
Historical review of Lie Theory

1. The theory of Lie groups and their representations is a vast subject (Bourbaki [Bou]
has so far written 9 chapters and 1,200 pages) with an extraordinary range of applications.
Some of the greatest mathematicians and physicists of our times have created the tools of
the subject that we all use. In this review I shall discuss briefly the modern development
of the subject from its historical beginnings in the mid nineteenth century.

The origins of Lie theory are geometric and stem from the view of Felix Klein (1849–
1925) that geometry of space is determined by the group of its symmetries. As the notion
of space and its geometry evolved from Euclid, Riemann, and Grothendieck to the su-
persymmetric world of the physicists, the notions of Lie groups and their representations
also expanded correspondingly. The most interesting groups are the semi simple ones,
and for them the questions have remained the same throughout this long evolution: what
is their structure, where do they act, and what are their representations?

2. The algebraic story: simple Lie algebras and their representations. It
was Sopus Lie (1842–1899) who started investigating all possible (local)group actions on
manifolds. Lie’s seminal idea was to look at the action infinitesimally. If the local action
is by R, it gives rise to a vector field on the manifold which integrates to capture the
action of the local group. In the general case we get a Lie algebra of vector fields, which
enables us to reconstruct the local group action. The simplest example is the one where
the local Lie group acts on itself by left(or right) translations and we get the Lie algebra

of the Lie group. The Lie algebra, being a linear object, is more immediately accessible
than the group. It was Wilhelm Killing (1847–1923) who insisted that before one could
classify all group actions one should begin by classifying all (finite dimensional real) Lie
algebras. The gradual evolution of the ideas of Lie, Friedrich Engel (1861–1941), and
Killing, made it clear that determining all simple Lie algebras was fundamental.

What are all the simple Lie algebras (of finite dimension) over C? It was Killing who
conceived this problem and worked on it for many years. His researches were published in
the Mathematische Annalen during 1888–1890 [K]. Although his proofs were incomplete
(and sometimes wrong) at crucial places and the overall structure of the theory was
confusing, Killing arrived at the astounding conclusion that the only simple Lie algebras
were those associated to the linear, orthogonal, and symplectic groups, apart from a small
number of isolated ones. The problem was completely solved by Elie Cartan (1869–1951),
who, reworking the ideas and results of Killing but adding crucial innovations of his own
(Cartan–Killing form), obtained the rigorous classification of simple Lie algebras in his
1894 thesis, one of the greatest works of nineteenth century algebra [C]. Then in 1914,
he classified the simple real Lie algebras by determining the real forms of the complex
algebras. In particular he noticed that there is exactly one real form (the compact form)
on which the Cartan–Killing form is negative definite, a fact that would later play a
central role in Weyl’s transcendental approach to the representation theory of semi simple
Lie algebras. For the fascinating account of the story, especially of the trail-blazing work
of Killing and Cartan, see [Ha].

The classification. The simple Lie algebras over C fall into four infinite families
An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 3), Dn(n ≥ 4) respectively corresponding to the groups
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SL(n+1,C), SO(2n+1,C), Sp(2n,C), SO(2n,C)), and five isolated ones (the exceptional

Lie algebras) denoted by G2, F4, E6, E7, E8, with dimensions 14, 52, 78, 133, 248 respec-
tively. The key concept for the classification is that of a Cartan subalgebra (CSA) h,
which is a special maximal nilpotent subalgebra, unique up to conjugacy as shown by
Chevalley much later. In the spectral decomposition of adh, the eigenvalues α are certain
linear forms on h called roots , the corresponding (generalized) eigenvectors Xα are root

vectors , the (generalized) eigenspaces gα are root spaces , and the structure of the set of
roots captures a great deal of the structure of the Lie algebra itself. For instance, if α, β
are roots but α + β is non-zero but not a root, then [Xα, Xβ] = 0.

