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1. Introduction

Let Q,P be the projection valued measures on the real line R that
are associated to the position and momentum observables of a particle
in quantum mechanics moving in one dimension. In his investigations
on the foundations of quantum mechanics Accardi has raised the ques-
tion whether the pair (Q,P ) is determined up to unitary equivalence by
purely probabilistic i.e., measure theoretic means. For instance, one can
show that if E,F are two bounded Borel sets ⊂ R, then Q(E)P (F ) is an
operator of trace class and

Tr (Q(E)P (F )) = µ(E)µ(F ) (1)

where µ is the Lebesgue measure on R; and following Accardi one can ask
if this property, which we call the trace property, is enough to determine
the pair (Q,P ) up to unitary equivalence. In this note we discuss three
examples which indicate that the answer is negative for this question as
well as for some natural variations of it.

The pair (Q,P ) can be defined for any locally compact separable
abelian group which is self dual. Let G be such a group and let us choose
an isomorphism of G with its character group Ĝ. Let Q be the canoni-
cal projection valued measures on G and let P̂ be the projection valued
measure on Ĝ obtained by transferring Q from L2(G) to L2(Ĝ) via the
Fourier transform. The isomorphism of G with Ĝ allows us to transfer P̂
to a projection valued measure P on G. At the same time it allows us to
view the duality between G and Ĝ as a duality (·, ·) of G with itself and
so to view the Fourier transform as a unitary operator F of L2(G) with
itself having the kernel function

(x, y) (x, y ∈ G)

Clearly
P = FQF−1
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Suppose α, β are two measure preserving Borel automorphisms of
R which take bounded Borel sets to bounded Borel sets. We call these
boundedly measure preserving transformations. Then, defining

Qα(E) = Q(α(E)), P β(F ) = P (β(F ))

we get projection valued measures Qα, P β on R which also satisfy (1) for
all bounded Borel sets E,F ⊂ R. In our first example we construct a
pair α, β such that (Qα, P β) is not unitarily equivalent to (Q,P ). This
example suggests that we call a pair (Q′, P ′) weakly equivalent to (Q,P ) if
there is a pair α, β of boundedly measure preserving transformations such
that (Q′, P ′) is unitarily equivalent to (Qα, P β).

In our second example we give a pair (Q′, P ′) satisfying (1) but not
weakly equivalent to (Q,P ). The idea behind this example is as follows.
The projection valued measure P is FQF−1 where F is the Fourier trans-
form on R. So the real issue is whether (1) determines the Fourier trans-
form up to weak equivalence. Since only the measure theoretic structure
of R is to be used one can obtain an example of this kind by constructing a
group which is separable locally compact abelian, with the same underly-
ing set, Borel structure, and Haar measure, but which is different enough
from R so that its Fourier transform operator is very far from that of R.

Our third example deals with finite quantum systems studied by
Schwinger [S] and later by Accardi [A], to which the definitions above
may be extended without any difficulty. Let X be a finite set with N ele-
ments. In a quantum system where any observable has at most N values
one can set up a correspondence between the values and the elements of X
and associate to any observable a projection valued measure on X. Let us
consider two such, say Q,P which have N distinct values. The condition

Tr (QaPb) =
1
N

(a, b ∈ X) (2)

is then the condition that these two observables are maximally incompati-
ble, namely that if one of them has a sharply defined value in a state, there
is no statistical information on the other, in the sense that all its values
are equally probable. Notice that in the Hilbert space of dimension N2

of the endomorphisms of L2(X) with scalar product (A,B) = Tr (AB†),
we have

(QaPb, Qa′Pb′) = Tr (QaPbPb′Qa′)
= Tr (Qa′QaPbPb′)

= δ(a, a′)δ(b, b′)
1
N
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so that the N2 elements N1/2QaPb form an orthonormal basis.

Pairs (Q,P ) satisfying (2) can be constructed using finite abelian
groups. Let us equip X with the structure of an abelian group and choose
an isomorphism of X with its dual group so that we have a map (·, ·) of
X×X into the circle group T which expresses the duality of X with itself.
The Fourier transform map of L2(X) with itself is a unitary matrix with
entries frs,

F = (frs)1≤r,s≤N , frs =
(r, s)√
N

If we define Q,P by

(Qaf)(x) = δ(a, x)f(x), Pb = FQbF−1

then (Q,P ) satisfy (2). The concept of weak equivalence extends in an
obvious manner to systems satisfying (2). We shall show by an example
that two “sufficiently different” group structures on X lead to pairs (Q,P )
which are not weakly equivalent.

