
8. The Lie algebra and the exponential map for general Lie groups

8.1. The Lie algebra. We shall show how one can associate to any Lie
group G its Lie algebra Lie(G). We work over R or C. To begin with
let M be any smooth manifold. Then one know that the set of vector
fields on M is a Lie algebra, generally infinite dimensional. If D is a set
of automorphisms of M , the vector fields that are invariant under the
diffeomorphisms of D form a Lie subalgebra of the Lie algebra of vector
fields. If we take M = G and D to be the set of left translations ℓx(x ∈ G),
we get the Lie algebra Lie(G) of all vector fields on G which are invariant
under all left translations–the so-called left invariant vector fields. We call
Lie(G) the Lie algebra of G.

If X ∈ Lie(G) and Xe is the tangent vector defined by X at the
identity element e of G, left invariance requires that Xx = dℓx(Xe) so
that X is completely determined by Xe. Thus X 7−→ Xe is an injection
of Lie(G) into the tangent space Te(G) to G at e. This is actually a
bijection. In fact, if v ∈ Te(G) and we define Xx = dℓx(v) for x ∈ G,
we get a left invariant assignment x 7−→ Xx and it is a vector field. To
see this we must show only smoothness and enough to verify smoothness
near e. Take coordinates (xi) near e such that e goes to 0 and let Fi be
the smooth functions expressing multiplication: if u = st and (xi) (resp.
(yi), (zi)) are the coordinates of s (resp. t, u), then

zi = Fi(x1, . . . , xn, y1, . . . , yn) (1 ≤ i ≤ n).

We may assume that v = (∂/∂xi)0. It is a question of showing that
t 7−→ Xt(st) is smooth in t, which comes to verifying that

∂Fi

∂xi

(0, . . . , 0, t1, . . . , tn)

is smooth in the ti which is obvious. We thus have

Theorem 1. The map X 7−→ Xe is a linear isomorphism of Lie(G) with

Te(G).

Example 1 : The case G = GL(N, k). The ground field is k which

is R or C. Then G is an open subset of kN2

and the matrix entries aij

are the global coordinates on G. Any tangent vector at I is of the form
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∑

ij xij∂/∂aij and so can be identified with the matrix X = (xij). Let X̄
be the element of g := Lie(G) such that X is the tangent vector defined
by it at the identity element I. Let gl(N, k) be the Lie algebra of N × N
matrices with entries from k with the bracket as the matrix commutator.
We wish to show that the map

X 7−→ C̄

described above is a Lie algebra isomorphism of gl(N, k) with g. It is a
question of computing X̄, Ȳ , [X̄, Ȳ ] and showing that

[X̄, Ȳ ]I = [X, Y ].

To prove this we first compute Ȳ (ars). This is just the result of applying
the tangent vector Y at I to the function

z 7−→ ars(gz) =
∑

p

arp(g)aps(z)

leading to the value

∑

ijp

yijδipδjsarp(g) =
∑

i

yisari(g)

and so
Ȳ ars =

∑

i

arqyqs.

From this we get

(X̄Ȳ ars)(I) =
∑

ijq

xijδirδjqyqs =
∑

j

xrjyjs = (XY )rs.

Thus
([X̄, Ȳ ]ars)(I) = [X, Y ]rs

proving what we want.

Example 2 : Lie algebra of a closed Lie subgroup. Let H ⊂ G be a
closed Lie subgroup and let h = Lie(H). The injection Te(H) →֒ Te(G)
induces a linear injection h →֒ g.

Theorem 2. The map h −→ g is a Lie algebra injection.
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Proof. We must verify that the map preserves brackets. This comes down
to showing that if X, Y ∈ g are tangent to H at all points of H, the same
is true of [X, Y ]. This is true if G, H are replaced by M, N where M is a
manifold and N a submanifold. The result is local and so we may assume
that M = ka × kb, N = ka × {0}. Let x′ = (xr)r≤a be the coordinates on
ka and x” = (xs)s≥a+1 the coordinates on kb. If

∑

i fj∂j is a vector field
where ∂j = ∂/∂xj, then the condition for it to be tangent to N is that
ar(x

′, 0) = 0 for r ≥ a + 1. If now X =
∑

j aj∂j , Y =
∑

j bj∂j, we have
[X, Y ] =

∑

s cs∂s where

cs =
∑

r

(ar∂bs/∂xr − br∂as/∂xr) .

It is then easy to check that ct(x
′, 0) = 0 for t ≥ a + 1; indeed, for

r ≥ a + 1, ar(x
′, 0) = br(x

′, 0) = 0, while, for r ≤ a, (∂bt/∂xr)(x
′, 0) =

(∂at/∂xr)(x
′, 0) = 0 because bt(x

′, 0) = at(x
′, 0) = 0.

Remark. If X, Y ∈ Lie(G), the bracket [X, Y ] depends only on the values
of X and Y in a neighborhood of the identity and so the Lie algebra is

already determined by the connected component of the identity of the Lie

group. So the part of G beyond the component of the identity does not play
any role in the Lie algebra. This fact has a rather sharp consequence in
physics. Originally it was believed that the laws of physics were invariant
under the full Poincaré group which is the semi direct product of the
space-time translation group T and the Lorentz group L := SO(1, 3).
Now L is not connected but has 4 connected components respectively
containing I, Is (space reflection (x0, x1, x2, x3) 7−→ (x0,−x1,−x2,−x3)),
It (time reflection ((x0, x1, x2, x3) 7−→ (−x0, x1, x2, x3)), and Ist (space-
time reflection (x0, x1, x2, x3) 7−→ (−x0,−x1,−x2,−x3)). Space reflection
is called parity and in the mid 1950’s it was discovered in an experiment
involving neutrinos performed at Columbia University by Madam Wu and
her collaborators at the suggestion of C. N. Yang and T. D. lee (who later
won the Nobel Prize for this) that the propagation of neutrinos violates
parity. The wave equation for the neutrino which had hitherto been used
was then abandoned and replaced by the equation that had been proposed
by Hermann Weyl in the 1930’s, which had been out of favor till then
because it violated parity!