Central to Cartan’s work is the Cartan–Killing form, the symmetric bilinear form
X, Y 7−→ Tr(adXadY ), invariant under all automorphisms of the Lie algebra. It is
non-degenerate if and only if the Lie algebra is semi simple. For a semi simple Lie
algebra the CSA’s are the maximal abelian diagonalizable subalgebras, and they have
one dimensional root spaces . In this case there is a natural R-form hR of h on which all
roots are real and (· , ·) is positive definite. This allows us to view the set ∆ of roots as
a root system, i.e., a finite subset of the Euclidean space h∗

R
\ {0} with the following key

property: it remains invariant under reflection in the hyperplane orthogonal to any root.
Thus the reflections generate a finite subgroup of the orthogonal group of hR, the Weyl

group. Root systems thus become special combinatorial objects and their classification
leads to the classification of simple Lie algebras. The calculations however remained hard
to penetrate till E. B. Dynkin, (1924–) discovered the concept of a simple root [Dy]. If
dim(hR) = n, then a set of simple roots has n elements αi, and aij := 2(αi, αj)/(αi, αi)
is an integer ≤ 0 for i 6= j. The matrix A = (aij) is called a Cartan matrix , and it
gives rise to a graph, the Dynkin diagram, where there are n nodes, with the nodes
corresponding to simple roots αi, αj linked by aijaji lines. Connected Dynkin diagrams,
which correspond to simple Lie algebras, fall into 4 infinite families and 5 isolated ones.
The integer n, the rank , is the one in the Cartan classification. The theory became more
accessible when the book of Nathan Jacobson (1910–1999) came out in 1962 [J]; till then
[Dy] and [L] were the only sources available apart from [C].

Representations. In 1914 Cartan determined the irreducible finite dimensional
representations of the simple Lie algebras [C]. In any representation the elements of a
CSA h are diagonalizable and the simultaneous eigenvalues are elements ν ∈ h∗

R
, the

weights , which are integral in the sense that να := 2(ν, α)/(α, α) is an integer for all
roots α. Among the weights of an irreducible representation there is a distinguished one
λ, the highest weight , which has multiplicity 1, determines the irreducible representation,
and is dominant , i.e., λαi

≥ 0 for 1 ≤ i ≤ n. The obvious question is whether every
dominant integral element of h∗

R
is the highest weight of an irreducible representation. It

is enough to prove this for the fundamental weights µi defined by µi
αj

= δij . For An, the

actions on the exterior products Λi(Cn) are irreducible with highest weights µi. Similar
calculations show that the fundamental weights are highest weights for the classical Lie
algebras. Once again, Cartan showed by explicit calculation that the fundamental weights
are highest even for the exceptional Lie algebras. It was in the course of this analysis
that Cartan discovered the spin modules of the orthogonal Lie algebras which do not
occur in the tensor algebra of the defining representation, unlike the case for An and Cn.
They arise from representations of the Clifford algebras and there is one of them for Bn

and two for Dn. They were originally discovered by Dirac in his relativistic treatment
of the spinning electron, thus accounting for their name. They act on spinors , which,
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unlike the tensors, are not functorially attached to the base vector space, so that one can
define the Dirac operators only on Riemannian manifolds with a spin structure.

General algebraic methods. In the late 1940’s Claude Chevalley (1909–1984)
and Harish-Chandra (1923–1983) (independently) discovered the way to answer, without
using classification, the two key questions here: (1) whether every Dynkin diagram comes
from a semi simple Lie algebra, and (2) if every dominant integral weight is the highest
weight of an irreducible representation [H1] [Ch]. In the mid 1920’s, Hermann Weyl

(1885–1955) had settled (2) as well as the complete reducibility of all representations, by
global methods without classification(see below).

For (2) one works with the universal enveloping algebra of g, say U . For any linear
function λ ∈ h∗ there is a unique irreducible module Iλ with highest weight λ, and one
has to show that Iλ is finite dimensional if and only if λ is dominant and integral. For
(1) one notes that in a semi simple Lie algebra g with a Cartan matrix A = (aij), if
0 6= X±i are in the root spaces g±αi

, then we have the commutation rules

[Hi, Hj ] = 0, [Hi, X±j ] = ±aijX±j, [Xi, X−j] = δijHi (I).

