automorphisms and so is also the group of automorphisms
of Spin(V ) modulo the inner automorphisms. Thus S3 itself operates on the set
of equivalence classes of irreducible representations. Since it acts transitively on
the extreme nodes it permutes transitively the three fundamental representations.
Thus the three fundamental representations are all on the same footing. This is
the famous principle of triality , first discovered by E. Cartan13. Actually, S3 itself
acts on Spin(V ).

5.7. Appendix: Some properties of the orthogonal groups. We would like
to sketch a proof of Cartan’s theorem on reflections and some consequences of it.
We work over k = R or C and V a quadratic vector space over k. The notations
are as in §5.3. We write however Φ(u, v) = (u, v) for simplicity.

For any nonisotropic vector v ∈ V the reflection Rv is the orthogonal trans-
formation that reflects every vector in the hyperplane orthogonal to v. It can be
computed to be given by

Rvx = x− 2
(x, v)
(v, v)

v (x ∈ V ).

By a reflection we simply mean an element of the form Rv for some nonisotropic v.
Cartan’s theorem says that any element of O(V ) is a product of at most n reflections
where n = dim(V ). The simplest example is when V = K2 with the metric such
that (e1, e1) = (e2, e2) = 0, (e1, e2) = 1. Then, for v = e1 + av2 where a 6= 0 the
reflection Rv is given by

Rv =
(

0 −a−1

−a 0

)
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so that

Tc =
(
c 0
0 c−1

)
= RvRv′ , v = e1 + ae2, v

′ = e1 + ace2.

However in the general case T can be more complicated, for instance can be unipo-
tent, and so it is a more delicate argument. For the proof the following special case
is essential. Here V = k4 with basis e1, e2, f1, f2 where

(ei, ej) = (fi, fj) = 0, (ei, fj) = δij

and

T =
(
I2 B
0 I2

)
B =

(
0 1
−1 0

)
with I2 as the unit 2× 2 matrix. In this case let

R1 = Re2+f2 , R2 = Re2+cf2 , (c 6= 0, 6= 1).

Then a simple calculation shows that

S := R2R1T : e1 7−→ e1, f1 7−→ f1, e2 7−→ c−1e2 f2 7−→ cf2.

Hence S is the direct sum of I and Tc and so is a product of 2 reflections, showing
that T is a product of 4 reflections.

We can now give Cartan’s proof which uses induction on n = dim(V ). If
T ∈ O(V ) fixes a nonisotropic vector it leaves the orthogonal complement invariant
and the result follows by induction; T is then a product of at most n−1 reflections.
Suppose that x ∈ V is not isotropic and the vector Tx − x is also not isotropic.
Then the reflection R in the hyperplane orthogonal to Tx − x will also send x
to Tx. So RTx = x and as x is not isotropic the argument just given applies.
However it may happen that for all nonisotropic x, Tx − x is isotropic. Then by
continuity Tx− x will be isotropic for all x ∈ V . We may also assume that T fixes
no nonisotropic x. We shall now show that in this case n = 4q and T is a direct
sum of p transformations of the example in dimension 4 discussed above.

Let L be the image of V under T − I. Then L is an isotropic subspace of V
and so L ⊂ L⊥. We claim that L = L⊥. If x ∈ L⊥ and y ∈ V , then Tx = x+ ` and
Ty = y+`′ where `, `′ ∈ L. Since (Tx, Ty) = (x, y) we have (x, `′)+(y, `)+(`, `′) = 0.
But (x, `) = (`, `′) = 0 and so (y, `) = 0. Thus ` = 0, showing that T is the identity
on L⊥. Since T cannot fix any nonisotropic vector this means that L⊥ is isotropic
and so L⊥ ⊂ L, proving that L = L⊥. Thus n = 2p where p is the dimension
of L = L⊥. In this case it is a standard result that we can find another isotropic
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subspace M such that V = L⊕M and (·, ·) is nonsingular on L×M . Hence with
respect to the direct sum V = L⊕M , T has the matrix(

I B
0 I

)
B ∈ Hom(M,L),

and the condition that (Tx, Ty) = (x, y) for all x, y ∈ V gives

(Bm,m′) + (Bm′,m) = 0 (m,m′ ∈M).

We now claim that B is an isomorphism of M with L. Suppose that Bm = 0 for
some nonzero m ∈ M . We choose ` ∈ L such that (m, `) 6= 0 and then a constant
a such that m+ a` is not isotropic. Since Bm = 0 we have T (m+ a`) = m+ a`, a
contradiction as T cannot fix any nonisotropic vector.

Thus B is an isomorphism of M with L. The nonsingularity of B implies that
the skewsymmetric bilinear form

m,m′ 7−→ (Bm,m′)

is nondegenerate and so we must have p = 2q and there is a basis (mi) of M such
that (Bmi,mj) = δj,q+i (1 ≤ i ≤ q). If (`i) is the dual basis in L then the matrix
of T in the basis (`i,mj) is(

I2q J2q

0 I2q

)
J2q =

(
0 Iq
−Iq o

)
where Ir is the unit r × r matrix. Then dim(V ) = 4q and T is a direct sum of q
copies of the 4× 4 matrix treated earlier as an example and the result for T follows
immediately. This finishes the proof. We have thus proved the following.

Theorem 5.7.1. Let V be a quadratic vector space over k = R or C of dimension
n. Then any element of O(V ) is a product of at most n reflections. An element
of O(V ) lies in SO(V ) if and only if it is a product of an even number 2r ≤ n of
reflections.

