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Abstract

The consequences for particle classification of the Volovich hypothesis that spacetime

geometry is non-archimedean at the Planck scale are explored. The multiplier groups and

universal topological central extensions of the p-adic Poincaré and Galilean groups are

determined.
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1 The Volovich hypothesis.

In attempting to unify gravitation and quantum theory people have encoun-
tered deep obstacles connected with the structure of spacetime at very short
distances and times. The idea of extended particles (strings, branes) makes
sense in this context. Already in the early 1970’s Beltrametti and his col-
laborators [1] [2] [3] had examined the possibility that spacetime geometry
may be based on a p-adic or even a finite field. In important work [4] [5]
in 1987 Volovich made the bold hypothesis that spacetime geometry may be
non archimedean at the Planck scale. The basis for this suggestion is the
idea that principles of general relativity and quantum theory forbid any mea-
surement of distances less than the Planck length, so that the archimedean
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axiom might cease to have validity in sub-Planckian regions. In this paper we
examine the consequences of this hypothesis for particle classification. Since
elementary particles define PUIR’s (=projective unitary irreducible repre-
sentations) of the spacetime symmetry group, as a first step in this program
it becomes necessary to determine all the phase factors (=multipliers) that
enter the PUIR’s. We obtain a generalization for the p-adic Poincaré and
Galilean groups of the famous theorem of E. Wigner [6] that all PUR ’s of
the real Poincaré group become UR’s when lifted to its two-fold cover.

2 Multipliers.

We begin with a very brief summary of the theory of multipliers (for more
details see [7]). Let G be any lcsc (=locally compact second countable)
group. A PUR (=projective unitary representation) of G is a Borel map U
of G into the unitary group of a complex separable Hilbert space H = H(U)
such that U(1) = 1 and U(x)U(y) = m(x, y)U(xy) for all x, y ∈ G. We call
m the multiplier for U , and U an m-representation; m is Borel, m(x, y) ∈ T
where T is the group of complex numbers of absolute value 1, and satisfies
the relations

m(x, 1) = m(1, y) = 1, m(xy, z)m(x, y) = m(x, yz)m(y, z).

Any Borel function m(G×G −→ T ) satisfying the above relations is called
a multiplier for G. If m is a multiplier there is always an m-representation,
even an irreducible one ([7], p. 249 and p. 259). Multipliers m,m′ are
equivalent (m ≃ m′) if m′(x, y) = m(x, y)a(xy)a(x)−1a(y)−1 for some Borel
map a(G −→ T ) with a(1) = 1. The set of multipliers under pointwise
multiplication is an abelian group Z(G) and the trivial ones, i.e., those ≃ 1
form a subgroup B(G); H2(G) := Z(G)/B(G) is the multiplier group of G.

Given m ∈ Z(G) one can build a central extension Em of G by T ,

1 −→ T −→ Em −→ G −→ 1

where Em = G × T with the multiplication (x, t)(x′, t′) = (xx′, tt′m(x, x′))
and maps t 7→ (1, t), (x, t) 7→ x. With its so-called Mackey-Weil topology, Em

becomes lcsc, the maps above are continuous, and Em is a topological central
extension (t.c.e.) of G; moreover, any m-representation lifts to a UR of Em

which restricts to (1,t) as t1, and this lifting gives a bijection between m-
representations of G and such UR’s of Em. If m is continuous, the topology
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on Em is the product topology. The extension Em varies with m and so it is
natural to ask if there is a universal one(u.t.c.e). A t.c.e

1 −→ A −→ E −→ G −→ 1

is called universal if every t.c.e E is an image of E by a unique map ϕ(E −→
E). A given t.c.e E of G is a u.t.c.e if and only if (a) the commutator
subgroup (E,E) is dense in E and (b) H2(E) = 0. In this case we write
E = G∼. Any PUR of G then lifts uniquely to an ordinary UR of G∼.
Thus G∼, which is unique up to unique isomorphism, may be viewed as the
effective symmetry group of the system. Note that for G to have a t.c.e. it
is necessary that (G,G) be dense in G.

We have used Borel cocycles to define the multiplier group. For totally
disconnected groups life is much simpler, as was shown by D. Wigner [8] who
used the following special case of a selection theorem of E. Michael [9]: if
Y,X are locally compact Hausdorff spaces with X t.d. and f(Y −→ X) is an
open continuous surjective map, we can find a continuous map g(X −→ Y )
such that f ◦ g is the identity on X.

