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3.1. The category of super vector spaces. Super linear algebra deals with the
category of super vector spaces over a field k. We shall fix k and suppose that it is
of characteristic 0; in physics k is R or C. The objects of this category are super
vector spaces V over k, namely, vector spaces over k which are Z2-graded, i.e., have
decompositions

V = V0 ⊕ V1 (0, 1 ∈ Z2 = Z/2Z).

The elements of V0 are called even and those of V1 odd. If di is the dimension of Vi,
we say that V has dimension (d0|d1). For super vector spaces V,W , the morphisms
from V to W are linear maps V −→ W which preserve the gradings. They form a
linear space denoted by Hom(V,W ). For any super vector space V the elements in
V0∪V1 are called homogeneous and if they are nonzero, their parity is defined to be
0 or 1 according as they are even or odd. The parity function is denoted by p. In any
formula defining a linear or multilinear object in which the parity function appears,
it is assumed that the elements involved are homogeneous (so that the formulae
make sense) and that the definition is extended to nonhomogeneous elements by
linearity. If we take V = kp+q with its standard basis ei(1 ≤ i ≤ p+ q) and define
ei to be even (odd) if i ≤ p (i > p), then V becomes a super vector space with

V0 =
p∑
i=1

kei, V1 =
q∑

i=p+1

kei.
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It is denoted by kp|q.

The notion of direct sum for super vector spaces is the obvious one. For super
vector spaces V,W , their tensor product is V ⊗W whose homogeneous parts are
defined by

(V ⊗W )i =
∑

j+m=i

Vj ⊗Wm

where i, j,m are in Z2 and + is addition in Z2. Thus

(V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1), (V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0).

For super vector spaces V,W , the so-called internal Hom, denoted by Hom(V,W ),
is the vector space of all linear maps from V to W , where the even maps are the
ones preserving the grading and the odd maps are those that reverse the grading.
In particular,

(Hom(V,W ))0 = Hom(V,W ).

If V is a super vector space, we write End(V ) for Hom(V, V ). The dual of a
super vector space V is the super vector space V ∗ where (V ∗)i is the space of linear
functions from V to k that vanish on V1−i.

The rule of signs and its consistency. The ⊗ in the category of vector spaces is
associative and commutative in a natural sense. Thus, for ordinary, i.e., ungraded
or purely even vector spaces U, V,W , we have the natural associativity isomorphism

(U ⊗ V )⊗W ' U ⊗ (V ⊗W ), (u⊗ v)⊗ w 7−→ u⊗ (v ⊗ w)

and the commutativity isomorphism

cV,W : V ⊗W 'W ⊗ V, v ⊗ w 7−→ w ⊗ v.

For the category of super vector spaces the associativity isomorphism remains the
same; but the commutativity isomorphism is changed to

cV,W : V ⊗W 'W ⊗ V, v ⊗ w 7−→ (−1)p(v)p(w)w ⊗ v.

This is the first example where the defining formula is given only for homogeneous
elements and it is assumed to be extended by linearity. Notice that

cV,W cW,V = id.
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This definition is the source of the rule of signs used by physicists which says that
whenever two terms are interchanged in a formula, a minus sign will appear if both
terms are odd.

The commutativity and associativity isomorphisms are compatible in the fol-
lowing sense. If U, V,W are super vector spaces,

cU,V⊗W = cU,W cU,V , cV,W cU,W cU,V = cU,V cU,W cV,W

as is easily checked. These relations can be extended to products of more than 3
super vector spaces. Suppose that Vi(1 ≤ i ≤ n) are super vector spaces, and σ
is a permutation of {1, 2, . . . , n}. Then σ is a product si1si2 . . . sir where sj is the
permutation that just interchanges j and j + 1. Writing

L(sj) = I ⊗ . . .⊗ cVj ,Vj+1 ⊗ . . .⊗ Vn

and applying these commutativity isomorphisms successively interchanging adjacent
terms in V1 ⊗ . . .⊗ Vn we have an isomorphism

L(σ) = L(si1) . . . L(sir ) : V1 ⊗ . . .⊗ Vn ' Vσ−1(1) ⊗ . . .⊗ Vσ−1(n).

This isomorphism is independent of the way σ is expressed as a composition
si1 . . . sir and is given by

L(σ) : v1 ⊗ . . .⊗ vn 7−→ (−1)p(σ)vσ−1(1) ⊗ . . .⊗ vσ−1(n)

where
p(σ) =

{
(i, j)

∣∣ vi, vj odd, i < j, σ(i) > σ(j)
}
.

Furthermore, we have
L(στ) = L(σ)L(τ).

If all the Vi are the same and equal to V , we have an action of the group Sn in
V ⊗ . . .⊗ V .

We shall now prove these results. Our convention is that the elements of Sn
are mappings of the set {1, 2, . . . , n} onto itself and that the product is composition
of mappings. We fix a super vector space V . For n = 1 the group Sn is trivial.
We begin by discussing the action of Sn on the n-fold tensor product of V with
itself. For n = 2 the group Sn is Z2, and we send the nontrivial element to the
transformation cV,V on V ⊗ V to get the action. Let us assume now that n ≥ 3.
On V3 := V ⊗ V ⊗ V we have operators c12, c23 defined as follows:

c12 : v1 ⊗ v2 ⊗ v3 7−→ (−1)p(v1)p(v2)v2 ⊗ v1 ⊗ v3,

c23 : v1 ⊗ v2 ⊗ v3 7−→ (−1)p(v2)p(v3)v1 ⊗ v3 ⊗ v2.
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We then find by a simple calculation that

c12c23c12 = c23c12c23.

In the group S3 the interchanges of 1, 2 and 2, 3 are represented by involutions s1, s2

respectively and S3 is the group generated by them with the relation

s1s2s1 = s2s1s2.

So there is an action of S3 on V3 generated by the cij . This action, denoted by
σ 7−→ L(σ), can be explicitly calculated for the six elements of S3 and can be
written as follows:

L(σ) : v1 ⊗ v2 ⊗ v3 7−→ (−1)p(σ)vσ−1(1) ⊗ vσ−1(2) ⊗ vσ−1(3)

where

p(σ) =
∑

(k,`)∈N(σ)

p(vk)p(v`), N(σ) = {(k, `) | k < `, σ(k) > σ(`)}.

This description makes sense for all n and leads to the following formulation.

Proposition 3.1.1. There is a unique action L of Sn on Vn := V ⊗ . . . ⊗ V (n
factors) such that for any i < n, the element si of Sn that sends i to i+ 1 and vice
versa and fixes all the others, goes over to the map

L(si) : v1 ⊗ . . .⊗ vn 7−→ (−1)p(vi)p(vi+1)v1 ⊗ . . .⊗ vi+1 ⊗ vi ⊗ . . .⊗ vn.

For arbitrary σ let N(σ), p(σ) be defined as above. Then

L(σ) : v1 ⊗ . . .⊗ vn 7−→ (−1)p(σ)vσ−1(1) ⊗ . . .⊗ vσ−1(n).

Finally, we can write

p(σ) = #{(k, `) | k < `, vk, v` both odd, σ(k) > σ(`)}.

Proof. The calculation above for n = 3 shows that for any i < n we have

L(si)L(si+1)L(si) = L(si+1)L(si)L(si+1).
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Since Sn is generated by the si with the relations

sisi+1si = si+1sisi+1 (1 ≤ i ≤ n− 1)

it is immediate that there is an action of Sn on Vn that sends si to L(si) for all i.
If we disregard the sign factors this is the action

R(σ) : v1 ⊗ . . .⊗ vn 7−→ vσ−1(1) ⊗ . . .⊗ vσ−1(n).

Hence except for the sign factor we are done. We shall prove the formula for the sign
factor by induction on `(σ), the length of σ, which is by definition the cardinality
#N(σ) of the set N(σ).

First of all, `(σ) = 1 if and only if σ = si for some i and the result is then
obvious. Suppose `(σ) > 1 and we assume the result for elements of smaller length.
We can find i such that (i, i+1) ∈ N(σ); we define τ = σsi. It is then easily verified
that k < ` ⇐⇒ sik < si` whenever k < ` and (k, `) 6= (i, i+ 1), and

(k, `) ∈ N(τ) ⇐⇒ (sik, si`) ∈ N(σ) (k < `, (k, `) 6= (i, i+ 1))

while
(i, i+ 1) ∈ N(σ), (i, i+ 1) /∈ N(τ).

It follows from this that
`(τ) = `(σ)− 1.

The result is thus true for τ . Now

L(σ) (v1 ⊗ . . .⊗ vn) = (−1)p(vi)p(vi+1)L(τ) (vsi1 ⊗ . . .⊗ vsin)
= (−1)qR(σ) (v1 ⊗ . . .⊗ vn)

where

q = p(vi)p(vi+1) +
∑

(k,`)∈N(τ)

p(vsik)p(vsi`) =
∑

(k′,`′)∈N(σ)

p(vk′)p(v`′) = p(σ).

This completes the proof.

Corollary 3.1.2. Let Vi(i = 1, . . . , n) be super vector spaces. For each σ ∈ Sn let
L(σ) be the map

L(σ) : V1 ⊗ . . .⊗ Vn −→ Vσ−1(1) ⊗ . . .⊗ Vσ−1(n)
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be defined by

L(σ) : v1 ⊗ . . .⊗ vn 7−→ (−1)p(σ)vσ−1(1) ⊗ . . .⊗ vσ−1(n).

If σ = si1 . . . sir then
L(σ) = L(si1) . . . L(sir )

where, for all i,
L(si) = I ⊗ . . .⊗ cVi,Vi+1 ⊗ I . . .⊗ I.

In particular,
L(στ) = L(σ)L(τ).

Proof. Take V = ⊕Vi and apply the proposition. The result is immediate.

Remark. The above corollary shows that the result of applying the exchanges
successively at the level of tensors is independent of the way the permutation is
expressed as a product of adjacent interchanges. This is the fundamental reason
why the rule of signs works in super linear algebra in a consistent manner.

Super algebras. A super algebra A is a super vector space which is an associative
algebra (always with unit 1 unless otherwise specified) such that multiplication is
a morphism of super vector spaces from A⊗A to A. This is the same as requiring
that

p(ab) = p(a) + p(b).

It is easy to check that 1 is always even, that A0 is a purely even subalgebra, and
that

A0A1 ⊂ A1, A2
1 ⊂ A0.

If V is a super vector space, End(V ) is a super algebra. For a super algebra its
super center is the set of all elements a such that ab = (−1)p(a)p(b)ba for all b; it is
often written as Z(A). This definition is an example that illustrates the sign rule.
We have

Z(End(V )) = k · 1.

It is to be mentioned that the super center is in general different from the center of A
viewed as an ungraded algebra. Examples of this will occur in the theory of Clifford
algebras that will be treated in Chapter 5. If V = kp|q we write M(p|q) or Mp|q

for End(V ). Using the standard basis we have the usual matrix representations for
elements of M(p|q) in the form (

A B
C D

)
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where the letters denote matrices with A,B,C,D of orders respectively p × p, p ×
q, q × p, q × q. The even elements and odd elements are respectively of the form(

A 0
0 D

) (
0 B
C 0

)
.

A super algebra A is said to be commutative if

ab = (−1)p(a)p(b)ba

for all (homogeneous) a, b ∈ A. The terminology can cause some mild confusion
because k[t] with t odd and t2 = 1 is a super algebra which is commutative as an
algebra but not as a super algebra. Indeed, in a commutative super algebra, we
have

ab+ ba = 0, a2 = 0

for odd a, b; in particular, odd elements are nilpotent. This is false for t in the
above example. For this reason, and in order to avoid confusion, commutative su-
per algebras are often called supercommutative. The exterior algebra over an even
vector space is an example of a supercommutative algebra. If the vector space has
finite dimension this super algebra is isomorphic to k[θ1, . . . , θq] where the θi are
anticommuting, i.e., satisfy the relations θiθj + θjθi = 0 for all i, j. If A is super-
commutative, A0 (super)commutes with A. We can formulate supercommutativity
of an algebra A by

µ = µ ◦ cA,A, µ : A⊗A −→ A

where µ is multiplication. Formulated in this way there is no difference from the
usual definition of commutativity classically. In this definition the sign rule is
hidden. In general it is possible to hide all the signs using such devices.