However a deeper study of the adjoint representation yields the higher order commutation
rules

[X±i, [X±i, [. . . [X±i, X±j ]] . . .] = ad(X±i)
−aij+1(X±j) = 0 (II).

The universal associative algebra UA defined by the relations (I) and (II) bears a close
resemblance to the algebra U mentioned earlier and one can construct a theory of its
highest weight representations. One obtains the same criterion for the finite dimension-
ality of the irreducible representations. Let l be the Lie algebra inside UA generated by
the Hi, X±i. If the highest weight has a value strictly > 0 at each node of the diagram
this representation will be faithful on h, and the image of l under this representation will
be the semi simple Lie algebra corresponding to the diagram. Much later Serre discov-
ered the beautiful result that l is already finite dimensional and hence is the required
semi simple Lie algebra with the given Cartan matrix A, thus defining a presentation of
the semi simple Lie algebra associated to any given diagram [S1] [V1].

Infinite dimensional Lie algebras. Cartan also studied what he called the infinite

simple continuous groups. Roughly speaking they are the infinite dimensional analogues
of the simple Lie groups. The general theory of infinite dimensional Lie groups is still
very much of a mystery and I cannot say much about these (see [CC]).

In the late 1960’s, Victor Kac (1943–) and Robert Moody (1941–) independently
initiated the study of certain infinite dimensional Lie algebras somewhat different from
Cartan’s. If we relax the properties of a Cartan matrix, especially the one requiring the
Weyl group to be finite, (I) and (II) will lead, by the methods of Chevalley-Harish-
Chandra, to new Lie algebras that will no longer be finite dimensional . These are the
Kac-Moody algebras [Ka1] [Moo]. If we extend the scalars from C to the ring of finite
Laurent series in an indeterminate, the simple Lie algebras give rise to certain Lie alge-
bras, which have universal central extensions with one-dimensional center. The latter
are the affine Lie algebras which are special Kac-Moody algebras, which, along with
the Virasoro algebras , are important in conformal field theory. Their structure and rep-
resentation theory resemble closely those of the finite dimensional simple Lie algebras,
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and their root systems are very beautiful infinite combinatorial objects related to many
famous classical formulae.

Classification of restricted simple Lie algebras in characteristic p > 0. It is
natural to ask what the classification of simple Lie algebras looks like in characteristic p >
0. Here one has the concept of a restricted Lie algebra which is a Lie algebra together with
an automorphism X 7−→ X [p] that is an infinitesimal version of the Frobenius morphism
for algebraic groups. Interestingly there are additional simple Lie algebras, namely those
that are finite dimensional analogues of Cartan’s infinite simple Lie algebras, the so-called
Cartan-type Lie algebras. That the class of restricted simple Lie algebras is exhausted by
the classical and Cartan-type Lie algebras (Kostrikin-Shafarevich conjecture) was proved
in [BW].

3. Invariant theory. Let us leave the algebraic story here and go to the classical
invariant theory which was concerned with computing the invariants of the projective
varieties under the action of the projective group PGL(n,C). In the first approxima-
tion we may replace the varieties by homogeneous polynomials and study the action of
SL(n,C) on the space Pn,d of all homogeneous polynomials of degree d in n variables, and
the induced action on the algebra Pn,d of polynomial functions on Pn,d. Invariant theory
asks for an explicit determination of the subalgebra In,d of elements of Pn,d invariant
under the group. The work of Paul Gordan (1837–1912), had led to the result that I2,d

is finitely generated and to an algorithmic construction of a set of generators for it, when
David Hilbert (1862–1943) came into the picture and took the entire subject to a new
level. In a celebrated paper Hilbert proved the finite generation of In,d by very general
abstract arguments, but under prodding from Gordan, later examined the question of
the finite determination of the invariants.