Lemma 1. Let G be a t.d. group. (a) Any multiplier for G is equiva-
lent to a continuous one. (b) If m1 ≃ m2 where mi ∈ Z(G) are con-
tinuous, and a(G −→ T ) is a Borel map with a(1) = 1 and m2(g, h) =
m1(g, h)a(gh)a(g)

−1a(h)−1, then a is continuous. (c) If m is a continuous
multiplier for G and U an m-representation, then U is already continuous.
In particular the natural map H2

c (G) −→ H2(G) is an isomorphism.

Proof. (a) Let m ∈ Z(G) and U an m-representation. Then V ((x, t) 7−→
tU(x)) is a continuous UR of Em. By the theorem of Michael we can find
a continuous map x 7−→ (x, a(x)) of G into Em. If U ′(x) = V ((x, a(x)) =
a(x)U(x), then U ′ is a PUR with a multiplier m′ equivalent to m; as U ′ is
continuous, so is m′.

(b) The map f from Em1
to Em2

given by (x, t) 7−→ (x, ta(x)) is a Borel
homomorphism and hence continuous. Since Em2

has the product topology,
the projection P (Em2

−→ T ) is continuous. If g is the map x 7−→ (x, 1) from
G to Em1

, then g is continuous because Em1
has the product topology. The

continuity of a follows from a(x) = (P ◦ f ◦ g)(x).
(c) Since m is continuous, the map x 7−→ (x, 1) from G to Em is contin-

uous and U(x) = V ((x, 1)) is continuous in x.
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Lemma 2. Let G be lcsc and E a t.c.e. of G with (E,E) dense in E. If all
PUR’s of G become unitarizable when lifted to E then E is the u.t.c.e. of G.

Proof. Let C be the kernel E −→ G. We must prove that H2(E) = 0 ([21]).
Let m be a multiplier of E and U an irreducible m-representation. We have
hch−1 = c for all h ∈ E, c ∈ C and hence, with c fixed, U(h)U(c)U(h)−1 =
χ(h)U(c) where |χ(h)| = 1. Now U(h1)U(h2) = m(h1, h2)U(h1h2)(h1, h2 ∈
E), from which it follows that χ is a character in h. As (E,E) is dense in E
we may conclude that χ(h) = 1. In other words each U(c) commutes with U
and so must be a scalar. So U descends to G as a PUR. But all PUR’s of G
lift to UR’s of E. Hence U can be normalized to a UR on E.

The study of multipliers of p-adic linear groups was initiated by C. C.
Moore [10] and continued by G. Prasad–M. S. Raghunathan [11] and G.
Prasad–A. S. Rapinchuk in [12]. If G is an absolutely almost simple, simply
connected k-isotropic linear algebraic group defined over a local field k, then
for G = G(k), H2(G) is isomorphic to the (finite) group µ(k) of all roots of
unity in k; this implies that G∼ exists and the kernel of G∼ −→ G is the dual
group of µ(k). If G is only semi simple, G∼ will exist and G∼ −→ G will
have finite kernel, provided the simple factors of G are defined and isotropic
over Qp. The hypotheses on G are satisfied if G = Spin(V) of a quadratic
vector space V defined and isotropic over k and of dimension ≥ 3 but 6= 4,
with the proviso that in dimension 4 the Witt index is 2..

3 Multipliers for semi direct products.

Our entire work is based on a theorem of Mackey [13] (pp. 303–305) on
multipliers for semi direct products. We have a semi direct product H =
A ×′ G where A,G are lcsc and A is abelian. Let A∗ be the dual of A.
We are interested in multipliers for H which are trivial when restricted to
A and G. This requires us to introduce the cohomology group H1(G,A∗).
Let R be any lcsc abelian group with G acting on R. An 1-cocycle for G
with coefficients in R is a Borel map f(G −→ R) such that f(gg′) = f(g) +
g·f(g′)(g, g′ ∈ G). This is equivalent to saying that g 7−→ (f(g), g) is a Borel
homomorphism of G into the semi direct product R ×′ G [14]. So f(1) = 0
and f is automatically continuous. The abelian group of (continuous) 1-
cocycles is denoted by Z1(G,R), the coboundaries are the cocycles of the
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form g 7→ g·r − r for some r ∈ R, forming the subgroup B(G,R), and
Z1(G,R)/B1(G,R) =: H1(G,R).

Let M0(H) be the group of multipliers for H which are trivial when
restricted to A and G, and M00(H) the subgroup of those equal to 1 on A
and G. Let [M0(H)] = [M00(H)] be the image in H2(H). Following an idea
that goes back to E. Wigner [6] we wish to relate [M00(H)] with H1(G,A∗).