A variant of the definition of supercommutativity leads to the definition of the
opposite of a super algebra. If A is a super algebra, its opposite Aopp has the same
super vector space underlying it but

a · b = (−1)p(a)p(b)ba

where a·b is the product of a and b in Aopp. This is the same as requiring that

µopp = µ ◦ cA,A.

Thus A is supercommutative if and only if Aopp = A.
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Super Lie algebras. If we remember the sign rule it is easy to define a Lie super
algebra or super Lie algebra. It is a super vector space g with a bracket [ , ] which
is a morphism from g⊗ g to g with the following properties:

(a) [a, b] = −(−1)p(a)p(b)[b, a].
(b) The (super) Jacobi identity

[a, [b, c]] + (−1)p(a)p(b)+p(a)p(c)[b, [c, a]] + (−1)p(a)p(c)+p(b)p(c)[c, [a, b]] = 0.

One can hide the signs above by rewriting these relations as

(a) [ , ](1 + cg,g) = 0.
(b) The (super) Jacobi identity

[ , [ , ]](1 + σ + σ2) = 0

where σ is the automorphism of g ⊗ g ⊗ g corresponding to the cyclic
permutation (123) 7−→ (312).

Thus, (b) shows that the super Jacobi identity has the same form as the ordinary
Jacobi identity for ordinary Lie algebras. Thus the super Lie algebra is defined in
exactly the same manner in the category of super vector spaces as an ordinary Lie
algebra is in the category of ordinary vector spaces. It thus appears as an entirely
natural object. One might therefore say that a super Lie algebra is a Lie object in
the category of super vector spaces.

There is a second way to comprehend the notion of a super Lie algebra which
is more practical. The bracket is skew symmetric if one of the elements is even and
symmetric if both are odd. The super Jacobi identity has 8 special cases depending
on the parities of the three elements a, b, c. If all three are even the definition is
simply the statement that g0 is a (ordinary) Lie algebra. The identities with 2 even
and 1 odd say that g1 is a g0-module. The identities with 2 odd and 1 even say
that the bracket

g1 ⊗ g1 −→ g0

is a symmetric g0-map. Finally, the identities for all three odd elements reduce to

[a, [b, c]] + . . .+ . . . = 0 (a, b, c ∈ g1)

where + . . .+ . . . is cyclic summation in a, b, c. It is not difficult to see that the last
requirement is equivalent to

[a, [a, a]] = 0 (a ∈ g1).
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Indeed, if this condition is assumed, then replacing a by xa+yb where a, b ∈ g1 and
x, y ∈ k we find that

[b, [a, a]] + 2[a, [a, b]] = 0 (a, b ∈ g1).

But then

0 = [a+ b+ c, [a+ b+ c, a+ b+ c]] = 2 ([a, [b, c]] + [b, [c, a]] + [c, [a, b]]) .

Thus a super Lie algebra is a super vector space g on which a bilinear bracket [ , ]
is defined such that

(a) g0 is an ordinary Lie algebra for [ , ].

(b) g1 is a g0-module for the action a 7−→ ad(a) : b 7−→ [a, b] (b ∈ g1).

(c) a⊗ b 7−→ [a, b] is a symmetric g0-module map from g1 ⊗ g1 to g0.

(d) For all a ∈ g1, we have [a, [a, a]] = 0.

Except for (d) the other conditions are linear and can be understood within the
framework of ordinary Lie algebras and their representations. The condition (d) is
nonlinear and is the most difficult to verify in applications when Lie super algebras
are constructed by putting together an ordinary Lie algebra and a module for it
satisfying (a)-(c).

If A is a super algebra, we define

[a, b] = ab− (−1)p(a)p(b)ba (a, b ∈ A).

It is then an easy verification that [ , ] converts A into a super Lie algebra. It is
denoted by AL but often we omit the suffix L. If A = End(V ), we often write
gl(V ) for the corresponding Lie algebra; if V = Rp|q we write gl(p|q) for gl(V ).

Let g be a super Lie algebra and for X ∈ g let us define

ad X : g −→ g, ad X(Y ) = [X,Y ].

Then
ad : X 7−→ ad X

is a morphism of g into gl(g). The super Jacobi identity is just the relation

[ad X, ad Y ] = ad [X,Y ] (X,Y ∈ g).
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The supertrace. Let V = V0 ⊕ V1 be a finite dimensional super vector space and
let X ∈ End(V ). Then we have

X =
(
X00 X01

X10 X11

)
where Xij is the linear map of Vj to Vi such that Xijv is the projection on Vi of
Xv for v ∈ Vj . The super trace of X is now defined as

str(X) = tr(X00)− tr(X11).

It is easy to verify that

str(XY ) = (−1)p(X)p(Y )str(Y X) (X,Y ∈ End(V )).

In analogy with the classical situation we write sl(V ) for the space of elements in
gl(V ) with super trace 0; if V = Rp|q, then we write sl(p|q) for sl(V ). Since the
odd elements have supertrace 0, sl(V ) is a sub super vector space of gl(V ). It is
easy to verify that

[X,Y ] ∈ sl(V ) (X,Y ∈ gl(V )).

Thus sl(V ) is a sub super Lie algebra of gl(V ). Corresponding to the classical
series of Lie algebras gl(n), sl(n) we thus have the series gl(p|q), sl(p|q) of super Lie
algebras. In Chapter 6 we shall give Kac’s classification of simple super Lie algebras
over an algebraically closed field of which the sl(p|q) are particular examples.

3.2. The super Poincaré algebra of Gol’fand and Likhtman. Although
we have given a natural and simple definition of super Lie algebras, historically
they emerged first in the works of physicists. Gol’fand and Likhtman constructed
the super Poincaré algebra in 1971 and Wess and Zumino constructed the super-
conformal algebra in 1974. These were ad hoc constructions, and although it was
realized that these were new algebraic structures, their systematic theory was not
developed till 1975 when Kac3 introduced Lie super algebras in full generality and
classified the simple ones over C and R. We shall discuss these two examples in
some detail because they contain much of the intuition behind the construction of
superspacetimes and their symmetries. We first take up the super Poincaré algebra
of Gol’fand and Likhtman.

Let g be a Lie super algebra. This means that

g = g0 ⊕ g1
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where g1 is a g0-module with appropriate properties. The basic assumptions in all
constructions of superspacetimes are the following.

(1) g is a real Lie super algebra.
(2) g1 is a very special type of g0-module, namely, it is spinorial.
(3) The spacetime momenta should be captured among the commutators

[A,B] where A,B ∈ g1, i.e., [g1, g1] should contain the translation sub-
space of g0.

The condition (2) means that either g0 or some quotient of it is an orthogonal Lie
algebra, g0 acts on g1 through this quotient, and the module g1 is spinorial, i.e.,
its complexification is a direct sum of spin modules of this orthogonal Lie algebra.
This restriction of g1 has its source in the fact that in quantum field theory the
objects obeying the anticommutation rules were the spinor fields, and this property
was then taken over in the definition of spinor fields at the classical level.

In the example of Gol’fand-Likhtman, g0 is the Poincaré Lie algebra, i.e.,

g0 = t⊕ l

where t ' R4 is the abelian Lie algebra of spacetime translations, l is the Lorentz
Lie algebra so(1, 3), namely, the Lie algebra of SO(1, 3)0, and the sum is semidirect
with respect to the action of l on t; in particular t is an abelian ideal. g0 is thus
the Lie algebra of the Poincaré group and hence g is to be thought of as a super
Poincaré algebra. We shall also assume that g is minimal in the sense that there is
no sub super Lie algebra that strictly includes g0 and is strictly included in g.

The Poincaré group P acts on g1 and one can analyze its restriction to the
translation subgroup in a manner analogous to what was done in Chapter 1 for
unitary representations except now the representation is finite dimensional and not
unitary. Since t is abelian, by Lie’s theorem on solvable actions we can find eigen-
vectors in the complexification (g1)C of g1 for the action of t. So there is a linear
function λ on t such that

Vλ :=
{
v ∈ (g1)C, | [X, v] = λ(X)v, X ∈ t

}
6= 0.

If L is the Lorentz group SO(1, 3)0 and we write X 7−→ Xh for the action of h ∈ L
on t as well as g1, we have

ad (Xh) = h ad (X) h−1.

This shows that shows that h takes Vλ to Vλh where λh(X) = λ(Xh−1
) for X ∈ t.

But g1,µ can be nonzero only for a finite set of linear functions µ on t, and hence
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λ = 0. But then g1,0 is stable under L so that g0 ⊕ g1,0 is a Lie super algebra. By
minimality it must be all of g. Hence in a minimal g the action of t on g1 is 0. This
means that g0 acts on g1 through l so that it makes sense to say that g1 is spinorial.
Furthermore, if g = g0 ⊕ g1 is any super Lie algebra and h is a g0-submodule of g1,
then g0 ⊕ h is a sub super Lie algebra of g. Hence if g is a minimal extension of g0,
then g1 must be irreducible. Since we are working over R, we must remember that
g1 may not be irreducible after extension of scalars to C.

The irreducible representations of the group SL(2,C), viewed as a real Lie
group, are precisely the representations k ⊗ m where for any integer r ≥ 1, we
write r for the irreducible holomorphic representation of dimension r, m denoting
the complex conjugate representation of the representation m. Recall that 1 is the
trivial representation in dimension 1 and 2 is the defining representation in C2.
Of these 2 and 2 are the spin modules. To get a real irreducible spinorial module
we take notice that 2 ⊕ 2 has a real form. Indeed with C2 as the space of 2, the
representation 2⊕ 2 can be written as(

u
v

)
7−→

(
g · u
g · u

)
(g ∈ SL(2,C), u, v ∈ C2)

where a bar over a letter denotes complex conjugation. This action commutes with
the conjugation

σ :
(
u
v

)
7−→

(
v
u

)
.

We define m to be the real form of 2⊕ 2 defined by σ. We have

mC = 2⊕ 2, m = (mC)σ.

Since 2 and 2 are inequivalent, the above is the only possible decomposition of
mC into irreducible pieces, and so there is no proper submodule of m stable under
the conjugation σ. Thus m is irreducible under g0. This is the so-called Majorana
spinor . Any real irreducible representation of SL(2,C) is a direct sum of copies of
m and so minimality forces g1 to be m. Our aim is to show that there is a structure
of a super Lie algebra on

g = g0 ⊕m

satisfying (3) above. The irreducibility of m ensures the minimality of g as an
extension of g0.

To make g into a Lie super algebra we must find a symmetric g0–map

[ , ] : m⊗m −→ g0
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such that
[a, [a, a]] = 0 (a ∈ m).

Now
mC ⊗mC = (2⊗ 2)⊕ (2⊗ 2)⊕ (2⊗ 2)⊕ (2⊗ 2).

We claim that there is a projectively unique symmetric l-map

L : mC ⊗mC −→ tC

where the right side is the complexification of the 4-dimensional representation of
SO(1, 3)0 viewed as a representation of SL(2,C). To see this we first note that
2 ⊗ 2 descends to a representation of SO(1, 3)0 because −1 acts as −1 on both
factors and so acts as 1 on their tensor product. Moreover it is the only irreducible
representation of dimension 4 of SO(1, 3)0, and we write this as 4v, the vector
representation in dimension 4; of course 4v ' t. Furthermore, using the map
F : u⊗ v 7−→ v ⊗ u we have

2⊗ 2 ' 2⊗ 2 ' 4v.

Thus W = (2 ⊗ 2) ⊕ (2 ⊗ 2) ' 4v ⊕ 4v. On the other hand, W is stable under F
and so splits as the direct sum of subspaces symmetric and skew symmetric with
respect to F , these being also submodules. Hence each of them is isomorphic to
4v. Now 2⊗ 2 is 1⊕ 3 where 1 occurs in the skew symmetric part and 3 occurs in
the symmetric part, and a similar result is true for the complex conjugate modules.
Hence

(mC ⊗mC)symm ' 3⊕ 3⊕ 4v

showing that there is a projectively unique symmetric l-map L from mC ⊗ mC to
tC.

We put
[a, b] = L(a⊗ b) (a, b ∈ mC).

Since L goes into the translation part tC which acts as 0 on mC, we have automat-
ically

[c, [c, c]] = 0 (c ∈ mC).