2. Proof of the trace property on R and T × Z.

Let F be the Fourier transform operator on R and P = FQF−1. We
first show that Q(E)FQ(F ) is of trace class; this implies at once that
Q(E)P (F ) = Q(E)FQ(F )F−1 is of trace class. We then compute its
trace. The argument depends on two lemmas.

Let X be a smooth manifold (second countable) and k a locally
bounded Borel function on X × X. Let m be a measure with a smooth
strictly positive density in any coordinate chart. We assume that k defines
a bounded integral operator Ak. This means that

(Akψ,ϕ) =
∫ ∫

k(x, y)ψ(y)ϕ(x)conj
dm(y)dm(x)

for any two bounded and compactly supported Borel functions ϕ,ψ. Let
R be the projection valued measure on X defined by

R(E)f = χEf

where χE is the indicator function of E.
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Lemma 1. Suppose that k is smooth with compact support in X × X.
Then for any Borel set E ⊂ X, the operator R(E)Ak is of trace class and
its trace is ∫

E

k(x, x)dm(x)

Proof. This result is a generalization of the one discussed in [V] (p 296).
We sketch its proof in a little more detail. By a partition of unity argument
we can write k as a finite sum of kernels each of which is one of two types:
(i) with support inside D×D where D is an open set in X diffeomorphic
to a cube in Rn (ii) with support inside D1 ×D2 where the Di are open
diffeomorphic to a cube in Rn, and have disjoint closures.

In the first case notice that R(X \D)Ak = 0 and so we may suppose
that E ⊂ D. Thus we may replace X by D and hence assume that X itself
is a cube in Rn and dm = gdnx where g > 0 is a smooth density. The
map ψ 7−→ ψ

√
g is a unitary isomorphism of L2(X, gdnx) with L2(X, dnx)

that takes the operator Ak to the operator with kernel

k∗(x, y) =
√
g(x)

√
g(y)k(x, y)

Since ∫
E

k(x, x)g(x)dnx =
∫
E

k∗(x, x)dnx

we may suppose that g = 1. As k has compact support we may use
boundary conditions that do not interfere with k to suppose that X is a
torus and m is its Haar measure. The operator Ak is then summable in
the usual trigonometric basis and its trace norm is estimated by

||Ak||1 ≤
∑
r,s∈X̂

|cr,s(k)|

where cr,s are the (rapidly decreasing) Fourier coefficients of k on X ×X.
We can now approximate Ak arbitrarily closely in the trace norm by AkN
where

kN (x, y) =
∑

|r|,|s|≤N

cr,ser(x)es(y)

and so we are reduced to the situation when

k(x, y) = er(x)es(y)
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where the ep are the characters of X. The result is trivial in this case.

In the second case we may restrict the operator to L2(D1)⊕ L2(D2)
where it has the form(

0 B
0 0

)
B : L2(D2) −→ L2(D1)

where B is the operator defined by a smooth kernel k with support ⊂
D1×D2. We may also suppose that E ⊂ D1. Then R(E)Ak has the form(

0 R(E)B
0 0

)
Arguing as before we conclude that B, and hence this operator, is of trace
class. Its trace is clearly 0 which is also the value of the integral of k(x, x)
on E since the integrand is 0 on the diagonal.

Lemma 2. If k is smooth but is not necessarily compactly supported, the
operator R(E)AkR(F ) is of trace class whenever E,F are bounded Borel
sets.

Proof. Choose smooth functions e, f with compact support such that
e = 1 on E and f = 1 on F . Let Me,Mf be the operators of multiplication
in L2(R) by e, f respectively. Then

R(E)AkR(F ) = R(E)MeAkMfR(F )

and so it is enough to show that MeAkMf is of trace class. But, for any
bounded compactly supported ψ we have

(MeAkMfψ)(x) = e(x)
∫
k(x, y)f(y)ψ(y)dy =

∫
k1(x, y)ψ(y)dy

where
k1(x, y) = e(x)f(y)k(x, y)

Since k1 is compactly supported and smooth on X × X the conclusion
follows from Lemma 1.