Theorem 1 (Mackey). We have [M0(H)] ≃ H1(G,A∗). Moreover, all mul-
tipliers in M00(H) are equivalent to continuous ones.

Proof. Let m ∈ M00(H) and consider the section γ : ag 7−→ (ag, 1) of Em.
Then γ(g)γ(a)γ(g)−1 = γ(g[a])ωm(a, g) = ωm(a, g)γ(gag−1) where

ωm(a, g) =
m(g, a)m(ga, g−1)

m(g, g−1)
=

m(g, a)

m(g[a], g)
∈ T.

Since m = 1 on A × A,G × G, γ is a homomorphism separately on A and
G. It follows from this (or by direct verification) that for fixed g ∈ G, the
map a 7→ ωm(a, g) is a character of A (recall that Borel homomorphisms
of A into T are characters), while for fixed a ∈ A, we have ωm(a, g1g2) =
ωm(a, g2)ωm(g2[a], g1) (g1, g2 ∈ G). Let us write A∗ additively. If we set
θm(g)(a) = ωm(a, g−1), then θm ∈ Z1(G,A∗) andm 7→ θm is a morphism from
M00(H) into Z1(G,A∗). We wish to prove that this induces an isomorphism
in cohomology.

Let m′ ∈M00(H), m′ ≃ m. So, for a Borel f(H −→ T ) with f(1) = 1,

m′(ag, a′g′) = f((ag[a′])gg′)f(ag)−1f(a′g′)−1m(ag, a′g′).

Note that f is a character on A as well as G. We then find

ωm′(a, g) =
f(g[a])

f(a)
ωm(a, g), θm′(g) = θm(g) + (g·f − f).

So θm and θm′ define the same element in H1(G,A∗).
Injectivity. Let θm(g) = g·f − f for some character f ∈ A∗. We view

f as a map of A into T ⊂ Em. Then ωm(a, g) = f(g[a])f(a)−1. Let γ
be the map h 7→ (h, 1) of H into Em. Write δ(a) = f(a)γ(a), δ(g) =
γ(g), δ(ag) = δ(a)δ(g) and note that δ is a homomorphism on A and G.
Then δ is a section and we shall prove that it is a homomorphism. But
δ(ag.a′g′) = δ(a)f(g[a′])γ(g[a′])γ(g)γ(g′). Now

f(g[a′]) = f(a′)ωm(a′, g) = f(a′)γ(g)γ(a′)γ(g)−1(γ(g[a′]))−1
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so that δ(ag.a′g′) = δ(ag)δ(a′g′) after a calculation. Thus Em is split by δ.
Surjectivity. Given θ ∈ Z1(G,A∗) let ω(a, g) = θ(g−1)(a); ω is continuous

on A ×′ G. If we define m by m(ag, a′g′) = ω(a′, g), it is straightforward
to verify that m ∈ M00(H) and ω = ωm. The t.c.e. defined by m is con-
structed as follows. We define an action of G on A × T (product group) by
g[(a, t)] = (g[a], tω(a, g)). It is immediate from the properties of ω that this
is a continuous action of G on A × T . Hence we can form the semi direct
product E = (A × T ) ×′ G. It is easy to check that E is a t.c.e of H by T
and that m is the multiplier defined by the section γ(ag) = ((a, 1), g). In
particular m is continuous so that all multipliers in M00(H) are equivalent
to continuous ones.

Corollary 1. If ω is given and we define m by

m(ag, a′g′) = ω(a′, g)

then m is a continuous multiplier and ωm = ω.

We now examine which multipliers of A arise as restrictions of multipliers
for H = A ×′ G. A bicharacter for A is a continuous map b(A × A −→ T )
which is a character in each argument; it is alternating if b(x, y)b(y, x) = 1
and b(x, x) = 1 for x, y ∈ A. All bicharacters are continuous multipliers. Let
Λ2(A) be the abelian group of all alternating bicharacters for A. If m is a
multiplier for A and we set m∼(x, y) = m(x, y)m(y, x)−1, then m∼ ∈ Λ2(A),
and m 7→ m∼ is a homomorphism which induces an injection of H2(A) into
Λ2(A). Suppose now that A is 2-regular, i.e., a 7→ 2a is an isomorphism of the
lcsc group A onto itself. Then the map H2(A) −→ Λ2(A) is an isomorphism.
In this case the map that takes an element of Λ2(A) to its image in H2(A)
is an isomorphism. Also G acts on Λ2(A) [16].