We have thus obtained a Lie super algebra

s = (g0)C ⊕mC.

This is the complexified super Poincaré algebra of Gol’fand-Likhtman.
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To obtain the appropriate real form of s is now easy. Let us denote by ϕ the
conjugation of tC that defines t. Then, on the one dimensional space of symmetric
l-maps from mC ⊗mC to tC we have the conjugation

M 7−→ σ ◦M ◦ (ϕ⊗ ϕ),

and so there is an element N fixed by this conjugation. If

[a, b] = N(a⊗ b) (a, b ∈ m),

then N maps m⊗m into t and so, as before,

[[c, c], c] = 0 (c ∈ m).

Thus we have a Lie super algebra structure on

g := g0 ⊕m.

This is the super Poincaré algebra constructed by Gol’fand and Likhtman.

It is to be noted that in constructing this example we have made the following
assumptions about the structure of g:

(1) g1 is spinorial,
(2) [ , ] is not identically zero on g1 ⊗ g1 and maps it into t,
(3) g is minimal under the conditions (1) and (2).

Indeed, g is uniquely determined by these assumptions. However, there are other
examples if some of these assumptions are dropped. Since t is irreducible as a
module for l, it follows that the map g1⊗g1 −→ t is surjective and so the spacetime
momenta Pµ (which form a basis of t) can be expressed as anticommutators of
the spinorial odd elements (also called spinorial charges), a fact that is important
because it often leads to the positivity of the energy operator in susy theories. This
aspect of g has prompted a heuristic understanding of g as the square root of the
Poincaré algebra. If we choose the usual basis Pµ,Mµν , for g0, and use a basis (Qα)
for mC, then the commutation rules for g can be expressed in terms of the Pauli
and Dirac matrices in the following form used by physicists:

[Pµ, Qα] = 0, [Mµν , Qα] = −iσµναβQβ

{Qα, Qβ} = −2(γµC−1)αβPµ
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where { , } is the anticommutator, σµν = 1
4 [γµ, γν ], and a (+,+,+,−) Lorentz

metric is used, and C is a so-called charge conjugation matrix.

3.3. Conformal spacetime. The second example we wish to discuss is the super
conformal algebra of Wess and Zumino. To this end we need some preliminary
discussion of conformality.

The relevance of conformality to the physics of radiation goes back to Weyl.
Conformal maps are defined as maps of one Riemannian or pseudo Riemannian
manifold into another that take one metric to a multiple of the other, the multiplying
constant being a strictly positive function that is allowed to vary from point to point.
The simplest example is the dilation x 7→ cx on the space Rp,q, which is Euclidean
space Rp+q equipped with a metric of signature (p, q), where c > 0 is a constant.
Less trivial examples are complex analytic maps f from a domain D in the complex
plane to another domain D′, df being never 0 on D. Such maps are classically
known as conformal maps, which is the reason why the maps in the more general
context are also called conformal. Weyl noticed that the Maxwell equations are
invariant under all conformal transformations; we have seen this in our discussion
of the Maxwell equations. The idea that for radiation problems the symmetry group
should be the conformal group on Minkowski spacetime is also natural because the
conformal group is the group whose action preserves the forward light cone structure
of spacetime. In Euclidean space Rn (with the usual positive definite metric), the
so-called inversions are familiar from classical geometry; these are maps P 7→ P ′

with the property that P ′ is on the same ray s OP (O is the origin) and satisfies

OP. OP ′ = 1;

this determines the map as
x 7−→ x′ =

x

||x||2
.

It is trivial to check that
ds′2 =

1
r4
ds2

so that this map is conformal; it is undefined at O, but by going over to the one-
point compactification Sn of Rn via stereographic projection and defining ∞ to be
the image of O we get a conformal map of Sn. This is typical of conformal maps in
the sense that they are globally defined only after a suitable compactification. The
compactification of Minkowski spacetime and the determination of the conformal
extension of the Poincaré group go back to the nineteenth century and the work of
Felix Klein. It is tied up with some of the most beautiful parts of classical projective
geometry. It was resurrected in modern times by the work of Penrose.
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In two dimensions the conformal groups are infinite dimensional because we
have more or less arbitrary holomorphic maps which act conformally. However this
is not true in higher dimensions; for Rp,q with p + q ≥ 3, the vector fields which
are conformal in the sense that the corresponding one parameter (local) groups of
diffeomorphisms are conformal, already form a finite dimensional Lie algebra, which
is in fact isomorphic to so(p + 1, q + 1). Thus SO(p + 1, q + 1) acts conformally
on a compactification of Rp,q, and contains the inhomogeneous group ISO(p, q) as
the subgroup that leaves invariant Rp,q. In particular SO(1, n+ 1) is the conformal
extension of ISO(n), acting on Sn viewed as the one-point compactification of Rn.
We shall discuss these examples a little later. For the moment we shall concern
ourselves with the case of dimension 4.

The variety of lines in projective space: the Klein quadric. We now treat
the case of dimension 4 in greater detail. We start with a complex vector space
T of dimension 4 and the corresponding projective space P ' CP3 of lines (=
one dimensional linear subspaces) in T . We denote by G the Grassmannian of all
2-dimensional subspaces of T which can be thought of as the set of all lines in P.
The group GL(T ) ' GL(4,C) acts transitively on G and so we can identify G with
the homogeneous space GL(4,C)/P0 where P0 is the subgroup of elements leaving
invariant the plane π0 spanned by e1, e2. Thus P0 consists of matrices of the form(

A B
0 D

)
where A,B,D are 2× 2 matrices, so that G becomes a complex manifold of dimen-
sion 16− 12 = 4. The group SL(T ) ' SL(4,C) already acts transitively on G. We
omit the reference to C hereafter and write GL(T ),SL(T ) etc for the above groups.
Associated to T we also have its second exterior power E = Λ2(T ). The action of
GL(T ) on T lifts to a natural action on E: for g ∈ GL(T ), g(u∧ v) = gu∧ gv. It is
well-known that this action gives an irreducible representation of SL(T ) on E.

We shall now exhibit a SL(T )-equivariant imbedding of G in the projective
space P(E) of E. If π is a plane in T and a, b is a basis for it, we have the element
a∧ b ∈ E; if we change the basis to another (a′, b′) = (a, b)u where u is an invertible
2 × 2 matrix, then a′ ∧ b′ = det(u)a ∧ b and so the image [a ∧ b] of a ∧ b in the
projective space P(E) of E is uniquely determined. This gives the Plücker map P`:

P` : π 7−→ [a ∧ b] (a, b a basis of π).

The Plücker map is an imbedding. To see this, recall first that if a, b are 2 linearly
independent vectors in T , then, for any vector c the condition c ∧ a ∧ b = 0 is
necessary and sufficient for c to lie in the plane spanned by a, b; this is obvious if
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we take a = e1, b = e2 where (ei)1≤i≤4 is a basis for T . So, if a ∧ b = a′ ∧ b′ where
a′, b′ are also linearly independent, then c∧ a′ ∧ b′ = 0 when c = a, b, and hence a, b
lie on the plane spanned by a′, b′ and so the planes spanned by a, b and a′, b′ are
the same. Finally it is obvious that P` is equivariant under GL(T ).

If we choose a basis (ei) for T and define eij = ei ∧ ej , then (eij)i<j is a basis
for E, and one can compute for any plane π of T the homogeneous coordinates of
P`(π). Let π be a plane in T with a basis (a, b) where

a =
∑
i

aiei, b =
∑
i

biei.

Let yij = −yji be the minor defined by rows i, j in the 4× 2 matrix
a1 b1
a2 b2
a3 b3
a4 b4


so that

a ∧ b =
∑
i<j

yijei ∧ ej .

The (yij)i<j are by definition the (homogeneous) Plücker coordinates of π. These
of course depend on the choice of a basis for T .

The image of G under the Plücker map can now be determined com-
pletely. In fact, if p = a ∧ b, then p ∧ p = 0; conversely, if p ∈ E, say
p = (y12, y23, y31, y14, y24, y34), and p ∧ p = 0, we claim that there is a π ∈ G
such that [p] is the image of π under P`. The condition p ∧ p = 0 becomes

y12y34 + y23y14 + y31y24 = 0. (K)

To prove our claim, we may assume, by permuting the ordering of the basis vectors
ei of T if necessary, that y12 6= 0, and hence that y12 = 1. Then

y34 = −y31y24 − y23y14

so that we can take

p = a ∧ b, a = e1 − y23e3 − y24e4, b = e2 − y31e3 + y14e4

which proves the claim.
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Actually the quadratic function in (K) depends only on the choice of a volume
element on T , i.e., a basis for Λ4(T ). Let 0 6= µ ∈ Λ4(T ). Then

p ∧ p = Qµ(p)p ∧ p.

If µ = e1 ∧ e2 ∧ e3 ∧ e4 then Qµ(p) is given by the left side of the equation (K). The
equation

Qµ(p) = 0 ⇐⇒ p ∧ p = 0,

which is the equation (K) above, in the Plücker coordinates with respect to the basis
(eij), defines a quadric in the projective space P(E). It is called the Klein quadric
and is denoted by K. Klein discovered it and used it extensively in the study of
the geometry of lines in projective space. The Plücker map is then a bijection of G
with K. The variety K is nonsingular because the gradient of the function Q never
vanishes at any point of K.

By the definition of Qµ we have, for any y ∈ E,

y ∧ y = Qµ(y)µ

and so it follows at once that

Qµ(g · y) = Qµ(y) (g ∈ SL(T )).

Thus the action of SL(T ) in E maps SL(T ) into the complex orthogonal group
O(E) ' O(6); it is actually into SO(E) ' SO(6) because the image has to be
connected. It is easy to check that the kernel of this map is ±1. In fact, if g(u∧v) =
u ∧ v for all u, v, then g leaves all 2-planes stable, hence all lines stable, and so is
a scalar c with c4 = 1; then u ∧ v = c2u ∧ v so that c2 = 1. Since both SL(T ) and
SO(E) have dimension 15, we then have the exact sequence

1 −→ (±1) −→ SL(T ) −→ SO(E) −→ 1.

We may therefore view SL(T )as the spin group of SO(E). Let 4 be the defining
4-dimensional representation of SL(T ) (in T ) and 4∗ its dual representation (in T ∗).
Then 4 and 4∗ are the two spin representations of SO(E). This follows from the
fact (see Chapter 5, Lemma 5.6.1) that all other nontrivial representations of SL(4)
have dimension > 4.

Let (ei)1≤i≤4 be a basis for T . Let π0 be the plane spanned by e1, e2 and π∞
the plane spanned by e3, e4. We say that a plane π is finite if its intersection with
π∞ is 0. This is equivalent to saying that the projection T −→ π0 corresponding to
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the direct sum T = π0 ⊕ π∞ is an isomorphism of π with π0. In this case we have
a uniquely determined basis

a = e1 + αe3 + γe4, b = e2 + βe3 + δe4

for π, and conversely, any π with such a basis is finite. It is also the same as
saying that y12 6= 0 as we have seen above. Indeed, if y12 6= 0 and (ai), (bi) are
the coordinate vectors of a basis for π, the 12-minor of the matrix with columns
as these two vectors is nonzero and so by right multiplying by the inverse of the
12-submatrix we have a new basis for π of the above form. Let K× be the set of all
finite planes. As it is defined by the condition y12 6= 0, we see that K× is an open
subset of K which is easily seen to be dense. Thus, the assignment

A =
(
α β
γ δ

)
7−→ π(A)

where π(A) is the plane spanned by a, b above, gives a parametrization of the open
dense set of finite planes in the Klein quadric. Since K also has dimension 4 we see
that the Plücker map allows us to view the Klein quadric as the compactification
of complex spacetime with coordinates α, β, γ, δ, identified with the space M2(C) of
complex 2× 2 matrices A. If g ∈ GL(T ) and π is a finite plane parametrized by the
matrix A, then for

g =
(
L M
N R

)
the plane π′ = g·π has the basis (

L+MA
N +RA

)
so that π′ is parametrized by

(N +RA)(L+MA)−1

provided it is also finite; the condition for π′ to be finite is that L+MA be invertible.
This g acts on K generically as the fractional linear map

g : A 7−→ (N +RA)(L+MA)−1.

