
2. An informal look at Lie groups

2.1. The review is mainly about 19th century developments. The main
figures are

Sophus Lie (1842–1899)

Wilhelm Killing (1847-1923)

Friedrich Engel (1861-1941)

Elie Cartan (1869-1951)

The origin of Lie theory is closely related to the view of geometry first
adumbrated by Felix Klein (1849–1925): A geometry is completely deter-

mined by its motions. The motions form a group and so there is a direct
relationship between groups and their actions on spaces which determine
the geometry of that space. Figures that transform into one another by
elements of the group are congruent .

Euclidean plane geometry : The group is the group of linear affine
transformations of R2 consisting of translations followed by rotations
and reflections. Congruence obviously plays a very central role in this
geometry.

Spherical geometry : The space is S2, the sphere, and the group is
o(3), the group of rotations and reflections in 3-space, but restricted
to their action on S2,

Non Euclidean geometry : In the Poincaré model the space is the
upper half plane H and the group is SL(2,R), the group of real 2× 2
matrices with determinant 1, actually the quotient of this group by
{±1}, the projective group PGL(2,R). The action is by Möbius
transformations

(

a b
c d

)

: z 7−→
az + b

cz + d
.

Sophus Lie, a Norwegian mathematician, had the idea that in order
to use analysis to study groups and their actions one should restrict the
groups and spaces so that this is possible. The groups were to be such that
their points can be described by a finite set of coordinates (t1, t2, . . . , t)n)
with the property that group multiplication is expressed by differentiable
functions of class at least C2 (this is a technical restriction he needed to
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apply his ideas); the spaces also were to be such that their points could
be described by a finite set (x1, x2, . . . , xm) of coordinates, and again, the
action of the group on the space should be described by differentiable
functions of the group and space coordinates. The groups are what we
call Lie groups nowadays, and the spaces manifolds, all of class at least
C2. In general one cannot use the same set of coordinates to describe the
entire group or the manifold, but if one uses different sets of coordinates in
different regions, one must make sure that on overlapping regions, the two
sets of coordinates are related by differentiable transformations of class at
least C2. At the time of Lie’s work these ideas of groups and manifolds
were rather informal but it was clear in any example what was what. All
calculations were performed using coordinates and so were local . We shall
use the notation g[x] for the effect of applying the group element g to the
point x.

Lie’s problem was very simply stated: Classify all possible actions of

pairs (G, X) where G is a Lie group and X is a manifold, with G acting

on X. Clearly this would give a description of all possible geometries from
the Kleinian perspective. Although Lie was a contemporary of Klein, it
is not very clear if he had been familiar with the Kleinian view when he
formulated his problem and started a deep study of it. In any case very
soon after he met Klein and one must assume that he knew where his
program fitted into the larger scheme of geometry and group theory.

2.2. In order to explain Lie’s basic and beautiful idea, let me consider first
the case when the group is R. We thus have a differentiable manifold X on
which R is acting, what is called an one parameter group of differentiable

maps. If x is any point of X , the map

t 7−→ t[x]

can be differentiated at t = 0 to get a tangent vector Zx at x; when x
varies this gives a vector field Z. Z thus encodes the infinitesimal action

of the group R. One can recapture the local action of R by integrating
the vector field. If x0 ∈ X and x1, . . . , xm are local coordinates near x0

vanishing (for convenience) at x0, then

Z =
∑

1≤i≤m

Fi

∂

∂xi
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in these coordinates; the curves t 7−→ t[x] = (x1(t), . . . , xm(t)) become the
solutions to the initial value problem of ODE’s:

dxi

dt
= Fi(x1, . . . , xm), xi(0) = 0 (1 ≤ i ≤ m).

One can find a neighborhood U of x0 and ε > 0 such that the maps
t, x 7−→ t[x] are defined and smooth for x ∈ U, |t| < ε. If X is compact we
can get a global action of R.

Suppose now the we have a Lie group of dimension n acting on a
manifold of dimension r (we shall come to formal definitions later). So in
local coordinates we have a map

(t, x) −→ y

where

yi = Yi(t− 1, . . . , tn, x1, . . . , xm).

We introduce the vector field

Zα =
∑

i

Ziα∂i (∂i = ∂/∂xi)

where

Ziα =
∂Yi(t, x)

∂tα

∣

∣

∣

∣

t=0

.

We regard this vector field as the infinitesimal motion in the direction of
tα. The individual vector fields depend on the choice of the coordinate
(tβ) on G near the identity (we assume that t = 0 represents the identity).
But, since we do not disturb the x-coordinates, it is an easy consequence
of the chain rule that if we had used a different set of coordinates (uγ)
near the identity of G, the Zα change over to vector fields Tγ which are
constant linear combinations of the Zα. Hence the it finite dimensional

space

L :=
∑

α

RZα

is determined independent of the coordinates we use. It is thus an in-

variant of the action of G on X . Lie discovered the following remarkable
fact.
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Theorem. L is closed under the formation of the Lie bracket of vector

fields. More precisely, if A, B ∈ L, then [A, B] ∈ L also.