Proposition 1. Let A be 2-regular. If 1 is the only element of Λ2(A) invari-
ant under G, then, for any multiplier m for H, the restriction of m to A×A
is trivial and so m ≃ m′ where m′ = 1 on A×A. If m is continuous, we can
choose m′ to be continuous also.

Proof. Let U be an m-representation for H and let mA = m
∣

∣

A×A
. Then,

for fixed g, U(g)U(a)U(g)−1 = t(a)U(g[a]) where t(a) ∈ T . Now a 7→
U(g)U(a)U(a)−1 is an mA-repesentation of A, while a 7→ t(a)U(g[a]) is an
m′

A-representation of A where m′

A(a, b) = m(g[a], g[b])t(a)t(b)t(ab)−1. Thus
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mA = m′

A showing that mA ≃ (mA)g where (mA)g(a, b) = mA(g[a], g[b]).
This means that m∼

A = (mA)∼g = (m∼

A)g in Λ2(A). So m∼

A is G-invariant,
hence must be 1. If m is continuous, we use [16] (p. 535, proof of lemma 2)
to find a continuous f(H −→ T ) such that mA(a, b) = f(a)f(b)f(ab)−1(a, b ∈
A). Define m′(x, y) = m(x, y)f(x)−1f(y)−1f(xy).

4 Multipliers for p-adic vector spaces.

We consider a finite dimensional vector space V over Qp, the field of p-adic
numbers, and a p-adic Lie group G acting on V (see [17] for the basics of
p-adic manifolds and groups). From now on we fix a non trivial additive
character ψ : Qp −→ T . It is known that the kernel of ψ is a compact open
subgroup of Qp.

Lemma 3. Any additive continuous map between finite dimensional Qp-
vector spaces is Qp-linear.

Proof. Let F (U1 −→ U2) be additive and continuous. If u ∈ U1, we have
F (mu) = mF (u) for integers m, and mF (u) = F (mu) = F (n(m/n)u) =
nF (m/n)u) so that F (qu) = qF (u) for all rational q. By continuity F (cu) =
cF (u) for all c ∈ Qp.

Let Cn = Cn(V ) be the abelian group of n-characters of V , namely, the
continuous maps V n −→ T which are characters in each argument topolo-
gized by uniform convergence on compacts. Let Mn be the vector space of
n-linear maps of V n into Qp. Then β 7→ ψ(β) is a continuous homomor-
phism of Mn into Cn. This map is one-one. If ψ(h(x1, . . . , xn)) = 1 for all
(xi), then |h(x1, . . . , xn)|p ≤ pr for some fixed r and all (xi) ∈ V n, showing
that h(x1, . . . , xn) = 0.

Proposition 2. The map f 7→ ψ(f) is a topological additive isomorphism of
Mn with Cn.

Proof. For n = 1 the result is classical. Let n > 1. Write V n = V n−1 × V
and x = (z, y)(x ∈ V n, z ∈ V n−1, y ∈ V ). Let χ ∈ Cn. For each z ∈ V n−1

there is a unique c(z) ∈ V ′ such that χ(z, y) = ψ(〈c(z), y〉). Since ψ(〈c(z1 +
z2) − c(z1) − c(z2), y〉) = 1 for all y ∈ V , we get c(z1 + z2) = c(z1) + c(z2).
If zr → z in V n−1, then χ(zr, y) → χ(z, y) uniformly on compacts in y, so
that c(zr) → c(z). Hence c(V n−1 −→ V ′) is additive and continuous, hence
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Qp-linear. Write c(z, y) = 〈c(z), y〉. Then c is linear in z for fixed y and
linear in y for fixed z, hence n-linear.

To show that the topologies are the same, notice first that on Mn uniform
convergence on compacts is the same as pointwise convergence since Mn is
finite dimensional. If dr are in Mn and ψ(dr) → 1 uniformly on compacts of
V n as r → ∞, we must show that dr → 0 in Mn, i.e., dr(y1, . . . , yn) → 1 for
each fixed (yi) ∈ V n. Fixing y1, . . . yn−1, we have ψ(dr(y1, . . . , yn−1, y)) → 1
uniformly on compacts of y, and hence dr(y1, . . . , yn−1, y) → 0 for each y.

Corollary 2. For any skew symmetric bilinear form b on V × V , ψ(b) is a
multiplier for V , and the map b 7→ [ψ(b)] induces an isomorphism of Λ2(V )
with H2(V ).