The situation is reminiscent of the action of SL(2) on the Riemann sphere by frac-
tional linear transformations, except that in the present context the complement of
the set of finite planes is not a single point but a variety which is actually a cone,
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the cone at infinity. It consists of the planes which have nonzero intersection with
π∞. In the interpretation in CP3 these are lines that meet the line π∞.

We shall now show that the subgroup P of SL(T ) that leaves K× invariant is
precisely the subgroup P∞ that fixes π∞. The representation of π∞ is the matrix(

0
I

)
and so if

g

(
I
A

)
=
(
L+MA
N +RA

)
,

then g fixes π∞ if and only if M = 0. On the other hand, the condition that g leaves
K× stable is also the condition that it leaves its complement invariant. Now from
elementary projective geometry we know that if ` is a line in CP3 and [`] is the set
of all lines that meet `, then ` is the only line that meets all the lines in [`]. Hence
any g that leaves [`] stable must necessarily fix `. Thus g preserves K× if and only
if g fixes π∞, i.e., M = 0. We need a variant of this result where only lines which
are real with respect to some conjugation are involved. We shall prove this variant
algebraically. The condition that g preserves K× is that L+MA be invertible for all
A. We shall prove that M = 0 assuming only that g maps all π with A Hermitian
into finite planes. Taking A = 0 we see that L should be invertible, and then the
condition becomes that I + L−1MA should be invertible for all Hermitian A; we
must show then that M = 0. Replacing M by X = L−1M we must show that if
I +XA is invertible for all Hermitian A, then X = 0. If X 6= 0, take an ON basis
(fi) such that (Xf1, f1) = c 6= 0. If A = uP where P is the orthogonal projection
on the one dimensional span of f1, then computing determinants in the basis (fi)
we find that

det(I +XA) = 1 + uc = 0 for u = −c−1.

We have thus proved that P = P∞ and is the subgroup of all g of the form(
L 0
NL R

)
=: (N,L,R) (L,R invertible).

The action of P on K× is given by

A 7−→ N +RAL−1.

Using the correspondence g 7−→ (N,L,R) we may therefore identify P with the
semidirect product

P = M2×′H, H = SL(2×2) :=

{(
L 0
0 R

) ∣∣∣∣∣ L,R ∈ GL(2),det(L) det(R) = 1

}
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with H and P acting on M2 respectively by

A 7−→ RAL−1, A 7−→ N +RAL−1.

The group SL(2)×SL(2) is a subgroup of H and as such its action is just the action
A 7−→ g2Ag

−1
1 . H itself is the product of this subgroup and the group of dilations

consisting of elements (c, c−1) which act by A 7−→ c−2A. We have thus imbedded
the complex spacetime inside its compactification K and the complex Poincaré
group (plus the dilations) inside SL(T ) as P , in such a way that the Poincaré action
goes over to the action by its image in P .

We shall now show that the action of SL(T ) on K is conformal. To this end
we should first define a conformal metric on K. A conformal metric on a complex
or real manifold X is an assignment that associates to each point x of X a set
of nonsingular quadratic forms on the tangent space at x, any two of which are
nonzero scalar multiples of each other, such that on a neighborhood of each point
we can choose a holomorphic (resp. smooth, real analytic) metric whose quadratic
forms belong to this assignment; we then say that the metric defines the conformal
structure on that neighborhood. The invariance of a conformal metric under an
automorphism α of X has an obvious definition, namely that if α takes x to y, the
set of metrics at x goes over to the set at y under dα; if this is the case, we say
that α is conformal. We shall now show that on the tangent space at each point
π of K there is a set Fπ of metrics uniquely defined by the requirement that they
are changed into multiples of themselves under the action of the stabilizer of π and
further that any two members of Fπ are proportional. Moreover we shall show that
on a suitable neighborhood of any π we can choose a metric whose multiples define
this structure. This will show that π 7→ Fπ is the unique conformal metric on K
invariant for the action of SL(T ). To verify the existence of Fπ we can, in view of
the transitivity of the action of SL(T ), take π = π0. Then the stabilizer Pπ0 consists
of the matrices (

L M
0 R

)
(L,R invertible).

Now π0 ∈ K× 'M2, where the identification is

A 7−→
(
I
A

)
with the action

A 7−→ RA(L+MA)−1.
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We identify the tangent space at π0 with M2; then the tangent action of the element
of the stabilizer above is then

A 7−→
(
d

dt

)
t=0

tRA(L+ tMA)−1 = RAL−1.

The map

q : A =
(
α β
γ δ

)
7−→ det(A) = αδ − βγ

is a nondegenerate quadratic form on M2 which changes into cq where c =
det(R) det(L)−1 under the above tangent action. Moreover, as the subgroup of
the stabilizer defined by M = 0, R, L ∈ SL(2) has no characters, any quadratic
form that is changed into a multiple of itself by elements of this subgroup will have
to be invariant under it, and as the action of this subgroup is already irreducible,
such a form has to be a multiple of q. We may then take Fπ to be the set of nonzero
multiples of q. It is easy to construct a holomorphic metric on K× that defines the
conformal structure. The flat metric

µ = dαdδ − dβdγ

on K× is invariant under the translations, and, as the translations are already
transitive on K×, µ has to define the conformal structure on K×. The form of the
metric on K× is not the usual flat one; but if we write(

α β
γ δ

)
=
(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
then

dαdδ − dβdγ = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2

the right side of which is the usual form of the metric.

We now turn to what happens over the reals where the story gets more in-
teresting. Any conjugation of T defines a real form of T and hence defines a real
form of E. The corresponding real form of K is simply the Klein quadric of the
real form of T . For our purposes we need a conjugation of E that does not arise
in this manner. We have already seen that real Minkowski space can be identified
with the space of 2× 2 Hermitian matrices in such a way that SL(2) acts through
A 7→ gAg∗. So it is appropriate to start with the conjugation(

α β
γ δ

)
7−→

(
α γ
β δ

)
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on K×. Since the Plücker coordinates of the corresponding plane are

(1,−α,−β, δ,−γ, αδ − βγ)

it is immediate that the conjugation θ on E defined by

θ : (y12, y23, y31, y14, y24, y34) 7−→ (y12, y23, y24, y14, y31, y34)

determines a conjugation on P(E) preserving K that extends the conjugation de-
fined above on K×. This is clearly unique and we shall write θ again for it. Let

ER = {e ∈ E | eθ = e}.

Then ER is a real form of E; y ∈ ER if and only if y12, y23, y34, y14 are real and
y31 = y24. The restriction QR of Q to ER is then real and is given by

QR(y) = y12y34 + y23y14 + y31y31 (y ∈ ER)

which is real and has signature (4, 2). Let KR be the fixed point set of θ on K.
Then KR is the image of the set of zeros of Q on ER. In fact, let u ∈ E be such
that its image lies in KR, then uθ = cu for some c 6= 0; since θ is involutive, we
must have |c| = 1, and so we can write c = d/d for some d with |d| = 1. Then for
v = d−1u we have vθ = v. Thus

KR = {[y] | y ∈ ER, QR(y) = 0}.

We also note at this time that SO(ER)0 is transitive on KR. In fact, in suitable
real coordinates (u, v) with u ∈ R4, v ∈ R2, the equation to KR is u·u − v·v = 0;
given a nonzero point (u, v) on this cone we must have both u and v nonzero and
so without changing the corresponding point in projective space we may assume
that u·u = v·v = 1. Then we can use SO(4,R) × SO(2,R) to move (u, v) to
((1, 0, 0, 0), (1, 0)).

Now θ induces an involution Q′ 7−→ Q′
θ on the space of quadratic forms on

E: Q′θ(u) = Q(uθ)conj. Since Q and Qθ coincide on ER they must be equal, i.e.,
Q = Qθ. Hence gθ := θgθ lies in SO(Q) if and only if g ∈ SO(Q). So we have a
conjugation g 7→ gθ on SO(E). It is easy to check that the subgroup of fixed points
for this involution is SO(ER), the subgroup of SO(E) that leaves ER invariant.
Since SL(T ) is simply connected, θ lifts to a unique conjugation of SL(T ), which we
shall also denote by θ. Let

G = SL(T )θ.
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We wish to show the following:

(1) G is connected and is the full preimage of SO(ER)0 in SL(T ) under the
(spin) map SL(T ) −→ SO(ER)0.

(2) There is a Hermitian form 〈 , 〉 of signature (2, 2) on T such that G is the
subgroup of SL(T ) preserving it, so that G ' SU(2, 2).

(3) A plane in T defines a point of KR if and only if it is a null plane with
respect to 〈 , 〉 and that G acts transitively on the set of null planes.

The differential of the spin map is the identity on the Lie algebra and so,
whetherG is connected or not, the image ofG0 under the spin map is all of SO(ER)0.
We shall first prove that G0 is the full preimage of SO(ER)0, and for this it is enough
to show that −1 ∈ G0. Consider, for z ∈ C with |z| = 1,

δ(z) = diagonal (z, z, z, z).

Its action on E is by the matrix

γ(z) = diagonal (1, 1, z2, 1, z2, 1).

Then γ(z) leaves ER invariant and so lies in SO(ER)0 for all z. If h is the map
SL(T ) −→ SO(E) and h(g)θ = h(g), then gθ = ±g. Hence δ(z)θ = ±δ(z) for all z.
By continuity we must have the + sign for all z and so δ(z) ∈ G for all z, hence
δ(z) ∈ G0 for all z. But δ(1) = 1, δ(−1) = −1, proving that −1 ∈ G0.

Now it is known that any real form of sl(4) is conjugate to one of
sl(4,R), su(p, q)(0 ≤ p ≤ q, p+ q = 4) and hence any conjugation of sl(4) is conju-
gate to either X 7−→ Xconj or to X 7−→ −FX∗F where F is the diagonal matrix
with p entries equal to 1 and q entries equal to −1. The corresponding conjugations
of SL(4) are g 7−→ gconj and g 7−→ Fg∗−1F respectively. The fixed point groups
of conjugations of SL(4) are thus conjugate to SL(4,R) and SU(p, q). But these
are all connected4. So G is connected. Furthermore if K is a maximal compact
subgroup of G, then G goes onto a maximal compact subgroup of SO(4, 2) with
kernel {±} and so, as the dimension of the maximal compacts of SO(4, 2), which
are all conjugate to SO(4) × SO(2), is 7, the dimension of the maximal compacts
of G is also 7. But the maximal compacts of SL(4,R),SU(4),SU(1, 3),SU(2, 2) are
respectively SO(4),SU(4), (U(1)×U(3))1, (U(2)×U(2))1 where the suffix 1 means
that the determinant has to be 1, and these are of dimension 6, 15, 9, 7 respec-
tively. Hence G ' SU(2, 2). However a calculation is needed to determine the
Hermitian form left invariant by G and to verify that the planes that are fixed by
θ are precisely the null planes for this Hermitian form. It is interesting to notice
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that the images of the real forms SL(4,R),SU(4),SU(1, 3),SU(2, 2) are respectively
SO(3, 3),SO(6),SO∗(6), and SO(4, 2). In particular the real form SO(5, 1) is not
obtained this way.

Let g be the Lie algebra of G. If Z is an endomorphism of T its action ρ(Z)
on E is given by ei ∧ ej 7→ Zei ∧ ej + ei ∧ Zej . If Z = (zij)1≤i,j≤4, the matrix of
ρ(Z) in the basis e12, e23, e14, e34, e31, e24 is

z11 + z22 −z13 z24 0 −z23 −z14

−z31 z22 + z33 0 −z24 −z21 z34

z42 0 z11 + z44 z13 −z43 z12

0 −z42 z31 z33 + z44 z41 z32

−z32 −z12 −z34 z14 z33 + z11 0
−z41 z43 z21 z23 0 z22 + z44

 .

The condition that Z ∈ g is that the action of this matrix commutes with θ. If Θ
is the matrix of θ, this is the condition

ρ(Z)Θ = Θρ(Z).

Now

Θ =
(
I4 0
0 J2

)
J2 =

(
0 1
1 0

)
and so, writing

ρ(Z) =
(
A B
C D

)
we get

A = A, DJ2 = J2D, BJ2 = B, J2C = C.

