
9. The Lie group–Lie algebra correspondence

9.1. The functor Lie. The fundamental theorems of Lie concern the
correspondence G 7−→ Lie(G). The work of Lie was essentially local and
led to the following fundamental theorems, usually known as the funda-

mental theorems of Lie.

1. The Lie algebra of a group is a complete invariant of the local group
structure. This means that two Lie groups have isomorphic Lie alge-
bras if and only if the groups are locally isomorphic.

2. Every Lie algebra of finite dimension is the Lie algebra of at least a
local group.

As the concept of a global Lie group became better understood, the goal
became one of proving these results with appropriate modifications when
we replace local groups by global Lie groups. Since the Lie algebra needs
only the connected component of the identity for its construction it is
natural to consider only connected Lie groups. We shall see presently that
the assignment

Lie : G 7−→ Lie(G)

is functorial . The theorems of Lie in their modern incarnation emerge
out of the attempt to see how close this functor is to be an equivalence of

categories.

Categories and functors. The importance of the categorical view

point was stressed above all by Grothendieck. I shall adopt an informal
approach. Categories consist of objects and maps or morphisms between
objects. If C is any category, and O1, O2 are two objects in C, the maps or
morphisms from O1 to O2 form a set denoted by Hom(O1, O2). The crucial
notion is that of a functor from one category to another. A covariant

functor from a category C1 to a category C2 is a pair of assignments

O 7−→ F (O)

from objects of C1 to objects of C2 and, for any pair of objects O,O′ in C1

a map
FO,O′ : Hom1(O.O

′) −→ Hom2(F (O), F (O′))

such that compositions correspond.
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Functors first became prominent in algebraic topology where they
occur, via cohomology or homology, taking topological objects into alge-
braic objects like abelian groups. Let LG be the category of connected
Lie groups and LA the category of finite dimensional Lie algebras over
the base field (R or C).

Theorem 1. The assignment

Lie : G 7−→ Lie(G)

is a functor from the category LG of connected Lie groups to the category

LA of finite dimensional Lie algebras over the base field (R or C), and

dim(G) = dim(Lie(G)).

Proof. We must show that if f(G1 −→ G2) is a morphism of Lie groups,
there is a morphism, say df(g1 −→ g2) associated to f and d(f◦g) = df◦dg;
here gi = Lie(Gi). If X ∈ g1, the tangent map of f applied to Xe1

gives
a tangent vector v to G2 at e2, and hence an element X ′ ∈ g2 such that
X ′

e2
= v. We write X ′ = df(X). It is clear that df is linear and that

d(f ◦ g) = df ◦ dg. It only remains to show that df preserves brackets.
Since f preserves multiplication it commutes with left translations:

ℓ(f(x1) ◦ f = f ◦ ℓ(x1) (x1 ∈ G1).

It follows from this that for any function ψ ∈ OG2
(U), we have

f∗X ′ψ = Xf∗ψ (on OG1
(f−1(U))

In other words the map f intertwines the derivations X and X ′. It is
then immediate that if Y ∈ g1, Y

′ = df(Y ), then f intertwines [X, Y ] and
[X ′, Y ′].

Corollary. We have

f exp tX) = exp df(X) (X ∈ g1).

This corollary suggests a method to try to show that any morphism
α(g1 −→ g2) arises as the df of a morphism f(G1 −→ G2). We simply
define f near e1 by

f(expX) = exp df(X).
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The BCH formula would then imply that f is a local homomorphism.
Since G1 is connected we can write any element x ∈ G1 as a product of
exponentials expX where X is chosen from a neighborhood n1 of 0 in g1.
We then define f(x) as the product of the corresponding exponentials in
G2:

x = expX1 . . . expXn, f(x) = expX ′

1
. . . expX ′

n, (X ′

i = df(Xi)).

Unfortunately the expression for x is not unique and one has to prove that
the definition is independent of the choice of the representation of x.

The situation here is reminiscent of what happens in complex function
theory where we have multi-valued functions. There the solution to elimi-
nating multi-valuedness lies in simple connectivity. The same is true here
also. If G1 is simply connected we can extend the local homomorphism to
a global homomorphism:

Theorem 2. If G1 is simply connected, any morphism α(g1 −→ g2) is of

the form df for a unique morphism f(G1 −→ G2).

What happens when G1 is not simply connected? To understand this
we need to give an informal discussion of covering groups.

9.2. Covering groups. Although the notions of covering spaces and
groups are usually treated in topology in a very wide context, I shall
restrict myself to manifolds and Lie groups. A covering manifold of a
connected manifoldX is a pair (X∼, π) where X∼ is a connected manifold,
π is continuous, and X∼ is a discrete fiber bundle over X , i.e., for each
point x ∈ X there is an open neighborhood U such that π−1(U) ≃ U ×D
whereD is discrete, and the map π−1(U) −→ U goes over to the projection
U × D −→ U . It is obvious that the smooth structure of X can be
transported to X∼ via π so that X∼ becomes a smooth manifold and π
a smooth map which is a local diffeomorphism. X is simply connected

if for any covering (X∼, π), π is a homeomorphism, i.e., π : X∼ ≃ X .
It is known that X is simply connected if and only if all closed paths in
X are homotopic to the constant path and that for any manifold we can
construct a simply connected cover which is essentially unique. If X is a
Lie group, (X∼, π) is a simply connected cover, and 1∼ ∈ X∼ is above
1 ∈ X , we can construct a unique group structure on X∼ such that π is a
homomorphism. We then speak of X∼ as the covering group of X and π
as the covering homomorphism. It is easily proved that X∼ is a Lie group.
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The kernel of π is then a discrete central subgroup of X∼. The centrality
is seen as follows. Indeed, if D is the kernel, the action of X∼ on itself
by inner automorphisms leaves D stable since D is normal, and so gives
rise to an action on D; the orbits for this action are connected subsets of
a discrete space and so are singletons, i.e., for any d ∈ D, gdg−1 = d for
all g ∈ X∼.