Proof. From [16] we know that the map that takes an alternating bicharacter
f to its class in H2(V ) is an isomorphism. By the lemma above any f is of
the form ψ(b) for a unique bilinear form on V × V . Since f is alternating,
ψ(b + bT ) = 1 where bT (x, y) = b(y, x). Hence b+ bT = 0, showing that b is
skew symmetric. If ψ(b) is the trivial multiplier, ψ(b) is symmetric, hence,
as before, b = bT , hence b = 0.

5 Study of H1(G,U) for p-adic Lie groups G.

We now study of H1(G,U) where G is a p-adic Lie group and U a finite
dimensional vector space over Qp on which G acts linearly. We have seen
that a map f(G −→ U) is a 1-cocycle if and only if γf : g 7→ (f(g), g) is a
morphism of topological groups from G to U ×′ G. When G is a p-adic Lie
group, both groups are Lie and so f becomes analytic [17]. So all cocycles
are analytic and one can differentiate. Let g be the Lie algebra of G and U
that of U so that U ⊕′

g is the Lie algebra of U ×′ G. Its bracket is given
by [(u, Z), (u′, Z ′)] = (Z·u′ − Z ′·u, [Z,Z ′]). Let ∂γf be the differential of γf .
Then ∂γf is a Lie algebra morphism and is of the form ∂γf (X) = (∂f(X), X)
for X ∈ g (∂f defined by this equation). The relation ∂γf([X, Y ]) =
[∂γf (X), ∂γf(Y )] gives ∂f([X, Y ]) = X·∂f(Y )−Y ·∂f(X) (X, Y ∈ g) which
defines a 1-cocycle for the Lie algebra g with values in U . For any X ∈ g

let ∂(X) be the left invariant vector field on G differentiating by the rule
(∂(X)g)(x) = (d/dt)t=0g(x exp tX) for x ∈ G and analytic functions g on
open sets of G containing x. Then

(∂f)(X) = (∂(X)f)(1).
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If we replace f by f + f ′ where f ′(g) = g·u − u for some u ∈ U , then
∂f ′(X) = ∂f(X) + Xu showing that the cohomology class of ∂f does not
change. So f 7→ ∂f induces a map ∂ : H1(G,U) −→ H1(g, U). For any
cocycle f we write [f ] for its cohomology class. Notice that H1(G,U) is a
Qp-vector space and ∂ is a Qp-linear map. Part (a) of the Theorem below is
in [14]. UG is the space of vectors in U fixed by G.

Theorem 2. (a) The kernel Γ of the map ∂(H1(G,U) −→ H1(g, U) is the
space of all cohomology classes which contain a cocycle vanishing on a
compact open subgroup K of G (hence constant on the cosets gK).

(b) Suppose that for any 0 6= u ∈ U the stabilizer Gu of u in G is either all
of G or has measure zero in G. Then Γ ≃ Hom0(G,U

G), the space of
morphisms G −→ UG that vanish on compact open subgroups of G.

Proof. (a) We have (∂f)(X) = Xu for some u ∈ U . If f ′(g) = f(g)−(g·u−u),
then f ′ ≃ f and ∂f ′ = 0. We may thus assume ∂f = 0. Since ∂γf (X) =
(0, X) it is clear that γf(g) = (0, g) for g ∈ K where K is a compact open
subgroup of G. So f(g) = 0 for g ∈ K. Hencef(xh) = f(x) + x·f(h) = f(x)
for x ∈ G, h ∈ K. Conversely, if f = 0 on K, ∂f = 0.

(b) Let f be a cocycle with [f ] ∈ Γ. For fixed x ∈ G,

f(hx) = f(x(x−1hx)) = f(x) (x−1hx ∈ K ⇔ h ∈ xKx−1).

For such h, we have f(x) = f(hx) = f(h) + h·f(x). We thus get f(x) =
h·f(x) (h ∈ Kx := K ∩ xKx−1). Suppose f(x) 6= 0. Then the subgroup
Kx which has measure > 0 because it is open, is inside the stabilizer of
f(x) in U . Hence the stabilizer of f(x) is all of G, i.e., f(x) ∈ UG. The
cocycle property implies that f is a morphism vanishing on K, i.e., f ∈
Hom0(G,U

G). We claim that f is the only cocycle in its class. If f ′ is
another, then f(x) − f ′(x) = x·u − u for some u ∈ U . Thus x·u − u = 0
for x in a compact open subgroup of G. As before we argue that u ∈ UG,
showing that f = f ′. Finally, it is clear that any f ∈ Hom0(G,U

G) defines
an element of Γ.