Remembering that
∑
zjj = 0 these reduce to the conditions

z11 + z22, z22 + z33 ∈ R

z13, z24, z31, z42 ∈ R

z22 + z44 ∈ (−1)1/2R

and
z14 = z23, z34 = −z21, z12 = −z43, z32 = z41.

It is not difficult to check that these are equivalent to saying that Z must be of the
form (

A B
C −A∗

)
B,C Hermitian, A arbitrary
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where ∗ denotes adjoints and all letters denote 2× 2 matrices. If

F =
(

0 −iI
iI 0

)
then this amounts to

FZ∗ + ZF = 0.

In other words, the Lie algebra g of G is the same as the fixed point set of the
conjugation

Z 7−→ −FZ∗F
and so

Zθ = −FZ∗F (Z ∈ sl(T )).

This means that
gθ = Fg∗−1F (g ∈ SL(T )).

Let us write ( , ) for the usual positive definite Hermitian form on C4 and let

F (u, v) = (Fu, v) (u, v ∈ C4).

Then F is a Hermitian form and G is the group that leaves it invariant. This
Hermitian form has signature (2, 2); indeed, if T± are the 2-dimensional eigenspaces
of F for the eigenvalues ±1, then T = T+⊕T− and for u = u+ +u− with u± ∈ T±,
we have

F (u, u) = (||u+||2 − ||u−||2)

where || · || is the usual norm in C4. This finishes the proof that G ' SU(2, 2).

The plane π0 is certainly a null plane for F . As G is transitive on KR (because
SO(ER) is transitive), it follows that all the planes that are fixed by θ are null
planes for F . There are no other null planes. To see this, we note that Fπ is
orthogonal to π and is also a null plane. Define f3 = −iFf1, f4 = −iFf2. Then
a simple calculation shows that (fi) is an ON basis for T such that f1, f2 span π
and (f1, f3) = (f2, f4) = i while all other scalar products between the fj vanish. If
g ∈ U(4) takes the ei to fi, we have g·π0 = π. But then g ∈ U(2, 2) also, and if
its determinant is not 1, we change g to h = cg for some scalar so that det(h) = 1;
then h ∈ SU(2, 2) and h takes π0 to π. Thus π is fixed by θ. All of our claims are
thus proved.

Recall that KR is the fixed point set of the Klein quadric K with respect to
the conjugation θ. Then real Minkowski space (corresponding to Hermitian A in
M2) is imbedded as a dense open set K×R of KR. If

g =
(
L M
N R

)
∈ SL(T )
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is to leave K×R invariant the condition is that L+MA is invertible for all Hermitian
A, and we have seen that this is equivalent to requiring that M = 0 and L be
invertible. If moreover g ∈ G the conditions reduce to saying that the subgroup PR

leaving K×R invariant is the set of all matrices of the form(
L 0
NL L∗−1

)
(N Hermitian,det(L) ∈ R)

with the action on K×R given by

A 7−→ N + L∗−1AL−1.

This is just the real Poincaré action. The conformal metric on K becomes (dx0)2−
(dx1)2 − (dx2)2 − (dx3)2 which is real and of signature (1, 3) on K×R. Since det(A)
goes over to det(A) det(L)−2 it follows that we have a real conformal structure which
is invariant under G. The group G thus acts conformally and transitively on KR,
and the subgroup that leaves real Minkowski invariant the inhomogeneous Lorentz
group (plus the dilations). The Lie algebra of SU(2, 2) is isomorphic to so(2, 4)
which is thus viewed as the conformal extension of the Poincaré Lie algebra.

Conformality in higher dimensions. The above considerations can be general-
ized considerably. In fact it is true that Rm,n, affine Minkowski space of signature
(m,n), can be imbedded as a dense open subset of a compact manifold which has
a conformal structure and on which the group SO(m + 1, n + 1) acts transitively
and conformally, and further that the Poincaré group (= the inhomogeneous group
ISO(m,n)0 = Rm,n×′ SO(m,n)0) can be imbedded inside SO(m+ 1, n+ 1) in such
a fashion that the action of ISO(m,n)0 goes over to the action of SO(m+1, n+1)0.
For m = 1, n = 3 we obtain the imbedding of the usual Poincaré group inside
SO(2, 4)0 treated above. Throughout we assume that 0 ≤ m ≤ n and n ≥ 1.

We start with the imbedding of ISO(m,n)0 in SO(m+ 1, n+ 1)0. Let V be a
real vector space of dimension m+ n+ 2 with a nondegenerate symmetric bilinear
form ( , ) of signature (m + 1, n + 1) given on it. Let Ω be the “light cone”of V ,
namely the variety of nonzero elements p of V such that (p, p) = 0;

Ω = {p ∈ V | p 6= 0, (p, p) = 0}.

We write H = SO(V )0. In a linear basis for V in which the quadratic form of V
becomes

Q = x2
0 + . . .+ x2

m − y2
0 − . . .− y2

n

the equation defining Ω is a homogeneous quadratic polynomial and so defines a
quadric cone in the projective space P(V ) ' RPm+n+1 of V , stable under the
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action of SO(V ). We write [Ω] for this cone and in general [p] for the image in
projective space of any nonzero p ∈ V . Since the gradient of Q is never zero at any
point of Ω it follows that Ω and [Ω] are both smooth manifolds and that the map
Ω −→ [Ω] is submersive everywhere. Clearly dim([Ω]) = m + n. The action of H
on Ω gives rise to an action of H on [Ω]. Let p ∈ Ω and let Ωp (resp. [Ω]p) be the
tangent space to Ω (resp. [Ω]) at p (resp. [p]). Finally, let Hp be the stabilizer of p
in H. In what follows we shall fix p and choose q ∈ Ω such that (q, p) = 1. This is
always possible and we write Wp for the orthogonal complement of the span of the
linear span of q, p. It is easy to see that V = Rp⊕Rq ⊕Wp.

Notice first that the tangent map Ωp −→ [Ω]p has kernel Rp and so ( , )
induces a quadratic form on [Ω]p. It is immediate from the above decomposition of
V that Wp ' [Ω]p and so [Ω]p has signature (m,n) with respect to this quadratic
form. If p′ is any other point of Ω above [p], then p′ = λp(λ 6= 0) and the quadratic
form induced on [Ω]p gets multiplied by λ2 if we use p′ in place of p. Moreover if we
change p to h·p for some h ∈ H the quadratic forms at h·[p] are the ones induced
from the quadratic forms at [p] by the tangent map of the action of h. It follows
that we have a conformal structure on [Ω] and that the action of H is conformal.

We shall first verify that H0 acts transitively on [Ω]. We use coordinates and
write the equation of Ω as

x2 = y2 (x2 = x2
0 + . . .+ x2

m, y
2 = y2

0 + . . .+ y2
n).

Clearly x := (x0, . . . , xm),y := (y0, . . . , yn) are both nonzero for any point of Ω. So
without changing the image in projective space we nay assume that x2 = y2 = 1.
Then we can use the actions of SO(m + 1,R) and SO(n + 1,R) to assume that
x = (1, 0, . . . , 0),y = (1, 0, . . . , 0); in case m = 0 we have to take x as (±1, 0, . . . , 0).
So the transitivity is proved when m > 0. If m = 0 we change y to (±1, 0, . . . , 0) so
that in all cases any point of [Ω] can be moved to the image of (1, 0 . . . , 0, 1, 0, . . . , 0).
This proves transitivity and hence also the connectedness of [Ω].

We shall now show that H0
p ' ISO(m,n)0 giving us an imbedding of the latter

in SO(m + 1, n + 1)0. We proceed as in Chapter 1, Section 5. Let h ∈ Hp and
write Vp be the tangent space to Ω at p so that Vp is the orthogonal complement
to p. Then h leaves Vp stable and so we have a flag Rp ⊂ Vp ⊂ V stable under h.
We claim that h·q − q ∈ Vp. Certainly h·q = bq + v for some v ∈ Vp. But then
1 = (q, p) = (h·q, p) = b showing that b = 1. It is then immediate that h·r − r ∈ Vp
for any r. We write t(h) for the image of h·q − q in W ′p := Vp/Rp ' Wp. On the
other hand h induces an action on Vp/Rp which preserves the induced quadratic
form there and so we have a map H0

p −→ SO(W ′p) which must go into SO(W ′p)
0.

So we have the image r(h) ∈ SO(W ′p)
0 of h. We thus have a map

J : h 7−→ (t(h), r(h)) ∈ ISO(W ′p)
0.
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We claim that J is an isomorphism. First of all J is a homomorphism. Indeed, let
h, h′ ∈ H0

p . Then h′·q = q + t(h′) + c(h′)p where t(h′) ∈ Wp so that hh′·p − q ≡
t(h) + r(h)·t(h′) mod Rp, showing that J(hh′) = J(h)J(h′). It is obvious that J is
a morphism of Lie groups. Now the dimension of the Lie algebra of Hp, which is the
dimension subspace {L ∈ Lie(H) | Lp = 0}, is easily computed to be dim ISO(m,n);
for this one can go to the complexes and work in the complex orthogonal groups
and take p to be the point (1, i, 0, . . . , 0), and then it is a trivial computation. Hence
if we prove that J is injective we can conclude that it is an isomorphism. Suppose
then that J(h) is the identity. This means that h·q = q + a(h)p, and further, that
for any v ∈ Vp, h·v = v+ b(h)p. Taking the scalar product of the first relation with
h·q we find that 0 = (q, q) = (h·q, h·q) = 2a(h), giving h·q = q. Taking the scalar
product of the second relation with h·q we find (v, q) = (h·v, h·q) = (v+ b(h)p, q) =
(v, q) + b(h), giving b(h) = 0. So h·v = v, proving that h = 1. We thus have

ISO(m,n)0 ' H0
p ↪→ SO(m+ 1, n+ 1)0.

For h ∈ H0
p we also write t(h) and r(h) for the elements of ISO(W ′p) that are

respectively the translation by t(h) and action by r(h) in W ′p.

The tangent space Vp of Ω at p intersects Ω in a cone; we write Cp for it and
C[p] for its image in [Ω]. Clearly Hp fixes C[p]. Let A[p] = [Ω] \C[p]. Then A[p] is an
open dense subset of [Ω], stable under H0

p ; the density is an easy verification. We
wish to show that there is an isomorphism of A[p] with W ′p in such a manner that
the action of H0

p goes over to the action of ISO(W ′p).

Let T and M be the preimages under J in H0
p of the translation and linear

subgroups of ISO(W ′p). Now [q] ∈ A[p] and we shall first prove that for any [r] ∈ A[p]

there is a unique h ∈ T such that the translation t(h) takes [q] to [r]. Since [r] ∈ A[p],
we have (r, p) 6= 0 and so we may assume that (r, p) = 1. Hence t′ = r− q ∈ Vp and
hence defines an element t ∈W ′p. There is then a unique h ∈ T such that t(h) = t,
i.e., J(h) is translation by t. We claim that J(h) takes [q] to [r]. By definition of
h we have h·q − q has t as its image in W ′p. Then r − q and h·q − q have the same
image in W ′p and so h·q− r ∈ Vp and has image 0 in W ′p. So h·q = r+ bp. But then
0 = (q, q) = (h·q, h·q) = (r, r) + 2b(r, p) = 2b showing that b = 0. In other words,
the translation group T acts simply transitively on A[p]. We thus have a bijection
h·[q] −→ t(h) from A[p] to W ′p. It is an easy check that the action of H0

p on A[p]

goes over to the action of ISO(W ′p).

The metric on W ′p induced from V has signature (m,n) as we saw earlier. We
can regard it as a flat metric on W ′p and so transport it to A[p] and it becomes
invariant under the action of H0

p . Clearly it belongs to the conformal structure on
[Ω]. So all of our assertions are proved.
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3.4. The superconformal algebra of Wess and Zumino. In 1974 Wess
and Zumino2 constructed a real super Lie algebra whose even part contains the
conformal extension so(4, 2) ' su(2, 2) of the Poincaré Lie algebra considered above.
The (complexified) Wess-Zumino algebra was the first example constructed of a
simple super Lie algebra.

A word of explanation is in order here about the word contains above. Ideally
one would like to require that the super extension have the property that its even
part is exactly so(4, 2). This turns out to be impossible and for a super extension of
minimal dimension (over C) the even part of the super extension becomes so(4, 2)⊕
R where the action of the elements of R on the odd part of the super extension
generates a rotation group (“compact R-symmetry”).