The finite generation depends on the existence of a projection operator R (Reynold’s

operator) from P(V ) to I(V ) that preserves the grading and commutes with multiplica-
tion by elements of I(V ); here V is any module for SL(n,C). Hilbert used what is called
the Cayley Ω-process for this purpose; one can equally well use averaging with respect
to SU(n). However what is essential is the complete reducibility of all finite dimensional
representations of SL(n,C). Weyl, who had proved this for all semi simple groups, was
thus able to generalize Hilbert’s result to the case where SL(n,C) is replaced by any semi
simple Lie group G over C. In his majestic and profound 1939 book Classical Groups:

their Invariants and Representations [W1] Weyl gave an exposition of the fundamental
questions of invariant theory over a field of characteristic 0, emphasizing that they should
be studied over any field. For a given G-module V (for classical G, important cases are
the direct sum of copies of the defining representation and its dual, as well as the conju-
gacy action on a number of copies of the matrices) the first fundamental theorem (FFT)
seeks an explicit description of generators for I(V ), and the second fundamental theorem

seeks a basis for the ideal of relations among the generators. Of course this process can
be continued, and Hilbert’s study of the syzygies marks the beginning of the homological
theory of commutative algebras. For developments since 1939 and a whole lot of other
aspects of representations and invariants see the encyclopedia (and encyclopedic) volume
[GW]. For a profound study of the action of a semi simple group over the polynomial
ring of its Lie algebra, see [Ko].

Semi simple groups in characteristic p > 0: Mumford’s geometric reduc-

tivity. Hilbert’s work (see the English translation of his papers on this subject [AH]) lay
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buried till David Mumford (1937–) resurrected it in the 1960’s and expanded its scope
enormously [M1] [MF]. He showed that the central problems of moduli of algebraic geo-
metric objects in any characteristic depend upon viewing the orbit space of a projective
action of a semi simple (or the slightly more general reductive) group as an algebraic va-
riety itself. When the characteristic is 0, the Hilbert-Weyl theory is a perfectly adequate
foundation for this. In prime characteristic, it was clear that one should work with the
reductive groups that Borel and Chevalley had discovered by then (see below). But, com-
plete reducibility of representations is not available in characteristic p > 0. Nevertheless
Mumford conjectured that semi simple groups in prime characteristic are geometrically

reductive, a property equivalent to complete reducibility in characteristic 0: given any
non-zero vector v fixed by the group, there is a homogeneous invariant polynomial F
such that F (v) 6= 0. If the characteristic p of the field k divides n, the action of SL(n, k)
on gl(n, k) is not completely reducible: k.In does not admit an invariant complement
since the only invariant linear form is the trace and it vanishes at In; but we can take
F to be the determinant in Mumford’s definition. Mumford’s conjecture was proved in
1975 by Haboush [Hab] (independently, for GL(n) and SL(n), by Formanek and Pro-
cessi [FP]). Nagata showed that geometric reductivity implies the finite generation of
invariants; he also constructed counterexamples to the question of finite generation of
invariants (Hilbert’s 14th problem, see [M2]). For simpler counterexamples, see [St2].
For the theory of moduli see [Se].

4. The Weyl character and dimesion formulae. Compact and complex groups.

In the mid 1920’s Hermann Weyl wrote a series of epoch-making papers ([W2], Band II,
543–647; Band III, 1–33) on representations of semi simple Lie groups and Lie algebras.
Weyl found a simple construction for the compact form of a complex semi simple Lie
algebra and proved the remarkable fact that the simply connected group corresponding to

the compact form is still compact . It follows that the category of continuous representa-
tions of the compact group is equivalent to the category of representations of the complex
Lie algebra. The first algebraic proof of the complete reducibility of all representations
of a complex semi simple Lie algebra was given by Casimir and Van der Waerden [CW]
much later. It is a question of showing that H1(g) = 0 for semi simple g [V1].