We shall not prove this at this time; we shall do it after we develop some
machinery of Lie groups and their actions. Note however that the space
L is well defined for any smooth map G × X −→ X where G need not
even be a group. The fact that it is closed under brackets however needs
that G is a group and the map represents an action. However to add some
intuition to this let us look at a few examples where we can verify this
result explicitly.

EXAMPLE 1: G = X = Rn. The action is by translations t, x 7−→ x + t.
The vector fields are ∂i.

EXAMPLE 2: G = SL(2,R), X = H, the Poincaré upper half plane, the
action by Möbius transformations

(

a b
c d

)

: z 7−→
az + b

cz + d
.

Near the identity, t = a − 1, b, c are coordinates with d = (1 + bc)(1 +
t)−1, t 6= −1. The vector fields corresponding to t, b, c are

T = 2z
d

dz
, B =

d

dz
, C = −z2 d

dz
.

We have
[T, B] = 2B, [T, C] = −2C, [B, C] = −T.

EXAMPLE 3: G = SO(n), X = Rn, action by linear transformations
corresponding to the matrices. Here we shall look into whether this is a
Lie group (according to our informal definition). For n = 3 there is a
parametrization by Euler angles. A better way is to use the method of
Cayley .

Lemma. The map

S 7−→ R = (I − S)(I + S)−1 =
I − S

I + S

is a bijection from the vector space of real skew symmetric n× n matrices

S to the open set of all rotations R such that I + R is invertible, with

inverse map

S = (I −R)(I + R)−1 =
I −R

I + R
.
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Multiplication is given by rational functions of S.

Problems

1. Write S = (sij) with sij = −sji and compute, for the left action of
G = SO(n) on itself, the vector fields Xij corresponding to sij(i < j).

2. For n = 3 write multiplication in the Cayley coordinates explicitly.

3. For the SO(n) action on Rn show that the vector fields on Rn corre-
sponding to the Cayley coordinates sij are (writing ∂r = ∂/∂xr)

Zij = xj∂i − xi∂j , [Zij , Zrs] = δirZjs + δjsZir + δjrZis + δisZjr.

4. Find the analogues of the Cayley coordinates for the groups U(n) and
SU(n).

Given a Lie group we have to decide if it is connected, and if so, what is
its fundamental group is, and construct the universal covering group. We
shall only look at some examples at this stage.

SO(n): We want to prove it is connected for all n ≥ 1. For n = 1
the group consists only of the identity. For n = 2 it is the circle group S1

which is obviously connected. For n ≥ 3 there are two ways to do this.
One is to use the relation S(n + 1)/SO(n) = Sn and use induction. The
other is to observe that given any rotation one can choose an ON basis of
Rn in which it is a direct sum of a number of 2-dimensional rotations

(

cos tk − sin tk
sin tk cos tk

)

(1 ≤ k ≤ r),

1-dimensional identities, and an even number of one dimensional trans-
formations equal to −1; if there are 2s of these, we can write their direct
sum as a direct sum of s rotations

(

cos π − sin π
sin π cos π

)

.

It is obvious that such a rotation can be connected to the identity by a
continuous path by replacing the angle tk by ttk and π by tπ for 0 ≤ t ≤ 1.

Double connectivity of SO(3). One of the important properties for a
connected Lie group is its simple connectivity. We shall see later that given
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a connected Lie group G, we can find a connected and simply connected Lie
group G∼ with a homomorphism f(G∼G −→ G) such that f is surjective
and has a discrete kernel D. This will make G∼ the simply connected

covering group of G. The group D will then be the fundamental group

π1(G) of G.

One can show that the fundamental groups of MSO(n) are given by

π1(SO(n)) =







Z2 for n ≥ 3
Z for n = 2
{1} for n = 1.

Since SO(n) is {1} for n = 1 and the circ;e group for n =, we have only
to consider n ≥ 3. Here we shall look at n = 3.

We want to prove that there is a two-fold covering homomorphism

SU(2) −→ SO(3)

wjich is surjective and has as its kernel the group {±1}. This is an example
of the spin group covering of SO(n). LetH0 be the real vector space of 2×2
hermitian matrices of trace 0 on which G = SU(2) acts bt g, X 7−→ gXg−1.
If we write

X =

(

x3 x1 + ix2

x1 − ix2 −x3

)

then H0 ≃ R3. and the action preserves −det(X) = x2
1 + x2

2 + x2
3. If Rg

is the action on R3 ≃ H0 by g ∈ SU(2), then Rg is in O(3) and we have
a homomorphism G 7−→ Rg of SU(2) into O(3). For Rg = 1 the condition
is that g commutes with all of H0; as any 2 matrix is a linear combination
of I and elements of H0, the condition is that g commutes with all 2× 2
matrices, so that g ∈ {±1}. The map is into SO(3) because the image is
a connected subgroup of O(3), hence ⊂ SO(3).