Theorem 1. Let G be a connected Lie group with Lie algebra g. Let G∼

be a simply connected Lie covering group of G. Then the Lie groups G1

with Lie algebras isomoprhic to g are all obtained as G1 = G∼/D where

D varies over the discrete central subgroups of G∼.

If G = Rn and D = Zn, then Tn = Rn/Zn is covered by Rn; this is
the classical example of covering groups. The simplest and most common
example of covering groups in the nonabelian world is the covering exact
sequence

1 −→ Z2 = {±1} −→ SU(2) −→ SO(3) −→ 1

which we have already discussed. The group SU(2) can be realized as
the group of quaternions of unit norm. One can generalize this aspect of
quaternion algebras and introduce the Clifford algebras. For any integer
n ≥ 2, the Clifford algebra Cn is the algebra with generators

e1, e2, . . . , en

and relations
e2i = −1, eiej = −ejei(i 6= j).

One can then find a subgroup Spin(n) sitting inside the group of invertible
elements of Cn and a map π : Spin(n) −→ SO(n) such that Spin(n) is
simply connected and the kernel of π is {±1}:

1 −→ Z2 = {±1} −→ Spin(n) −→ SO(n) −→ 1.

The Spin(n) are the spin groups and go back to Elie Cartan; the ter-
minology came after Dirac discovered independently the Clifford algebra
in dimension 4 and used it spectacularly to write down the relativistic
equation satisfied by the electron which revealed the spin structure of the
electron.

As another example we have Spin(6) ≃ SU(4), namely,

1 −→ Z2 = {±1} −→ SU(4) −→ SO(6) −→ 1.
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This comes out of the classical geometry of lines in projective space and
the theory of the so-called Klein quadric.

9.3. Inverting the functor Lie. The functor Lie cannot be inverted
because locally isomorphic Lie groups have isomorphic Lie algebras. But
on the subcategory of simply connected Lie groups it can be inverted. The
essential surjectivity of the functor is called the third fundamental theorem
of Lie, namely, every Lie algebra of finite dimension over K(K = R,C)
is isomorphic to the Lie algebra of a Lie group. It was first proved in
full generality by Elie Cartan. We shall discuss two ways of proving it:
by using Ado’s theorem, or the Levi-Malcev decomposition. Both routes
need a substantial amount of Lie algebra theory.

Theorem 1. If g is a Lie algebra of finite dimension over k = R,C,

there is a connected simply connected Lie group G such that g = Lie(G).
G is determined uniquely up to isomoprhism. More precisely, Lie is an

equivalence of categories from the subcategory SLG of connected simply

connected Lie groups of the category LG to the category LA of finite

dimensional Lie algebras over the base field.

Elie Cartan was the first to prove this global version of the third funda-
mental theorem of Lie. There are at least two ways to do this. Both use
Lie algebra theory at a very deep level.

Proof based on Ado’s theorem. Ado’s theorem says that if g is a
finite dimensional Lie algebra over a field k of characteristic 0, then there
is a faithful finite dimensional representation of g, namely an imbedding
g →֒ gl(N, k) for some N (Ado’s proof had gaps; the first complete proof
is due to Harish-Chandra). So we may assume that g ⊂ gl(N, k). If k = R

or C, the Lie subgroup G ⊂ GL(N, k) defined by g is then a Lie group
with Lie algebra g. Its universal cover is then a simply connected Lie
group with Lie algebra g.

Proof based on Levi-Malcev decomposition. First of all the
adjoint representation of g gives a morphism g −→ gl(g) with kernel equal
to the center of g. So, if g has trivial center, we have an imbedding
g →֒ gl(g) and we can proceed as before. This takes care of the case when
g is semisimple. The Levi-Malcev theorem says that any Lie algebra is a
semidirect sum g = s⊕m where s is a solvable ideal and m is a semisimple

subalgebra. Let M be the simply connected Lie group with Lie algebra m
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and suppose we can find a simply connected Lie group S with Lie algebra
s. The adjoint action of m on s (remember s is a Lie ideal in g) may be
viewed as a morphism m −→ Der(s) where Der(s) is the Lie algebra of
derivations of s. So we can lift this to a morphism of M into the group
of automorphisms of s. But because S is simply connected, the group
of automorphisms of s is the same as the group of auotmorphisms of S.
We may then form the semidirect product S ×′ M which will have as Lie
algebra the semidirect sum s ⊕ m ≃ g.

It thus remains to settle the theorem for s, namely when g is itself
solvable. We then have a filtration

g = g0 ⊃ g1 ⊃ . . . ⊃ gm ⊃ 0

where gi is an ideal of codimension 1 in gi−1. So we can write

gi−1 = g1 ⊕ kXi

whereXi is any element of gi−1\gi, and the sum is semidirect. The preced-
ing argument using semidirect products is applicable if we use induction
on i.
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