Proposition 3. The operator Q(E)P (F ) is of trace class with trace
µ(E)µ(F ) whenever E,F are bounded Borel subsets of R.
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Proof. We work with the notation of Lemma 1. The operator K1 =
MeFQ(F )F−1Me has the kernel function

k1 = e(x)(FχF )(x− y)e(y)

which is smooth with compact support, and

Tr (Q(E)P (F )) = Tr (Q(E)FQ(F )F−1Q(E)) = Tr (Q(E)K1Q(E))

But
Tr (Q(E)K1Q(E)) = Tr (Q(E)K1)

=
∫
E

k1(x, x)dx

= (FχF )(0)
∫
E

e(x)2dx

= µ(F )µ(E)

since e(x) = 1 on E.

Proposition 4. The trace property (1) is valid for G = T × Z.

Proof. The proof is the same as that for Proposition 3 except that we
use the Fourier transform operator for the group G in place of F.

3. The examples.

Example 1. We first write down the condition that (Qα, P β) is
unitarily equivalent to (Q,P ). Let Rα be the unitary map defined by
(Rαf)(x) = f(α−1(x)). Then Qα = RαQRα−1. We want to know when
there is a unitary operator U such that

URαQRα−1U−1 = Q, UFRβQRβ
−1

F−1U−1 = FQF−1

The first condition implies that URα = Ma where a is a Borel function of
absolute value 1, i.e., whose values have absolute value 1. The second con-
dition can be rewritten as the statement that F−1MaR

α−1FRβ commutes
with Q and so is of the form Mb where b is a Borel function of absolute
value 1. This gives the condition

F = RαMa−1FMbR
β−1
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The operator on the right side is easily checked to have the kernel function

a−1(α−1(x))eiα
−1(x)β−1(y)b(β−1(y))

and so the condition is that

eixy = a−1(α−1(x))eiα
−1(x)β−1(y)b(β−1(y))

for almost all x, y. Take now

α(x) =
{
−x, |x| ≤ 1
x |x| > 1

and
β(x) = x

Then the condition becomes

eixy = eiα(x)yu(x)v(y)

where u, v are Borel functions of absolute value 1, the identity being sat-
isfied for almost all (x, y). Taking |x| ≤ 1 we see that

e2ixy = u(x)v(y)

for almost all (x, y) with |x| ≤ 1. For some x0 this is true for almost all y
and so we have

v(y) = γeiry

for almost all y where γ, r are constants with |γ| = 1 and r real. Similarly

u(x) = δeisx

for almost all |x| ≤ 1 where δ is a constant of absolute value 1 and s is a
real constant. Hence

e2ixy = γδei(sx+ry)

for almost all (x, y) with |x| ≤ 1, hence for all (x, y) with |x| ≤ 1, and
hence, by analyticity, for all (x, y). Taking x = y = 0 we get γδ = 1. But
then this means that

2xy = sx+ ry
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for all (x, y) which is absurd. Thus, for this choice of α we have the system
(Qα, P ) which is not unitarily equivalent to (Q,P ) although the criterion
(1) of §1 is satisfied.

Example 2. Here we wish to construct another separable locally
compact abelian group structure on R whose Haar measure is still µ. Let
G = T ×Z where T is the circle group. We identify G with R by the Borel
isomorphism of R with G defined by

n+ t 7−→ (e2iπt, n) (n ∈ Z, 0 ≤ t < 1)

It is clear that this preserves bounded sets and Haar measures. We transfer
the group structure from G to R by this map and denote the separable
locally compact abelian group thus obtained on R by R′. It is clear that
R′ has the same Borel structure and Haar measure as R. Let F′ be the
Fourier transform map of R′. The group G is self dual and so we have a
standard pair (Q′, P ′) on it. By Proposition 2.4 we have two projection
valued measures on G which satisfy the criterion (1) of §1. Transferring
these to R we obtain two projection valued measures on Q′, P ′ on R which
satisfy (1) of §1. Note that

Q′ = Q, P ′ = F′QF′−1

Our claim is that this pair is not weakly equivalent to (Q,P ).