SU(2) is a Le group. In fact it is easy to see that SU(2) is precisely
the group of all matrices of the form

(

a b
−b̄ ā

)

aā + bb̄ = |a|2 + |b|2 = 1.

This shows that SU(2) can be identified with S3 and hence a Lie group.
Moreover this identification shows that it is simply connected. It is not
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difficult to verify that it is simply connected. In fact one shows that the
images of the 3 one-parameter subgroups

(

eit 0
0 e−it

)

,

(

cos t sin t
− sin t cos t

)

,

(

cos t i sin t
i sin t cos t

)

are the rotations around the x3, x2, x1-axes in R3 and one uses the fact
that these rotations generate SO(3).

For n > 3 one has to use Clifford algebras to generalize this construc-
tion.

2.3. Topology of Lie groups. We shall find that the topology of a Lie
group is a critical aspect of understanding their structure. For one thing,
the smooth structure is already completely determined by the topology.

Theorem. A continuous homomorphism between two Lie groups is auto-

matically smooth. In particular the real Lie group structure on a topological

group, if it exists, is unique.

This is one of our main results. The result is not true for the complex

Lie groups: C has another complex structure, namely the conjugate one,
compatible with its additive group structure and topology.

Theorem (Von Neumann). Any closed subgroup of GL(n,R) is a Lie

group. More precisely, if G is a closed subgroup of GL(n,R), then its

connected component G0 is open in G and G0 is a Lie group.

We shall also prove this later.

It follows from the first theorem that it makes sense to ask whether
a given topological group G is a Lie group. Clearly it is necessary that G
is locally Euclidean, namely it has an open neighborhood of the identity
that is homeomorphic to a ball in a Euclidean space. Hilbert proposed the
problem (fifth in his famous list) whether this is sufficient. Von Neumann
proved this for compact groups and Chevalley for solvable groups. The
affirmative alswer was found in the 1950’s by the efforts, notably of Glea-
son, Yamabe, Montgomery–Zippin, and Iwasawa. See the book [MZ] in
the historical review for full details. The problem makes sense for p-adic
Lie groups also where the question was settled by Lazard [Laz].
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Problems

1. Fill in the details for the proof that SU(2) is a two-fold cover for
SO(3).

2. Let G be a product of countably many copies of the circle group S1.
Prove that G is not locally Euclidean and is hence not a Lie group.
(Hint. show that any neighborhood of the identity contains subsets
of arbitrarily large dimension.)

3. Show that Qp, the additive group of p-adic numbers, is not a Lie
group.

4. Find an example of a topological group of dimension 1 which is not
a Lie group.

2.4. Compact Lie groups. The most important Lie groups for physics
and many other fields of mathematics are the compact Lie groups. It
is remarkable that they can be given a very explicit description. Now
finite covers of compact Lie groups are compact Lie groups, and so, for
any compact Lie group G, any finite cover of G × T is also a compact
Lie group, where T is a torus, i.e., a group which is a finite product of
the circle groups. Mirroring the Cartan-Killing classification of simple Lie
algebras is the theorem that any compact Lie group can be obtained using
the above construction from the compact simply connected groups which
belong to 4 families (the classical compact Lie groups) and 5 isolated ones
(the exceptional compact Lie groups).

The classial compact Lie groups may be viewed as the isometry groups
of the Euclidean spaces over R,C, and H, the algebra of quaternions.
The classical theorem of Frobenius that these three are precisely all the
associative division algebras over R is relevant here.

The groups U(n), SU(n) as linear isometry groups of Cn: We regard
Cn as a Euclidean (Hilbert) space with the heritian scalarproduct

a·b := (a, b) =
∑

1≤r≤n

a∗
rbr.

Here and in what follows we use ∗ to denote complex conjugation and also
adjoints. The group of linear isometries is U(n). In quantum mechanics
it is also important to consider anti-linear isometries such as complex
conjugation in Cn. Both U(n) and SU(n), the subgroup of U(n) of unitary
matrices of determinant 1, are connected, while SU(n) is simply connected.
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Quaternions. If k is a field of characteristic 6= 2, a quaternion

algebra over k is an algebra of the form k[a, b] where a2 = α, b2 = β, ab =
−ba. Here α, β are two elements of k× which are not squares. If k =
R, α = β = −1 we obtain the standard quaternion algebra over R first
discovered by W. R. Hamilton when he solved the problem of modeling
rotations in space. It is an important arithmetic and algebraic problem to
classify quaternion algebras up to isomorphism over an arbitrary field.