Let G be compact and simply connected. G has a maximal torus T and all conjugacy
classes of G meet T in Weyl group orbits. Weyl found a wonderful formula for the integral
of a function in terms of its integral on the torus:

∫

G

f(x)dx =
1

|w|

∫

f̄(t)∆(t)∆(t)dt, f̄(t) =

∫

G

f(xtx−1)dx

where w is the Weyl group and |w| is its order, and dx, dt are the normalized Haar
measures on G, T respectively. Here, for H ∈ t = (−1)1/2hR = Lie(T ),

∆(exp H) =
∏

α>0

(

eα(H)/2 − e−α(H)/2
)

=
∑

s∈w

det(s)e(sρ)(H) (H ∈ t)

where ρ is as usual half the sum of positive roots. Using this formula in conjunction
with the orthogonality relations in a stunning fashion, Weyl obtained his famous formula
for the characters of the irreducible representations which showed right away that every
dominant integral linear form is a highest weight. If λ is the highest weight, then the
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character Θλ, and the dimension of the irreducible representation Iλ with highest weight
λ, are given by (for dimension we let H → 0)

Θλ(exp H) =

∑

s∈w
det(s)e(s(λ+ρ))(H)

∑

s∈w
det(s)e(sρ)(H)

, dim(Iλ) =

∏

α>0(λ + ρ, α)
∏

α>0(ρ, α)
.

The Weyl formulae remained the standard of beauty in the theory till they were joined
by the Harish-Chandra formulae for the character and formal dimension of the represen-
tations of the discrete series of a real semi simple Lie group ([H2], Vol. III, 537–647).

Real groups. Cartan’s theory of symmetric spaces [C], the first major advance
in the theory of homogeneous spaces after Riemann’s discovery of spaces of constant
curvature, proved to be of fundamental importance for the real groups [He]. The non-
compact symmetric spaces are of the form G/K where G is a real semi simple Lie group
and K is a maximal compact subgroup. The existence and uniqueness up to conjugacy
of K is a special case of Cartan’s theorem that a compact Lie group acting on a space
of negative curvature has a fixed point. The decomposition g = k ⊕ p, is the setting for
Iwasawa (1917–1998) who introduced the maximal abelian subspaces a of p, the root
decomposition of g with respect to a, and the Iwasawa decomposition of G which are
fundamental for the structure of real semi simple Lie groups [I]. The roots form a root
system which need not always be reduced (twice a root can be a root). The theory of
the parabolic subalgebras and subgroups that derive from it, are an essential foundation
for the harmonic analysis on real semi simple Lie groups [He] [Kn].

5. Modern developments. Nowadays groups with additional structures are viewed
as group objects in categories. One starts with a Lie group G of whatever category one
wants to be in, and associates its Lie algebra Lie(G) to get a functor G 7−→ Lie(G); the
fundamental theorems of Lie amount to studying how close this functor comes to being
an equivalence of categories. It was only after the appearance of Chevalley’s great 1946
book The Theory of Lie Groups (Volume # 8 in the famous Princeton Series with a
dedication to Elie Cartan and Hermann Weyl and a blurb on the cover saying that “the
reader need no longer be afraid of shrinking neighborhoods of the identity element!”),
that the global view became accessible to the general mathematical public.

Chevalley’s Princeton book. In his book [Ch1] Chevalley developed all the
major results: the construction of the Lie algebra of a Lie group, the exponential map, the
subgroup–subalgebra correspondence, Von Neumann’s theorem that a closed subgroup of
a real Lie group is a Lie group, and the fact that every C∞ (in fact, every C2) Lie group is
a real analytic Lie group; the analytic structure underlying the topology is unique because
any continuous homomorphism between Lie groups is analytic. In addition he treated
compact Lie groups in depth: complete reducibility of all representations, Peter-Weyl
completeness theorem, Tannaka-Krein duality, existence of a faithful finite dimensional
representation σ, and the theorem that every irreducible representation is contained in
the tensor product of a number of copies of σ and its contragredient. This list does not
indicate the originality of his treatment of these topics. For instance he had to extend
the notion of Lie subgroups to include the cases when the subgroup is not closed and its
topology and smooth structures are not induced by the ambient group. He constructed
the subgroup and its cosets as the maximal global integral manifolds of the involutive
distribution on the group defined by the subalgebra, giving in the process the first global
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treatment of the Frobenius theorem of integrability of involutive distributions. In the
Tannaka duality he proved that there is a unique complex Lie group of which the given
compact Lie group is a real form, thereby giving an entirely new perspective on the
Weyl correspondence between compact and complex groups. Chevalley’s theorem is the
beginning of the Tannakian point of view that reconstructs an algebraic group from the
tensor category of its finite dimensional modules [D]. For Chevalley, the ring of matrix
elements of a compact Lie group is a reduced finitely generated algebra with a Hopf
algebra structure, and its spectrum is the complex semi simple group enveloped by the
compact group, thus foreshadowing the point of view of quantum groups which arose
almost forty years later.