Let us operate first over C. The problem is then the construction of super Lie
algebras whose even parts are isomorphic to sl(4), at least up to a central direct
factor. We have already come across the series sl(p|q) of super Lie algebras. The
even part of g = sl(p|q) consists of complex matrices(

X 0
0 Y

)
where X,Y are p× p, q × q and

tr(X) = tr(Y ).

Thus the even part is isomorphic to sl(p)⊕ sl(q)⊕C. In particular, the even part
of sl(4, 1) is sl(4) ⊕C. The elements of the odd part of sl(4|1) are matrices of the
form (

0 a
bt 0

)
(a, b column vectors in ∈ C4)

so that the odd part is the module 4⊕ 4∗. Now [g1, g1] is stable under the adjoint
action of sl(4) and has nonzero intersection with both sl(4) and the one-dimensional
center of g0. It is then immediate that [g1, g1] = g0. At this time it is noteworthy
that the even part is not precisely sl(4) but has a one dimensional central component
with basis element R given by

R =


1
3 0 0 0 0
0 1

3 0 0 0
0 0 1

3 0 0
0 0 0 1

3 0
0 0 0 0 4

3

 .
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We note the following formulae. If we write

(X,x) =
(
X 0
0 x

)
, (tr(X) = x) (a, b) =

(
0 a
bT 0

)
then

[(X,x), (a, b)] = ((X−x)a,−(X−x)T b), [(a, b), (a′, b′)] = (ab′T +a′bT , bTa′+b′Ta).

In particular, the projections X(a, b), R(a, b) of [(a, b), (a, b)] on sl(4),CR respec-
tively are given by

X(a, b) = 2abT − (1/2)(bTa)I, R(a, b) = (3/2)(bTa)R;

note that X(a, b) has trace 0 as it should have. R acts nontrivially on the odd part;
indeed, ad R is −1 on 4 and +1 on 4∗, as is seen easily from the above formulae.

We shall first show that there does not exist a super Lie algebra h with the
properties: (1) h0 = sl(4) and h1 spinorial, and (2) [h1, h1] has a nonzero intersection
with h0 (then we must have that this commutator is all of h0). The spinorial
condition means that h1 should be the sum of copies of 4 and 4∗. It is not possible
that h1 contains only copies of 4. To see this, note that 4 ⊗ 4 cannot contain
the trivial representation as 4 and 4∗ are not equivalent, and so, as its dimension
is 16, it cannot contain the adjoint representation either which has dimension 15.
We thus see that both 4 and 4∗ must occur in the odd part. So, for a particular
choice of subspaces of type 4 and 4∗, the space h1 = sl(4) ⊕ 4 ⊕ 4∗ is a super Lie
algebra with the same properties as h. Since the even part is exactly sl(4) we must
have a sl(4)-map from 4⊗ 4∗ into sl(4) satisfying the cubic condition for super Lie
algebras. We claim that this is impossible. To see this notice that such a map is
projectively unique and so has to be a multiple of the map obtained from the map
[ , ] of the super Lie algebra sl(4|1) by following it with the projection on the sl(4)
factor. From the formula above we find that

[(a, b), X(a, b)] = (−(3/2)(bTa)a,+(3/2)(bTa)b)

which is obviously not identically zero. So there is no super Lie algebra with prop-
erties (1) and (2). The dimension of any super Lie algebra with properties (1) and
(2) above with the modification in (1) that the even part contains sl(4) must then
be at least 24; if it is to be 24 then the even part has to be the direct sum of sl(4)
and an one-dimensional central factor. We shall now show that up to isomorphism,
g is the only super Lie algebra in dimension 24 of the type we want. Let [ , ]′ be
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another super bracket structure on g such that [ , ]′ coincides with [ , ] on sl(4)×g.
Then ad′(R) will act like a scalar −α on the 4 part and a scalar β on the 4∗ part.
Moreover, if Z00, Z01 denote projections of an element Z ∈ g0 into sl(4) and CR
respectively, then there must be nonzero constants γ, δ such that

[Y1, Y2]′ = γ[Y1, Y2]00 + δ[Y1, Y2]01 (Y1, Y2 ∈ g1).

Thus
[(a, b), (a, b)]′ = γX(a, b) + δR(a, b).

The cubic condition then gives the relations

α = β, γ = αδ.

Thus there are nonzero α, δ such that

[R, Y ]′ = α[R, Y ]
[Y1, Y2]′ = αδ[Y1, Y2]00 + δ[Y1, Y2]01

.

If τ is the linear automorphism of g such that

τ(Z) = Z(Z ∈ sl(4)), τ(R) = αR, τ(Y ) = (αδ)1/2Y (Y ∈ g1),

then
τ([X1, X2]′) = [τ(X1), τ(X2)] (X1, X2 ∈ g).

We thus have

Theorem 3.4.1. There is no super Lie algebra whose even part is sl(4) and is
spanned by the commutators of odd elements. Moreover sl(4|1) is the unique (up to
isomorphism) super Lie algebra of minimum dimension such that sl(4) is contained
in the even part and is spanned by the commutators of odd elements.

The real form. We now examine the real forms of g. We are only interested in
those real forms whose even parts have their semisimple components isomorphic
to su(2, 2). We shall show that up to an automorphism of g there are only two
such and that the central factors of their even parts act on the odd part with
respective eigenvalues ∓i,±i on the 4 and 4∗ components. The two have the same
underlying super vector space and the only difference in their bracket structures is
that the commutator of two odd elements in one is the negative of the corresponding
commutator in the other. They are however not isomorphic over R. One may call
them isomers.
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The unitary super Lie algebras. We begin with a description of the general
unitary series of super Lie algebras. Let V be a complex super vector space. A
super hermitian form is a morphism

f : V ⊗R V −→ C

of super vector spaces over R which is linear in the first variable and conjugate-linear
in the second variable such that

f ◦ cV,V = f conj.

This means that the complex-valued map (u, v) 7−→ f(u, v) is linear in u, conjugate-
linear in v, has the symmetry property

f(v, u) = (−1)p(u)p(v)f(u, v),

and the consistency property

f(u, v) = 0 (u, v are of opposite parity).

Thus f (resp. if) is an ordinary Hermitian form on V0×V0 (resp. V1×V1). Suppose
that f is a nondegenerate super Hermitian form, i.e., its restrictions to the even and
odd parts are nondegenerate. We define the super Lie algebra su(V ; f) to be the
super vector space spanned by the set of all homogeneous Z ∈ sl(V ) such that

f(Zu, v) = −(−1)p(Z)p(u)f(u, Zv).

It is not difficult to check that the above formula defines a real super Lie algebra.
Let V = Cp|q with V0 = Cp, V1 = Cq and let f± be given by

f±((u0, u1), (v0, v1)) = (Fu0, v0) +±i(Gu1, v1)

with

F =
(
Ir 0
0 −Ip−r

)
, G =

(
Is 0
0 −Iq−s

)
.

Here It is the unit t× t matrix. We denote the corresponding super Lie algebra by
su(r, p − r|s, q − s). To see that this is a real form of sl(p|q) we shall construct a
conjugation of sl(p|q) whose fixed points form su(r, p− r|s, q − s). Let

σ± :
(
X A
BT Y

)
7−→

(
−FXT

F ±iFBG
±i(FAG)T −GY TG

)
.
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It is a simple calculation to verify that σ± are conjugate-linear and preserve the
super bracket. Hence they are conjugations of the super Lie algebra structure and
their fixed points constitute real super Lie algebras. We denote them by su(r, p −
r|s, q − s)± = su(Cp|q : f±) where f± is defined as above. In particular

su(r, p−r|s, q−s)± =

{(
X A
BT Y

) ∣∣∣∣∣ X = −FXT
X,Y = −GY TG,A = ±iFBG

}
.

Notice that we can take B to be a completely arbitrary complex matrix of order
q × p, and then A is determined by the above equations. In particular, changing
B to iB we see that the underlying super vector spaces of the two real forms are
the same and that they are in fact isomers in the sense we defined earlier. It is not
difficult to show that they are not isomorphic over R.

We return to the case of g = sl(4|1). In this case let

gR,± = su(2, 2|1, 0)±.

This is the precise definition of the super Lie algebras discovered by Wess and
Zumino. They are the real forms defined by the conjugations

σ± :
(
X a
bT x

)
7−→

(
−FXT

F ±iF b
±i(Fa)T −x

)
, F =

(
I 0
0 −I

)
.

We shall now show that up to an automorphism of g these are the only real forms
whose even parts have their simple components ' su(2, 2).

In the first place suppose h is such a real form. Write V for the super vector
space with V0 = C4, V1 = C, with the standard unitary structure. The restriction
of h0 to V0 is the Lie algebra of elements X such that X = −HXT

H where H
is a Hermitian matrix of signature (2, 2). By a unitary isomorphism of V0 we can
change H to F where

F =
(
I2 0
0 −I2

)
Let τ be the conjugation of sl(4|1) that defines h. Then τ and σ coincide on su(2, 2).

Now, on g1, we have ad(X) = λad(X)λ−1 for λ = τ, σ and X ∈ su(2, 2). So
τ = ρσ where ρ is a linear automorphism of g1 that commutes with the action of
su(2, 2) on g1. Thus ρ must be of the form

(a, b) 7−→ (k1a, k2b)
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for nonzero scalars k1, k2. In other words τ is given on g1 by

(a, b) 7−→ (k1Fb, k2Fa) (k1k2 = 1);

the condition on the k’s is a consequence of the fact that τ is an involution. The
condition

[(a, b)τ , (a′, b′)τ ] = [(a, b), (a′, b′)]τ

plus the fact that the commutators span g0 shows that on g0 one must have

τ :
(
X 0
0 x

)
7−→

(
k1k2FX

T
F 0

0 k1k2x

)
.

Taking x = 0 we find that k1k2 = −1 since τ = σ on su(2, 2). Thus k1 = ir, k2 =
ir−1 where r is a nonzero real number, and

τ :
(
X a
bT x

)
7−→

(
−FXT

F irFb
ir−1Fa −x

)
(0 6= r ∈ R).

Let θ be the linear automorphism of V = C4|1 which is |r|1/2I on V0 and I on V1.
We write θ also for the corresponding automorphism of g. It is a simple calculation
that

τ = θσsgn(r)θ
−1.

Thus all real forms of g of the type we are interested are conjugate to gR,± by an
automorphism of g coming from an automorphism of C4|1.

Theorem 3.4.2. Any real form of sl(4|1) whose even part has simple component
' su(2, 2), is conjugate to one of su(2, 2|1, 0)±.

3.5. Modules over a supercommutative super algebra. In the theory of
manifolds, what happens at one point is entirely linear algebra, mostly of the tangent
space and the space of tensors and spinors at that point. However if one wants an
algebraic framework for what happens on even a small open set one needs the theory
of modules over the smooth functions on that open set. For example, the space of
vector fields and exterior differential forms on an open set are modules over the
algebra of smooth functions on that open set. The situation is the same in the
theory of supermanifolds also. We shall therefore discuss some basic aspects of the
theory of modules over supercommutative algebras.

Let A be a supercommutative super algebra over the field k (of characteristic
0 as always). Modules are vector spaces over k on which A acts from the left; the
action

a⊗m 7−→ a ·m (a ∈ A,m ∈M)
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is assumed to be a morphism of super vector spaces, so that

p(a ·m) = p(a) + p(m).

We often write am instead of a · m. As in the classical theory left modules may
be viewed as right modules and vice versa, but in the super case this involves sign
factors; thus M is viewed as a right module for A under the action

m · a = (−1)p(a)p(m)a ·m (a ∈ A,m ∈M).

A morphism M −→ N of A-modules is an even k–linear map T such that T (am) =
aT (m). For modules M,N one has M ⊗N defined in the usual manner by dividing
M ⊗k N by the k-linear subspace spanned by the relations

ma⊗ n = m⊗ an.