Lemma 4. If G is compact, or more generally, generated by compact sub-
groups (=compactly generated), then Hom0(G,Qp) = 0.

Proof. If t is a homomorphism of G into Qp which is zero on a compact open
subgroup R, and K is any compact subgroup, t is zero on R ∩ K which is
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open in K and so the image t(K) is a finite additive subgroup of Qp, hence
0. So t = 0 on K. Thus the kernel of t contains all compact subgroups and
so is all of G.

Lemma 5. Under the conditions of (b) of Theorem 1, ∂(H1(G,U) −→
H1(g, U)) is injective if either UG = 0 or Hom0(G,Qp) = 0, in particular if
G is compact.

Proof. Obvious, since UG ≃ Qr
p.

Lemma 6. Suppose G∼ −→ G is a finite central cover of G and we view V
(hence V ′ also) as a G∼-module. Then H1(G∼, V ′) = H1(G, V ′).

Proof. Let R be the kernel of G∼ to G. Then R is central and for any cocycle
f(G∼ −→ V ′) we have, with h ∈ R, x ∈ G∼,

f(xh) = f(hx) = f(x) + x·f(h) = f(h) + h·f(x) = f(h) + f(x)

since R acts trivially on V ′. Thus f(h) ∈ UG. So f
∣

∣

R
as a morphism of R into

UG ≃ Qr
p whose image is finite, as R is finite. So the image is 0, showing that

f is constant on the cosets of R. Hence f descends to a cocycle on G, showing
that H1(G, V ′) −→ H1(G∼, V ′) is surjective. For injectivity, if the lift f∼ to
G∼ of a cocycle f on G is trivial on G∼, f(g) = f∼(g∼) = g∼·u−u = g·u−u
for some u ∈ V ′, if g is the image of g∼ in G.

6 In which G and V are algebraic.

Let V be a finite dimensional vector space over Qp, and G the group of
Qp-rational points of a closed algebraic group G ⊂ GL(V ) defined over Qp,
where V = Q̄p⊗Qp

V , Qp being the algebraic closure of Qp. Then G = G(Qp)
is a p-adic Lie group and the theory of the previous section applies. V ′ is the
dual vector space to V .

Theorem 3. Suppose that G is connected semi simple, G∼ −→ G is a finite
central cover of G, and we view V (hence V ′ also) as a G∼-module. Then
H1(G∼, V ′) = 0.

Proof. By lemma 6 it is enough to prove that H1(G, V ′) = 0. The key fact
is that H1(g, V ′) = 0 since g is semi simple. It is thus a question of verifying
the conditions that make ∂ injective. For any 0 6= u ∈ V ′ the stabilizer of
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u is the group of Qp-points of an algebraic subgroup Gu ⊂ G defined over
Qp which is either a proper subvariety of the group G or all of G. Coming
down to Qp, we see that the stabilizer in G is either all of G or a proper
subset given by the zeros of a finite number of polynomials with coefficients
in Qp. Such a set has measure 0 in any p-adic manifold, a fact seen by using
local coordinates. Thus, by Lemma 5, we need consider only the case when
V ′G 6= 0. If G is Qp-anisotropic, G is compact and we are done; if G is
Qp-isotropic, then G = (G,G), (see [11] p. 200), and so G has only trivial
homoprohisms into Qp.

Remark 1. The map H1(G,U) −→ H1(g, U) has no reason to be surjective
because a Lie algebra morphism g −→ U ⊕′

g lifts only to a morphism
K −→ U ×′ G of an open compact subgroup K of G. Moreover one needs a
group cocycle only on a small neighborhood of 1 in G to get the Lie algebra
cocycle. Thus only the inductive limit limK H1(K,U) where K runs through
the (diminishing) compact open subgroups of G is associated to H1(g, U).
For these questions, not only for H1 but for all Hr [18] [19]. Since we need
only H1 and our methods are elementary, based on [14], we have preferred
to sketch our proofs.

7 The Poincaré group over Qp.

Let V,G,G be as in the previous section.

Theorem 4. Assume that G is semi simple, simply connected, with all of its
simple factors defined and isotropic over Qp. Then G∼ exists, G∼ −→ G has
finite kernel, and (G∼, G∼) = G∼. If G acts irreducibly on V and does not
admit a non-zero skew symmetric invariant bilinear form on V , P∼ exists,
P∼ = V ×′ G∼, and P∼ = (P∼, P∼). In particular, all PUR’s of P∼ are
uniquely unitarizable by changing phase factors and all PUR’s of P can be
uniquely unitarized after lifting to P∼. These results are valid if V is Qp-
isotropic, G = Spin(V ) and dim(V ≥ 3 and 6= 4 with the proviso that in
dimension 4, the Witt index of V is maximal, i.e., equal to 2.