The argument is similar to the one given in the previous example.
The condition for weak equivalence is that for some unitary operator U
we have

UQαU−1 = Q, UFRβQRβ
−1

F−1U−1 = F′QF′−1

This leads to
F′ = MaR

α−1FRβMb−1

Let us apply both sides to the function χ[0,1). The left side reproduces
this function. But the right side becomes

a(x)
∫
β([0,1))

b−1(β−1(y))eiα(x)ydy

If these two are to be equal, the function∫
β([0,1))

b−1(β−1(y))eiα(x)ydy
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must vanish if x is outside [0, 1). If

g(t) =
∫
β([0,1))

eityb−1(β−1(y))dy (t ∈ C)

then the boundedness of β([0, 1)) and of b−1 imply that g is an entire
function vanishing on the complement of the bounded set α([0, 1)). So it
must be identically 0. But this is impossible as it is the Fourier transform
of a nonzero function.

Example 3. We work in the context of finite systems. Let X be a
finite set with N elements. Let G1, G2 be two finite abelian groups whose
underlying set is X. We choose an isomorphism of Gi with its dual Ĝi,
and write (·, ·)i for the duality between Gi and itself thus obtained. Let
F1,F2 be the Fourier transform unitary matrices corresponding to G1, G2.
We have

Fi(x, y) =
(x, y)i√
N

Our aim is to show that if G1 and G2 are “sufficiently different” then the
corresponding pairs (Qi, Pi) are not weakly equivalent.

We make some remarks on the Fourier transform matrix. Let G be
a finite abelian group whose underlying set is X. As usual we choose a
duality of G with itself. Then G is a direct sum of groups of the form
Z/prZ where the p’s are prime divisors of N and r ≤ s where ps is the
largest power of p dividing N . If s∗ is the maximum of the integers r such
that Z/prZ occurs in the standard decomposition of G, then s∗ ≤ s and
s∗ = s if and only if the p–component of G is the cyclic group Z/psZ.
Let R(G) be the subgroup of the circle group generated by N1/2–times
the entries of the Fourier transform matrix of G. Then it is clear from a
look at the character table of G that R(G) is the group R(N∗) of all N∗th

roots of unity where N∗ =
∏
p|N p

s∗ :

R(G) = R(N∗)

We write
N∗ = N∗(G)

For instance if N = p4 (p a prime), then s = 4 and s∗ = 1, 2, 2, 3, 4 for
G = Z4

p,Z
2
p ⊕ Zp2 ,Z2

p2 ,Zp ⊕ Zp3 ,Zp4 .
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The condition for the two pairs associated to G1 and G2 to be weakly
equivalent is easily derived to be

(x, y)2 = a(x)(α(x), β(y))1b(y) (x, y ∈ X)

where |a(x)| = |b(y)| = 1 and α, β are permutations of X. If y0 is such
that β(y0) = e1 where e1 is the identity of G1, then we have (x, y0)2 =
a(x)b(y0). Similarly (x0, y)2 = a(x0)b(y) where α(x0) = e1. This gives

(x, y)2

(x, y0)2(x0, y)2
=

(α(x), β(y))1

b(y0)a(x0)

So there is a constant θ with |θ| = 1 such that

θ(x, y)1 ∈ R(G2) (x, y ∈ X)

Taking x = e1 we see that θ ∈ R(G2). So

(x, y)1 ∈ R(G2) (x, y ∈ X)

This implies that
R(G1) ⊂ R(G2)

By symmetry we have the reverse inclusion also and so

R(G1) = R(G2)

So
N∗(G1) = N∗(G2)

Thus if the group structures are different enough so that

N∗(G1) 6= N∗(G2)

then the pairs (Qi, Pi) are not weakly equivalent.

If G1 is the cyclic group of order N , then N∗(G1) = N and then
N∗(G2) = N if and only if G2 is isomorphic to G1. Thus, if G1 is the
cyclic group of order N and G2 is not isomorphic to it, the pairs (Qi, Pi)
are not weakly equivalent.

If N is a prime, or more generally, if it is a product of distinct primes,
then there is only one abelian group of order N . In this case it is an
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interesting question whether any two pairs (Q,P ) are weakly equivalent.
We can take Q′ = Q and P ′ = WQW−1 for some unitary matrix W . The
condition for weak equivalence is that

|w(a, b)| = 1 (a, b ∈ X)

Let us fix x0 ∈ X and use left and right multiplication by diagonal unitary
matrices to make

w(x0, y) = w(x, x0) = 1 (x, y ∈ X)

Our question reduces to showing that W is then up to permutations of
rows and columns the character table of the group Z/NZ. One can show
that in the set of all such W ’s, the ones that are permutations of the
character table are isolated points. So it appears plausible that these are
the only such matrices W but we do not have a proof.
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