We write H for the algebra of quaternions of elements

q = a0 + a1i + a2j + a3k, k = ij = −ji

where the ar are real numbers. H is an associative non commutative
algebra. For any quaternion we write q∗ for its conjugate:

q∗ = a0 − a1i− a2j− a3k

and it is easy to verify that

qq∗ = q∗q = (a2
0 + a2

1 + a2
2 + a2

3) =: N(q).

In particular H is a division algebra, the inverse of a nonzero q being given
by

q−1 = N(q)−1q∗.

We also have

(q + q′)∗ = q∗ + q′∗, (qq′)∗ = q′∗q∗, N(qq′) = N(q)N(q′).

There is an identification of H with C2 via

q = z1 + jz2, z1 = a0 + a1i, z2 = a2 − ia3.

Let us identify C as a subalgebra of H with i identified with i and use 1
and j as a basis for H as a right vector space. Then left multiplication ℓq

by the quaternion q becomes the matrix

(

a0 + a1i −a2 − a3i
a2 − a3i a0 − a1i

)

so that the group of unit quaternions, namely, the group of quaternions q
with N(q) = 1, which we denote by Sp(1), becomes isomorphic to SU(2).
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The imaginary quaternions form a 3-dimensional space with basis i, j,k,
and is precisely the space of quaternions of trace 0; here

tr(q) = q + q∗ = 2a0, tr(qq′q−1) = tr(q′).

The space of imaginary quaternions is stable under the action q′ 7−→
qq′q−1 and gives the geometric interpretation of rotations in 3-space that
Hamilton was after. The action of SU(2) on R3 that we obtain is nothing
but the map SU(2) −→ SO(3) described earlier.

Sp(n) as the linear isometry group of Hn: We regard Hn, the space of
column vectors with quaternion components, as a right vector space over
the division algebra H and its endomorphisms as matrices of quaternions
acting on quaternion column vectors by multiplication from the left. We
introduce the scalar product

a·b :=
∑

1≤r≤n

a∗
rbr

where a,b are column vectors with components ar, br ∈ H. We write

||a||2 =
∑

1≤r≤n

a∗
rar.

The dot product is additive in each variable and satisfies the non commu-
tative hermitian properties:

a·bq = (a·b)q, (aq)·bq = q∗(a·b).

We denote by Sp(n) the group of endomorphisms of Hn which preserve
||·||:

σ ∈ Sp(n)⇐⇒ (σa, σb) = (a,b).

This is the compact symplectic group. The reason for the name and the
notation will become clear presently.

We identify Hn with C2n via the map

|bfa = (ar)←→ a′ = (z1, . . . , zn, zn+1, . . . , z2n)

where we write
ar = zr + jzn+r, (1 ≤ r ≤ n).
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Then any bijection σ corresponds to a bijection σ′ of C2n. If σ is H-linear,
then σ′ is C-linear. So th map σ 7−→ σ′ gives an imbedding of Sp(n) into
GL(2n,C):

Sp(n) →֒ GL(2n,C).

It is easy to determine the image of Sp(n) under this imbedding. First we
have, with br = tr + jtn+r,

a·b =
∑

1≤r≤n

z∗r tr + j
∑

1≤r≤n

(zrtn+r − zn+rtr) = (a,b′) + jJ(a′,b′)

where J is the symplectic bilinear form on C2n defined by the skew-
symetric non-singular matrix

J =

(

0 In

−In 0

)

.

Thus the image of Sp(n) is contained in

USp(2n) := U(2n) ∩ Sp(2n,C)

where as usual we write Sp(2n,C) for the subgroup of GL(2n,C) preserv-
ing the bilinear form J or, equivalently, satisfying

gT Jg = J.

The image is exactly this group. For, if σ corresponds to a σ′ ∈ USp(2n),
then σ is H-linear and so belongs to Sp(n), as an easy argument shows.

The classical simple compact Lie groups are

SU(n), SO(n), Sp(n).

Using the operations of products with tori and finite covers and passing to
quotients by finite central subgroups and using these as well as 5 isolated
ones, one can obtain all compact connected Lie groups.

For connectivity and simple connectivity one uses two results formu-
lated in the following.

Lemma. If G is a topological group and H ⊂ G a closed subgroup, then G
is connected if H and the homogeneous space G/H are connected. More-

over, if further G/H is simply connected, then there is a natural map

π1(H) −→ π1(G) which is surjective.
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Problems

1. Find a Cayley parametrization of Sp(n) in the quaternionic context
as well as in the context of C2n.

2. Prove the lemma (see Chevalley[Ch1]).

3. Use problem 2 to show that SU(n) and Sp(n) are connected and
simply connected.

4. Complete the proof that the image of Sp(n) under the map described
in the text is all of USp(2n). (Hint: Show that (σc)·(σ(aq)−σ(a)q) =
0.)
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