Proof. The general statements for G follow from the works [10][11][12] when
G is absolutely almost simple. For (G∼, G∼) = G∼ see [11], p. 268. The
semi simple case follows easily. For P we use Theorems 1 and 3, Proposition
1, and Corollary 2. For g ∈ G∼, v ∈ V , the commutator (g, v) = g·v − v and
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these span V as V is irreducible. So (P∼, P∼) contains V and G∼, hence
must be P∼.

Let us now treat the special case. Assume first that dim(V ) 6= 4. The
action of Spin(V ) on V is irreducible and leaves a symmetric non-degenerate
bilinear form invariant. Hence the only skew symmetric invariant bilinear
form is 0. The rest follows from the general case.

In dimension 4, V is hyperbolic and a model for it is the algebra M of
2 × 2 matrices with det, the determinant, as the quadratic form. The group
SL(2)×SL(2) acts on M by (a, b), X 7−→ aXb−1 preserving the determinant,
and so gives an isogeny of SL(2) × SL(2) into SO(M). So SL(2) × SL(2) =
Spin(M). If H = SL(2) and H = H(Qp), then H∼ exists as a finite cover
over H . The result for H ×H is immediate.

Remark 2. I cannot prove this if the Witt index is 0 or 1 in dimension 4.

Remark 3. The semi direct product structure of P∼ shows that the general
pattern of particle classification does not change when we go from P to P∼.
My student Jukka Virtanen has studied the structure and symmetries of
elementary particles over Qp in his thesis [20]. Particles are still classified
by mass and spin, except that the internal symmetry groups are subgroups
of Spin(V )∼ rather than of Spin(V ), and so there are more of them. The
particles of the p-adic world have richer internal structure.

8 The Galilean group over Qp.

Here spacetime V = Qr+1
p has the decomposition into space and time: V =

V0 ⊕ V1 where V0 = Qr
p, V1 = Qp. The Galilean group is the semi direct

product G = V ×′ R where R itself is the semi direct product of rotations
and boosts. Thus V0 is a Qp-isotropic quadratic vector space. We write R0

for Spin(V0) and set R = V0 ×
′ R0. We assume that dim(V0) ≥ 3, 6= 4 with

the proviso that in dimension 4 it is of maximal Witt index 2. The action of
G is defined by

r = ((u, η), (v,W )) : (x, t) 7−→ (Wx+ tv + u, t+ η).

We write (·, ·) for the bilinear form on V0. The dual V ′ consists of pairs (ξ, t)
with duality 〈(ξ, t), (u, η)〉 = (ξ, u) + tη. The actions of the group R0 on V
and V ′ are given by

(v,W ) : (u, η) 7−→ (Wu+ ηv, η), (v,W ) : (ξ, t) 7−→ (Wξ, t− (Wξ, v)).
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The Lie algebra actions are

(v,W ) : (u, η) 7−→ (Wu+ ηv, 0), (v,W ) : (ξ, t) 7−→ (Wξ,−(ξ, v)).

As before the key is to compute H1(R, V ′) and H1(r, V ′) where r = Lie(R).
We have r = V0 ⊕ r0 where r0 = Lie(R0) and the sum is semi direct.

Let λ(r −→ V ′) be a cocycle. Since r0 is semi simple, we have H1(r0, V
′) =

0 and so λ(Z) = Zw for some w ∈ V ′ and all Z ∈ r0. By subtracting
from λ the coboundary X 7−→ Xw(X ∈ r) we may assume that λ itself
vanishes on r0. If we write λ(v) = (Lv, f(v)), then λ(v, Z) = (Lv, f(v)). Now
the map (ξ, t) 7−→ ξ is an r-module morphism of V ′ onto V ′

0 (with action
(v, Z), ξ 7−→ Zξ), and (v, Z) 7−→ Lv is a cocycle. The cocycle condition
gives LZv = ZLv for all v ∈ V0, Z ∈ r0. Hence L = cI for some constant
c. The cocycle condition for λ is λ(Zv) = Zλ(v) for all Z ∈ r0, v ∈ V0. For
λ(v) = (cv, f(v)) this becomes (cZv, f(Zv)) = (cZv, 0) so that f(Zv) = 0.
The Zv span V0 and so f = 0. Hence λ(v, Z) = c(v, 0). It is easy to verify
that λ0 : (v, Z) 7−→ (v, 0) is a cocycle. It is not a coboundary; otherwise we
will have, for some (ξ0, t0), (v, Z)·(ξ0, t0) = (v, 0) for all v ∈ V0, Z ∈ r0. Hence
(Zξ0,−(ξ0, v)) = (v, 0). This implies ξ0 = 0 and hence v = 0, a contradiction.
Thus H1(r, V ′) is one dimensional with basis λ0.