The internal Hom Hom(M,N) is defined to be the space of k-linear maps T from M
to N such that T (am) = (−1)p(T )p(a)aT (m). It is easily checked that Hom(M,N)
is the space of k-linear maps T from M to N such that T (ma) = T (m)a. Thus

T ∈ (Hom(M,N))0 ⇐⇒ T (am) = aT (m)

T ∈ (Hom(M,N))1 ⇐⇒ T (am) = (−1)p(a)aT (m).

Hom(M,N) is again a A-module if we define

(aT )(m) = aT (m).

If we take N = A we obtain the dual module to M , namely M ′,

M ′ = Hom(M,A).

In all of these definitions it is noteworthy how the rule of signs is used in carrying
over to the super case the familiar concepts of the commutative theory.

A free module is an A-module which has a free homogeneous basis. If
(ei)1≤i≤p+q is a basis with ei even or odd according as i ≤ p or p + 1 ≤ i ≤ p + q,
we denote it by Ap|q, and define its rank as p|q. Thus

Ap|q = Ae1 ⊕ . . .⊕Aep+q (ei even or odd as i ≤ or > p).

To see that p, q are uniquely determined, we use the argument of “taking all the
odd variables to 0”. More precisely, let

J = the ideal in A generated by A1.
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Then
J = A1 ⊕A2

1, A2
1 ⊂ A0, A/J ' A0/A

2
1.

All elements of J are nilpotent and so 1 /∈ J , i.e., J is a proper ideal. Now A/J is
a commutative ring with unit and so we can find a field F and a homomorphism of
A/J into F . Then Ap|q ⊗F F is F p|q, a super vector space of dimension p|q. Hence
p and q are uniquely determined.

Morphisms between different Ap|q can as usual be described through matrices,
but a little more care than in the commutative case is necessary. We write elements
of Ap|q as m =

∑
i eix

i so that

m←→

 x1

...
xp+q

 .

This means that m is even (resp. odd) if and only if the xi are even (resp. odd)
for i ≤ p and odd (resp. even) for i > p, while for m to be odd, the conditions are
reversed. If

T : Ap|q −→ Ar|s, T ∈ Hom(M,N)

then
Tej =

∑
j

eit
i
j

so that T may be identified with the matrix (tij); composition then corresponds to
matrix multiplication. The matrix for T is then of the form(

A B
C D

)
and T is even or odd according as the matrix is of the form(

even odd
odd even

)
or
(

odd even
even odd

)
where “even” etc refer to matrices whose elements are all even etc. If A = k,
there are no odd elements of A and so we recover the description given earlier. In
the general case Hom(Ap|q, Ap|q) is a super algebra and the associated super Lie
algebra is denoted by glA(p|q). Because there are in general nonzero odd elements
in A the definition of the supertrace has to be slightly modified. We put

str(T ) = tr(A)− (−1)p(T )tr(D), T =
(
A B
C D

)
.
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It can be checked that

str(TU) = (−1)p(T )p(U)str(UT ).

Let M be a free module over A of rank p|q with basis ei where the ei are even
for i ≤ p and odd for i > p. Let M ′ = Hom(M,A). Let e′i ∈M ′ be defined by

e′i(ej) = δij .

Then
p(e′i) = 0 (1 ≤ i ≤ p), p(e′i) = 1 (p+ 1 ≤ i ≤ p+ q)

and (e′i) is a free homogeneous basis for M ′ so that M ′ ' Ap|q also. For m′ ∈
M ′,m ∈M we write

m′(m) = 〈m′,m〉.

If T ∈ Hom(M,N) we define T ′ ∈ Hom(N ′,M ′) by

〈T ′n′,m〉 = (−1)p(T )p(n′)〈n′, Tm〉.

If

T =
(
A B
C D

)
then

T ′ =
(

At Ct

−Bt Dt

)
(T even)

T ′ =
(
At −Ct
Bt Dt

)
(T odd)

as can be easily checked. Unlike the commutative case, T 7−→ T ′ is not of period 2
but of period 4. We have

p(S′) = p(S), (ST )′ = (−1)p(S)p(T )T ′S′.

Derivations of super algebras. Let A be a super algebra which need not be
associative. A derivation of A is a k-linear map D(A −→ A) such that

D(ab) = (Da)b+ (−1)p(D)p(a)a(Db).

Notice the use of the sign rule. If D is even this reduces to the usual definition but
for odd D this gives the definition of the odd derivations. Let D :=: Der(A) be the
super vector space of derivations. Then D becomes a super Lie algebra if we define

[D1, D2] = D1D2 − (−1)p(D1)p(D2)D2D1.

38



3.6. The Berezinian (superdeterminant). One of the most striking discoveries
in super linear algebra is the notion of superdeterminant. It was due to Berezin
who was a pioneer in super geometry and super analysis, and who stressed the
fact that this subject is a vast generalization of classical geometry and analysis.
After his untimely and unfortunate death the superdeterminant is now called the
Berezinian. Unlike the classical determinant, the Berezinian is defined only for
invertible linear transformations; this is already an indication that it is more subtle
than its counterpart in the classical theory. It plays the role of the classical Jacobian
in problems where we have to integrate over supermanifolds and have to change
coordinates. At this time we shall be concerned only with the linear algebraic
aspects of the Berezinian.

In the simplest case when A = k and T ∈ End(M) is even, the matrix of T is(
A 0
0 D

)
.

If the relation det(eX) = etr(X) in the commutative situation is to persist in the
super commutative situation where the supertrace replaces the trace, one has to
make the definition

Ber(T ) = det(A) det(D)−1,

since the supertrace of the matrix X =
(
U 0
0 V

)
is tr(U)−tr(V ). Thus already we

must have D invertible. In the general case when we are dealing with modules over
a general supercommutative super algebra A, we first observe the following lemma.

Lemma 3.6.1. If

T =
(
A B
C D

)
∈ End(M)

is even, then T is invertible if and only if A and D are invertible matrices over the
commutative ring A0, i.e., det(A) and det(D) are units of A0.

Proof. As in a previous situation we do this by going to the case when the odd
variables are made 0. Let J = A1 + A2

1 be the ideal in A generated by A1, and
let A = A/J . For any matrix L over A let L be the matrix over A obtained by
applying the map A −→ A to each entry of L.

We claim first that L is invertible if and only if L is invertible over A. If L
is invertible it is obvious that L is invertible. Indeed, if LM = 1 then LM = 1.
Suppose that L is invertible. This means that we can find a matrix M over A such
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that LM = I + X where X is a matrix over A such that all its entries are in J .
It is enough to prove that I + X is invertible, and for this it is sufficient to show
that X is nilpotent, i.e., Xr = 0 for some integer r ≥ 1. There are odd elements
o1, . . . , oN such that any entry of X is of the form

∑
i aioi for suitable ai ∈ A. If

r = N + 1, it is clear that any product oi1oi2 . . . oir = 0 because two of the o′’s have
to be identical. Hence Xr = 0. This proves our claim.

This said, we return to the proof of the lemma. Since T is even, A,D have
even entries and B,C have odd entries. Hence

T =
(
A 0
0 D

)
so that T is invertible if and only if A and D are invertible, which in turn happens
if and only if A and D are invertible. The lemma is proved.

For any T as above we have the easily verified decomposition(
A B
C D

)
=
(

1 BD−1

0 1

)(
A−BD−1C 0

0 D

)(
1 0

D−1C 1

)
. (∗)

Since we want the Berezenian to be multiplicative this shows that we have no
alternative except to define

Ber(T ) = det(A−BD−1C) det(D)−1 T =
(
A B
C D

)
(A,D even).

We take this as the definition of Ber(T ). With this definition we have

Ber(T ) = 1 T =
(
I 0
C I

)
,

(
I B
0 I

)
, (B,C, odd ).

The roles of A and D appear to be different in the definition of Ber(X). This is
however only an apparent puzzle. If we use the decomposition(

A B
C D

)
=
(

1 0
CA−1 1

)(
A 0
0 D − CA−1B

)(
1 A−1B
0 1

)
the we obtain

Ber(X) = det(D − CA−1B)−1 det(A) X =
(
A B
C D

)
.
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That the two definitions are the same will follow after we have shown that Ber is
multiplicative and has the obvious definition on the even (block) diagonal elements.
Notice that all the matrices whose determinants are taken have even entries and so
the determinants make sense. In particular, Ber(T ) is an element of A0.

Let GLA(p|q) denote the group of all invertible even elements of End(Rp|q).
We then have the basic theorem.

Theorem 3.6.2. Let

T =
(
A B
C D

)
be an even element of End(Rp|q). Then:

(a) T is invertible if and only if A and D are invertible.
(b) Ber(X) is an element of A0. If X,Y ∈ GLA(p|q), then

Ber(XY ) = Ber(X)Ber(Y ) (X,Y ∈ GLA(p|q)).

In particular, Ber(X) is a unit of A×0 .

Proof. The first statement has been already established. We now prove (b). Let
G = GLA(p|q) and let G+, G0, G− be the subgroups of G consisting of elements of
the respective form g+, g0, g− where

g+ =
(

1 B
0 1

)
, g0 =

(
A 0
0 D

)
, g− =

(
1 0
C 1

)
.

From (∗) we see that any element g ∈ G can be expressed as a triple product
g = g+g0g−. We then have Ber(g±) = 1 and Ber(g) = Ber(g0) = det(A) det(D)−1.
The triple product decompositions of g+g, g0g, gg0, gg− are easy to obtain in terms
of the one for g and so it is easily established that Ber(XY ) = Ber(X)Ber(Y ) for
all Y if X ∈ G+, G0, and for all X if Y ∈ G−, G0. The key step is now to prove
that

Ber(XY ) = Ber(X)Ber(Y ) (∗)

for all X if Y ∈ G+. It is clearly enough to assume that X ∈ G−. Thus we assume
that

X =
(

1 0
C 1

)
, Y =

(
1 B
0 1

)
.

Now

B 7−→
(

1 B
0 1

)
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maps the additive group of A1 homomorphically into G+, and so we may assume
in proving (∗) that B is elementary, i.e., all but one entry of B is 0, and that one is
an odd element β. Thus we have

X =
(

1 0
C 1

)
, Y =

(
1 E
0 1

)
(E elementary).

Then

XY =
(

1 E
C 1 + CE

)
Ber(XY ) = det(1− E(1 + CE)−1C) det(1 + CE)−1

so that we have to prove that

det(1− E(1 + CE)−1C) det(1 + CE)−1 = 1.

Since E has a single nonzero entry β, which is odd, all entries of any matrix of the
form EX,XE are divisible by β. Hence the product of any two elements of any
two of these matrices is 0. This means, in the first place, that (CE)2 = 0, and so

(1 + CE)−1 = 1− CE

and hence
1− E(1 + CE)−1C = 1− E(1− CE)C = 1− EC.

If L is any matrix of even elements such that the product of any two entries of L is
0, then a direct computation shows that

det(1 + L) = 1 + tr(L).

Hence
det(1− E(1 + CE)−1C) = det((1− EC)) = 1− tr(EC).

Moreover

det((1 + CE)−1) = (det(1 + CE))−1 = (1 + tr(CE))−1.

Hence

det(1− E(1 + CE)−1C) det(1 + CE)−1 = (1− tr(EC))(1 + tr(CE))−1.

But, as C,E have only odd entries, tr(CE) = −tr(EC) so that

det(1− E(1 + CE)−1C) det(1 + CE)−1 = (1 + tr(CE))(1 + tr(CE))−1 = 1
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as we wanted to prove.

The proof of the multiplicativity of Ber can now be completed easily. Let G′

be the set of all Y ∈ G such that Ber(XY ) = Ber(X)Ber(Y ) for all X ∈ G. We
have seen earlier that G′ is a subgroup containing G−, G0 and we have seen just
now that it contains G+ also. Hence G′ = G, finishing the proof of the theorem.

Berezinian for odd elements. Odd elements of End(Ap|q) are not invertible
unless p = q. In this case the odd element

T =
(
A B
C D

)
(A,D odd, B, C even)

is invertible if and only if

JT =
(
C D
−A −B

)
, J =

(
0 I
−I 0

)
which is even, is invertible. We define

Ber(T ) = Ber(JT ).

It is then easily verified that the multiplicative property extends to include odd
invertible elements as well.