Perhaps some remarks on the fifth problem of Hilbert are in order here. Hilbert,
motivated by his insights into foundations of geometry, felt that the condition of differ-
entiability in the definition of a Lie group was a deficiency, and proposed the problem of
proving that any topological group which is locally homeomorphic to a manifold, must
be a Lie group. The problem was eventually solved in the affirmative by the efforts of
Gleason, Iwasawa, Montgomery-Zippin, Yamabe, and Lazard (in the p-adic case) (see
[MZ] [Laz]) after partial solutions by Von Neumann (compact groups), and Chevalley
(solvable).

Linear algebraic groups and the classification of simple groups over an

algebraically closed field of arbitrary characteristic. Chevalley himself, along with
Armand Borel (1923–2003), was a central player in the next great development of Lie
theory, the theory of linear algebraic groups in arbitrary characteristic. Chevalley’s initial
attempts (in tomes II and III of [Ch 1]) did not go very far because they were tied to
the exponential map. But the work [B1] of Borel, which used only global methods based
on algebraic geometry, changed the picture dramatically. Starting from Borel’s work
Chevalley went forward (by “analytic continuation”in his own words) to the classification
of semi simple algebraic groups and their representations [Ch2] [Ch3]. He discovered the
remarkable fact that complex semi simple groups form group schemes over Z, so that
one can tensor them with any field to produce algebraic semi simple groups over that
field. If the field is algebraically closed this procedure will yield essentially all semi
simple algebraic groups. If the field is finite one will get new finite simple groups beyond
those first studied by Dickson [Di]. For algebraic groups [B2] and [Sp1] are good sources;
The book of Borel was profoundly influential in the development of the subject. For
the theory of the Chevalley groups see [St1]. Chevalley’s original papers and articles
are available in [Ch 2] Ch3]. For a simpler proof that isomorphic root data determine
isomorphic groups see [St3].

Reductive groups over arbitrary fields. The Chevalley groups are split , i.e.,
they have a maximal torus split over the ground field. The theory of roots of reductive
groups which are not split was carried out by Borel and Tits [BT] and is fundamental for
rationality questions. The subgroups P that contain the Borel subgroups are the parabolic

subgroups . The associated homogeneous spaces G/P are the flag manifolds which are
the only projective homogeneous spaces for the semi simple groups. The representation
theory of semi simple groups is thus tied up intimately with the geometry and analysis of
these flag spaces. The terminology derives from the fact that for G = SL(n) they are the
spaces of actual flags. In this case the maximal parabolic subgroups are the ones that
leave a fixed subspace invariant, and so we get the grassmannians. The geometry of the
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parabolic subgroups in the general case is thus a far-reaching generalization of classical
projective geometry (Tits geometries) [F dV].

The group of K-points of a semi simple group defined over K, a p-adic field, is
locally compact and second countable, and its structure is important for its infinite di-
mensional representation theory. Maximal compact subgroups (for example, GL(n,Zp) ⊂
GL(n,Qp)) exist, but they are not always conjugate. The structures have a strong com-
binatorial component (“buildings”) [Br T]. For the basics of the general theory of Lie
groups over all local fields see [S2].