To determine H1(R, V ′) we shall first find a cocycle for R which lifts
λ0. We search for it in the form θ : (v,W ) 7−→ (v, f(v,W )). The cocycle
condition gives

f(v +Wv′,WW ′) = f(v,W ) + f(v′,W ′) − (Wv′, v).

Write g(v) = f(v, I). Then, taking W = W ′ = I we get g(v + v′) = g(v) +
g(v′)− (v′, v) for which a solution is g(v) = −(1/2)(v, v). Now f(0,WW ′) =
f(0,W ) + f(0,W ′) which implies f(0,W ) = 0. Hence

f(v,W ) = f((v, 1)·(0,W )) = f(v, 1) + (v, 1)·f(0,W ) = f(v, 1) = −
1

2
(v, v).

If we put θ(v,W ) = (2v,−(v, v)) then it is a simple calculation that this
defines a cocycle and that ∂θ = 2λ0. The cocycle θ is not a coboundary since
∂θ = 2λ0 is not, as we have already checked.

We claim that H1(R, V ′) is spanned by θ. Now ∂θ spans H1(r, V ′), and
the kernel of ∂ is 0 since it is ≃ Hom0(R

∼,Qp) by Theorem 2 as V ′R has
dimension 1. As (R,R) = R, we have Hom(R,Qp) = 0.
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For determining the multiplier we calculate first ω(a, g) = ψ(θ(g−1)(a))
(see §3). Then

ω((u′, η′), (v,W )) = ψ(−2(v,Wu′) − η′(v, v)).

Write
r = ((u, η), (v,W )), r′ = ((u′, η′), (v′,W ′)).

From §5 we know then that a corresponding multiplier is

m(r, r′) = ψ(−2(v,Wu′) − η′(v, v)).

Let
mτ (r, r

′) = ψ (−2τ(v,Wu′) − τη′(v, v)) (τ ∈ Qp).

Theorem 5. The mτ are multipliers for the pseudo Galilean group G =
V ×′ R and the map τ 7−→ [mτ ] is an isomorphism of Qp withH2(G).

Remark 4. The form of the multiplier is superficially different from the one
given in [7] (p. 287). But the two are equivalent. If ν(r, r′) = (u,Wv′) −
(v,Wu′) + η′(v,Wv′), then ν(r, r′) − µ(r, r′) = f(rr′) − f(r) − f(r′) where
f(r) = f((u, η), (v,W )) = (u, v).

Let
µ(r, r′) = −2(v,Wu′) − η′(v, v).

Then µ is a 2-cocycle with values in Qp in view of the identity (verified in a
routine manner)

µ(r, 1) = µ(1, r) = 0, µ(r1r2, r3) + µ(r1, r2) = µ(r1, r2r3) + µ(r2, r3).

The multiplier µ allows us to build a t.c.e. E of G by Qp with E = G× Qp

and multiplication (r, c)(r′, c′) = (rr′, c+ c′ + µ(r, r′)).

Theorem 6. We have (E,E) = E and E is the universal t.c.e. of G.

Proof. Since (G,G) = G, to prove that (E,E) = E it is enough to show
that {1} × Qp ⊂ (E,E). Take r = ((u, η), (v, 1)), r′ = ((u′, 0), (0, 1)).
Then r and r′ commute and (r, c)(r′, c′)(r, c)−1(r′, c′)−1 = (1, ζ), ζ =
µ(r, r′) − µ(r, r−1) + µ(rr′, r−1). Another calculation gives ζ = −2(v, u′).
Since v and u′ can be arbitrary it is clear that {1} ×Qp ⊂ (E,E).

For the second assertion we note that E covers each Emτ
as a t.c.e. since

E −→ Emτ
given by (r, c) 7−→ (r, ψ(τc)). Hence every PUR of G lifts to a

UR of E. Lemma 2 now shows that E is the u.t.c.e. of G.
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