Let M be a free module of rank p|q over A. Then M ' Ap|q and any invertible
End(M) can be represented by a matrix X∼. If we choose another basis for M , the
matrix for X changes to X ′∼ = CX∼C−1 where C is some invertible even matrix.
Hence Ber(X∼) = Ber(X ′∼). If we define Ber(X) as Ber(X∼), then Ber(X) is well
defined and gives a homomorphism

Ber : Aut(M) −→ A×0 = GLA(1|0)

where A×0 is the group of units of A0. The following properties are now easy to
establish:

(a) Ber(X−1) = Ber(X)−1.
(b) Ber(X ′) = Ber(X).
(c) Ber(X ⊕ Y ) = Ber(X)Ber(Y ).

3.7. The categorical point of view. The category of vector spaces and the cat-
egory of super vector spaces, as well as the categories of modules over commutative
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and supercommutative rings are examples of categories where there is a notion of
tensor product that is functorial in each variable. Such categories first appeared in
the work of Tannaka who proved a duality theorem for compact nonabelian groups
that generalized the Pontryagin duality for abelian groups. Now the equivalence
classes of irreducible representations of a nonabelian compact group do not form
any reasonable algebraic structure, and Tannaka’s great originality was that he con-
sidered for any compact Lie group G the category Rep(G) of all finite dimensional
unitary G-modules where there is an algebraic operation, namely that of ⊗, the
tensor product of two representations. If g ∈ G, then, for each unitary G-module
V we have the element V (g) which gives the action of g on V ; V (g) is an element
of the unitary group U(V ) of V , and the assignment

V 7−→ V (g)

is a functor compatible with tensor products and duals. The celebrated Tannaka
duality theorem5 is the statement that G can be identified with the group of all such
functors. The first systematic study of abstract categories with a tensor product
was that of Saavedra6. Subsequently tensor categories have been the object of study
by Deligne-Milne7, Deligne8, and Doplicher and Roberts9. In this section we shall
give a brief discussion of how the point of view of tensor categories illuminates the
theory of super vector spaces and super modules.

The basic structure from the categorical point of view is that of an abstract
category C with a binary operation ⊗,

⊗ : C × C −→ C, X, Y 7−→ X ⊗ Y,

where X ⊗ Y is the “tensor product”of X and Y . We shall not go into the precise
details about the axioms but confine ourselves to some remarks. The basic axiom
is that the operation ⊗ satisfies the following.

Associativity constraint : This means that there is a functorial isomorphism

(X ⊗ Y )⊗ Z ' X ⊗ (Y ⊗ Z)

satisfying what is called the pentagon axiom involving four objects.

Commutativity constraint : There is a functorial isomorphism

X ⊗ Y ' Y ⊗X

satisfying the so-called hexagon axiom involving three objects.
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Unit constraint : There is a unit object 1 with an isomorphism 1 ' 1⊗ 1 such that
X 7−→ 1⊗X is an equivalence of categories of C with itself. In particular, we have
unique functorial isomorphisms

X ' 1⊗X, X ' X ⊗ 1.

To this one adds the general assumption that C is an abelian category. For any
object X we write End(X) for the ring Hom(X,X). The category is said to be
k-linear, k a field, if k ⊂ End(1). Then all Hom(X,Y ) become vector spaces over k
and End(X) become k-algebras.

In the category of vector spaces or modules over a commutative ring with unit,
the unit object is the ring itself, and the commutativity isomorphism is just the
map

u⊗ v −→ v ⊗ u.

In the super categories it is the map

u⊗ v −→ (−1)p(u)p(v)v ⊗ u.

In the general case one can use the associativity and commutativity constraints to
define the tensor products of arbitrary finite families of objects in a natural manner
and actions of the permutation group on tensor powers of a single object. We have
done this in detail in the category of super vector spaces already.

In order to do anything serious one has to assume that the category C admits
the so-called internal Hom, written Hom. Before we do this we take time out to
describe a general method by which objects are defined in a category. Suppose T
is any category. For any object A the assignment

T 7−→ Hom(T,A)

is then a contravariant functor from T to the category of sets. If A,B are objects in
T and f(A −→ B) is an isomorphism, it is immediate that for any object T , there
is a functorial bijection

Hom(T,A) ' Hom(T,B), x↔ fx.

Conversely, suppose that A,B are two objects in T with the property that there is
a functorial bijection

Hom(T,A) ' Hom(T,B).
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Then A and B are isomorphic; this is the so-called Yoneda’s lemma. Indeed, taking
T = A , let f be the element of Hom(A,B) that corresponds under the above
bijection to idA; similarly, taking T = B let g be the element of Hom(B,A) that
corresponds to idB . It is then an easy exercise to show that fg = idB , gf = idA,
proving that A and B are uniquely isomorphic given this data. However if we have
a contravariant functor F from T to the category of sets, it is not always true that
there is an object A in the category such that we have a functorial identification

F (T ) ' Hom(T,A).

By Yoneda’s lemma, we know that A, if it exists, is determined up to a unique
isomorphism. Given F , if A exists, we shall say that F is representable and is
represented by A.

This said, let us return to the category C. We now assume that for each pair
of objects X,Y the functor

T 7−→ Hom(T ⊗X,Y )

is representable. This means that there is an object Hom(X,Y ) with the property
that

Hom(T,Hom(X,Y )) = Hom(T ⊗X,Y )

for all objects T . This assumption leads to a number of consequences. Using
X ' 1⊗X we have

Hom(X,Y ) = Hom(1,Hom(X,Y )).

In the vector space or module categories Hom is the same as Hom. However, in
the super categories, Hom is the space of even maps while Hom is the space of
all maps. If we take T to be Hom(X,Y ) itself, we find that corresponding to the
identity map of Hom(X,Y ) into itself there is a map

evX,Y : Hom(X,Y )⊗X −→ Y.

This is the so-called evaluation map, so named because in the category of modules
it is the map that takes L ⊗ v to L(v). It has the property that for any t ∈
Hom(T ⊗X,Y ), the corresponding element s ∈ Hom(T,Hom(X,Y )) is related to
t by

evX,Y ◦ (s⊗ id) = t.

Moreover, if X1, X2, Y1, Y2 are given, there is a natural map

Hom(X1, Y1)⊗Hom(X2, Y2) ' Hom(X1 ⊗X2, Y1 ⊗ Y2).
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Finally we can define the dual of any object by

X∗ = Hom(X, 1), Hom(T,X∗) = Hom(T ⊗X, 1).

We have the evaluation map

evX := evX,1 : X∗ ⊗X −→ 1.

Using the commutativity isomorphism we then have the map

X ⊗X∗ −→ 1

which gives a map
X −→ X∗∗.

An object is called reflexive if
X = X∗∗.

Already, in the category of vector spaces, only finite dimensional spaces are
reflexive. More generally free modules of finite rank are reflexive. In the category
of modules over a supercommutative k-algebra A, the free modules Ap|q are easily
seen to be reflexive. If we assume that all objects are reflexive, we obtain a category
which is very close in its properties to categories of finite dimensional objects. Such
categories are called rigid.

Given a map f(X −→ Y ) we can define naturally its transpose f∗(Y ∗ −→ X∗).
For any X we have a map

X∗ ⊗ Y −→ Hom(X,Y );

in fact, it is the map that corresponds to the composite map

X∗ ⊗ Y ⊗X ' X∗ ⊗X ⊗ Y evX⊗id−→ 1⊗ Y ' Y.

In case X is reflexive this map is an isomorphism. The inverse map can be defined
as the transpose of

X ⊗ Y ∗ −→ Hom(Hom(X,Y ), 1).

if we can define this map. To do this one needs to define a natural map

X ⊗ Y ∗ ⊗Hom(X,Y ) −→ 1
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and this is just the composite map

X ⊗ Y ∗⊗Hom(X,Y ) ' Hom(X,Y )⊗X ⊗ Y ∗ evX,Y ⊗id−→ Y ⊗ Y ∗ ' Y ∗⊗ Y −→ 1.

For reflexive X we have, in addition to the evaluation map evX , its transpose, the
coevaluation map, namely,

δ : 1 −→ X ⊗X∗.

For X reflexive, we also have

Hom(X,Y ) = Hom(1⊗X,Y ) = Hom(1,Hom(X,Y )) = Hom(1, X∗ ⊗ Y ).

Thus for any f(X −→ Y ) we have the map

δ(f) : 1 −→ X∗ ⊗ Y.

If Y = X we then have the composite

Tr(f) def= evX ◦ δ(f) ∈ End(1).

We have thus a categorical way to define the trace of any element of End(X) of any
reflexive X.

Let us see how Tr reduces to the supertrace in the category of modules over a
supercommutative k-algebra A with unit. We take

X = Ap|q.

In this case we can explicitly write the isomorphism

Hom(Ap|q, Y ) ' (Ap|q)∗ ⊗ Y.

Let (ei) be a homogeneous basis for Ap|q and let p(i) = p(ei). Let (ξj) be the dual
basis for (Ap|q)∗ so that ξj(ei) = δij . The map

(Ap|q)∗ ⊗ Y ' Hom(Ap|q, Y )

is then given by

ξ ⊗ y 7−→ tξ⊗y, tξ⊗y(x) = (−1)p(x)p(y)ξ(x)y.
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A simple calculation shows that any homogeneous f ∈ Hom(Ap|q, Y ) can be ex-
pressed as

f =
∑
j

(−1)p(j)+p(f)p(j)ξj ⊗ f(ej).

Take X = Y let f ∈ Hom(X,Y ). Then p(f) = 0 and so

δ(f) =
∑
j

(−1)p(j)ξj ⊗ f(ej).

Suppose now f is represented by the matrix (M i
j) so that

f(ej) =
∑
i

eiM
i
j .

Then
δ(f) =

∑
ij

(−1)p(j)ξj ⊗ eiM i
j

so that, as p(M i
j) = p(ej) = p(j),

Tr(f) = evX(δ(f)) =
∑
ij

(−1)p(j)δijM i
j =

∑
a even

Ma
a −

∑
b odd

M b
b .

We have thus recovered our ad hoc definition. This derivation shows also that the
supertrace is independent of the basis used to compute it.

Even rules. In the early days of the discovery of supersymmetry the physicists
used the method of introduction of auxiliary odd variables as a guide to make correct
definitions. As an illustration let us suppose we want to define the correct symmetry
law for the super bracket. If X,Y are odd elements, we introduce auxiliary odd
variables ξ, η which supercommute. Since ξX and ηY are both even we have

[ξX, ηY ] = −[ηY, ξX].

But, using the sign rule, we get

[ξX, ηY ] = −ξη[X,Y ], [ηY, ξX] = −ηξ[Y,X]

so that, as ξη = −ηξ, we have

[X,Y ] = [Y,X].
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A similar argument can be given for the definition of the super Jacobi identity. These
examples can be generalized into a far-reaching principle from the categorical point
of view.

The even rules principle. For any vector space V over k and any supercommu-
tative k-algebra B we write

V (B) = (V ⊗B)0 = the even part of V ⊗B.

Clearly B 7−→ V (B) is functorial in B. If

f : V1 × . . .× VN −→ V

is multilinear, then, for any B, we have a natural extension

fB : V1(B)× . . .× VN (B) −→ V (B)

which is B0-multilinear and functorial in B. The definition of fB is simply

fB(b1v1, . . . , bNvN ) = (−1)m(m−1)/2b1 . . . bNf(v1, . . . , vN )

where the bi ∈ B, vi ∈ Vi are homogeneous and m is the number of bi (or vi) which
are odd. The system (fB) is functorial in B. The principle of even rules states that
any functorial system (fB) of B0-multilinear maps

fB : V1(B)× . . .× VN (B) −→ V (B)

arises from a unique k-multilinear map

f : V1 × . . .× VN −→ V.

The proof is quite simple; see10. The proof just formalizes the examples discussed
above. It is even enough to restrict the B’s to the exterior algebras. These are just
the auxiliary odd variables used heuristically.

The categorical view is of course hardly needed while making calculations in
specific problems. However it is essential for an understanding of super linear al-
gebra at a fundamental level. One can go far with this point of view. As we have
seen earlier, one can introduce Lie objects in a tensor category and one can even
prove the Poincaré-Birkhoff-Witt theorem in the categorical context. For this and
other aspects see10.
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Everything discussed so far is based on the assumption that k has characteristic
0. In positive characteristic the main results on the Tannakian categories require
interesting modifications11
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