Connected components. We shall now determine the identity component of
O(V ). Since the determinant is ±1 for elements of O(V ) it is clear that the identity
component is contained in SO(V ). But SO(V ) is not always connected. In the
complex case it is standard that SO(V ) is connected10 and so we need to consider
only the real case. We want to obtain the result as a consequence of the above
theorem of Cartan, as Cartan himself did in5. Let V = Rp,q. We may assume that
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0 ≤ p ≤ q. If p = 0, we are in the case of the real orthogonal groups and the group
SO(V ) is again connected.

First assume that p ≥ 2. The quadratic form is

x2
1 + . . .+ x2

p − x2
p+1 − . . .− x2

p+q

and let (ei)1≤i≤p+q be the standard basis for V . Let us call a nonisotropic vector u
timelike if (u, u) > 0 and spacelike if (u, u) < 0. Let V ± be the subspaces spanned
by (ei)1≤i≤p and (ei)p+1≤i≤p+q. The matrix of an element T of SO(V ) is of the
form (

A 0
C D

)
corresponding to the direct sum V = V + ⊕ V −. We claim that det(A) 6= 0. If not,
there is a nonzero timelike vector u+ such that Tu+ is spacelike, a contradiction.
So on any component of SO(V ) the sign of det(T ) is constant and so we already
have the parts SO(V )± where this sign is > 0 or < 0. Any element T of SO(V )
can be written as Rv1 . . . Rv2r where each vj is either timelike or spacelike. But
RvRw = RRvwRv, and Rvw is like w, and so we can arrange that in the product
representation of T we have all the timelike and spacelike reflections together.

Any vector x with (x, x) = 1 can be written as cosh t u++sinh t u− where t ≥ 0,
and u± ∈ V ± with (u±, u±) = ±1. It is clear that u+ can be continuously joined to
e1, u− similarly to ep+1, and, then changing t continuously to 0 we see that x can
be continuously joined to e1. Thus the timelike vectors form a connected domain.
A similar argument shows that the spacelike vectors also form a connected domain.
Since the map that takes a vector to the reflection in the orthogonal hyperplane is
continuous, it follows that any element T ∈ SO(V ) can be continuously joined to
an element of the form Rre1R

r
ep+1

where r is 0 or 1. Clearly r = 0 or 1 according
as T ∈ SO(V )± and the cases are distinguished by whether T is the product of
an even or odd number each of timelike and spacelike reflections. So we see that
SO(V )± are themselves connected and the identity component is SO(V )+ which is
characterized as the set of T expressible as a product of an even number each of
timelike and spacelike reflections.

It remains to discuss the case when p = 1. Assume that q ≥ 2. The argument
for the connectedness of the set of spacelike vectors remains valid, but for the
timelike vectors there are two connected components, depending on whether they
can be connected to ±e1. For any timelike vector x =

∑
i xiei we have x2

1 − x2
2 −

. . . − x2
q+1 > 0 and so x2

1 > 0, so that the sign of x1 is constant on any connected
component. But ±e1 define the same reflection and so the argument to determine
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the identity component of SO(V ) remains valid. The case p = q = 1 is trivial. We
have thus proved the following.

Theorem 5.7.2. The group SO(p, q) is connected if and only if either p or q is
0. Otherwise it has 2 connected components and the identity component consists of
those elements which can be expressed as a product of an even number each of the
timelike and spacelike reflections.

The case p = 1 deserves some additional remarks since it is the Minkowski
signature and so plays an important role in physics. To avoid trivialities let us
assume that q ≥ 2. Number the standard basis vectors as e0, e1, . . . , eq where
(e0, e0) = 1 and (ej , ej) = −1 for j = 1, 2, . . . , q. In this case the timelike vectors
x = x0e0 +

∑
j xjej are such that x2

0 >
∑
j x

2
j and hence the two components are

those where x0 > or < 0. These are the forward and backward light cones. If x is a
unit vector in the forward cone we can use a rotation in the space V − to move x to
a vector of the form x0e0 + x1e1; and then using hyperbolic rotations in the span
of e0, e1 we can move it to e0. Suppose now that x, x′ are two unit vectors in the
forward cone. We claim that (x, x′) > 1 unless x = x′ (in which case (x, x′) = 1).
For this we may assume that x = e0. Then (x, x′) = x′0 ≥ 1; if this is equal to 1,
then x′j = 0 for j ≥ 1 and so x′ = e0. Thus

(x, x′) > 1, = 1 ⇐⇒ x = x′ ((x, x) = (x′, x′) = 1, x0, x
′
0 > 0). (∗)

We can now modify the argument of Theorem 1 to show that any T ∈ O(1, q) is
a product of at most n = q + 1 spacelike reflections. This is by induction on q.
Let T ∈ O(1, q) and suppose that x is a timelike unit vector. If Tx = x, then the
orthogonal complement of x is a definite space of dimension n − 1 and since there
are only spacelike reflections we are through by induction. Otherwise Tx = x′ is a
timelike vector distinct from x. Then

(x− x′, x− x′) = 2− 2(x, x′) < 0

by (∗) so that x−x′ is a spacelike vector. The reflection R = Rx−x′ is the spacelike
and takes x to x′ also. Hence T ′ = RT fixes x and induction applies once again.
Thus we have proved the following.

Theorem 5.7.3. If p = 1 ≤ q, all elements of O(1, q) are products of at most
n = q + 1 spacelike reflections, and they belong to SO(1, q)0 if and only if the
number of reflections is even.
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