The irreducible representations. For the geometer they arise from the Borel-
Weil-Bott picture of the cohomology of line bundles over the flag manifold. Over C the
setting is that of the flag manifold F = G/B = U/T . Here G is a simply connected
complex semi simple group, B is a Borel subgroup of G, U is a compact form of G, and
T is a maximal torus of U with T = U ∩ B. Then the characters of T , which can be
identified with algebraic characters of B, give rise to line bundles on F . The resulting
action of the groups G or U on the cohomologies of the line bundles gives rise to the
irreducible representations [Bo].

Super Lie groups. The notion of a super manifold was created by the physicists
in the 1970’s. Confronted with the failure to erect divergence-free quantum field theories
they suggested that this was partly due to the failure of conventional pictures of space
time in ultra-small regions. In particular they conceived of the idea that the local algebras
of space time must be Z2-graded (=super) algebras that reflect the fermionic structure of
matter (isomorphic to C∞(x1, . . . , xp, ξ1, . . . , ξq) where the xi are the usual commutative
local coordinates and the ξj are grassmann variables). The super Lie groups are the
group objects in the category of super manifolds. In the theory of super Lie groups one
is forced to use the view points of the theory of group schemes systematically [DM] [V4]
[Wat]. For unitary representations of super Lie groups from this point of view, with
applications to super particle classification, see [CCTV].

Almost immediately after the discovery of super symmetry some special super Lie
algebras were also discovered by the physicists (super Poincaré, sl(4|1), see [V4]). Kac
[Ka2] then obtained a classification of the simple super Lie algebras.

Quantum groups. The notion of a quantum group arose from the idea that quan-
tum mechanics is a deformation of classical mechanics, namely, there is an essentially
unique deformation of the Lie algebra of smooth functions on phase space with the Pois-

son Bracket [Mo] [BFFLS]. Given this point of view it is natural to ask whether the
symmetry groups of classical geometry can also be deformed into interesting objects. In
the 1980’s such a theory of deformations emerged, under the impulses of several groups
of people. Since classical semi simple Lie algebras are classified by discrete data, they
are rigid . So, in order to deform them one must enlarge the category. The idea is to
work in the wider category of general Hopf algebras [Dr] [Wo]. For thorough accounts
with full references see [CP] [Kas] [Lu].

Infinite dimensional representations of semisimple Lie groups and Lie

algebras. In order to complete this bird’s eye view of the subject I would like to add a
few remarks on infinite dimensional representation theory. The beginnings of this theory
go back to the work of Bargmann (1908–1989), Gelfand (1913–) and Naimark (1909–
1978) (see [V2]). In the early 1950’s Harish-Chandra began his monumental study of
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the representations of all real semi simple Lie groups. His work led to a categorical
equivalence between unitary irreducible representations of G and certain modules of the
Lie algebra, and to the existence of a character , nowadays called the Harish-Chandra

character , for the irreducible unitary representations. The character is a distribution on
the group; it is the sum, in the weak topology of distributions, of the diagonal matrix
coefficients, determines the representation, and is an eigen distribution for the algebra of
bi-invariant differential operators on the group. By a deep study of these distributions
Harish-Chandra constructed the representations of the discrete series (the building blocks
of infinite dimensional representation theory) by explicitly constructing their characters.
The Harish-Chandra formulae for the character and formal degree of the discrete series
represntations reduce to Weyl’s when the group is compact.

There are many expositions of Harish-Chandra’s work and other aspects of the
theory beside the original papers [H2], for instance [V5] [Wa1] [Wa2] and the reviews by
Wallach and by Howe in [H2], Vol. 1. For algebraic aspects see [EV] [E] [EW] [Z]; for
geometric methods see [AS] [Sch] [HS]. For the p-adic groups the theory is still incomplete
because the discrete series has not been completely constructed. If the ground field is
finite, the groups are finite and their complex representations become interesting. Their
theory is deeply influenced by the theory over reals and p-adics. In particlular one can
speak of the discrete series [Ha3] [Sp2] and the Whittaker series of Gel’fand-Graev (see
[St1]). The general theory needs a deep use of algebraic geometry [DL].
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