Problems

1. Verify that for G1 ×G2 the Lie algebra is g1 × g2 where gi = Lie(Gi)
for i = 1, 2.
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8.2. The exponential map. If M is a manifold and X is a vector field
on M , then it is well known that X generates a local flow. The flow is
obtained by finding the maximal integral curves through the points m ∈ M
which will be defined for −a(m) < t < b(m) where 0 < a(m), b(m) ≤ ∞.
The numbers a(m), b(m) depend on m but are locally bounded away from
0 as m varies over compact sets, i.e., for any compact K ⊂ M there is
ε = ε(K) > 0 such that for all m ∈ K the integral curve through m
is defined for |t| < ε. For the flow to be global we should have a(m) =
b(m) = ∞ for all m ∈ M . In this case the map αt which takes the point m
to the point on the integral curve at time t is a diffeomorphism of M and
t, m 7−→ αt(m) is a smooth map. In general the local flow is not global,
but is so if the manifold M is compact. to see this we on=bserve that
the integral curves ared efined for |t| < ε for all m ∈ M and so for all
t; one simply keeps going for time ε/2 wherever one is on the manifold.
So vector fields generate global flows on a compact manifold. There is
another circumstance in which this can be asserted. This is when there
is a group D of diffeomorphisms of M that acts transitively on M and
leve the vector field invariant. Then the a(m), b(m) are independent of m
and so by the same argument as in the compact case the integral curve is
defined for all t. This case occurs when M = G and D = {ℓx}x∈G. Thus:

Theorem 1. The elements of Lie(G) generate global flows on G.

Write
g = Lie(G).

Fix X ∈ g and let

h(X : ·) : t 7−→ h(X : t), h(X : 0) = e

be the integral curve of X through the identity e. Since X is left invariant,
the integral curve through x ∈ G is

t 7−→ xh(X : t).

Furthermore the integral curve through e satisfies the differential equation

dh

dt
= Xh(t), h(0) = e

for all t ∈ R. Now the integral curve through h(s) is, on the one hand
t 7−→ h(s)h(t), while it is also t 7−→ h(s + t). Hence we must have

h(X : s + t) = h(X : s)h(X : t) (s, t ∈ R).
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This shows that h(X : ·) is the unique solution to

h(s + t) = h(s)h(t),

(

dh

dt

)

t=0

= Xe.

From this it follows that

h(X : st) = h(sX : t) (s, t ∈ R).

It also follows that the h(X : ·) are precisely all the smooth Lie group
morphisms R −→ G.

If G is a closed subgroup of GL(N) we can thus identify h(X : t) with
exp(tX). So we define in the general case

exp X = h(X : 1).

We have
exp tX = h(tX : 1) = h(X : t)

so that for any X ∈ g the maps

t 7−→ x exp tX

are the integral curves of X through the points x ∈ G. We have thus de-
fined the exponential map in the general case and verified that it coincides
with the matrix exponential for the matrix Lie groups.

The exponential map is smooth (in the appropriate sense, namely C∞

or analytic according as G is a C∞ or an analytic Lie group). To see this
we take a basis X1, X2, . . . , Xn for g. Then

X =

n
∑

j=1

ajXj

and the differential equations defining h(X : t) are given in local coordi-
nates near e in the form

dhi(t)

dt
=

n
∑

j=1

ajFij(h1, . . . , hn, t) (1 ≤ i ≤ n).

The aj can now be viewed as parameters and we conclude that the hi are
smooth in the parameters. We thus have
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Theorem 2. The exponential map is smooth from Lie(G) to G.

Problems

1. On any manifold prove that any vector field with compact support
generates a global flow,

2. Give the details of the result that for matrix Lie groups the Lie al-
gebra and the exponential map defined here coincide with the earlier
definitions.

8.3. The adjoint representation. In defining the Lie algebra we could
also have worked with the right invariant vector fields. But the theory is
equivalent. Moreover, using the exponential map obtained from the left
invariant theory we can obtain the right invariant vector fields and their
integral curves very simply. If X ∈ Lie(G) the integral curves of the right
invariant vector field X ′ with X ′

e = Xe are

t 7−→ exp tXx (x ∈ G) = x(x−1 exp tXx).

This leads us to consider the action of G on g by inner automorphisms.
More precisely, for x ∈ G let

ιx : y 7−→ xyx−1

be the inner automorphism defined by x. Then, for any X ∈ g,

t 7−→ ιx(h(X : ·)

is a Lie group morphism of R into G and so is of the form h(Xx : ·) for
some Xx ∈ g. Computing differentials at e we get

(dιx)e(Xe) = (Xx)e

showing that X 7−→ Xx is a linear map of g into itself. We write Ad(x)
for this linear map. Thus

x exp tXx−1 = exp tAd(x)(X).

Since ιxy = ιxιy we see that Ad is a homomorphism of G into GL(g). The
formula

(

d

dt

)

t=0

x exp tXx−1 = Ad(x)(X)
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shows that Ad(x)(X) depends smoothly on x for each X and hence that
Ad is a Lie group morphism of G into GL(g). It is called the adjoint

representation of G. We shall see later that it is a morphism of G into
Aut(g), the group of automorphisms of theLie algebra g.

There is a very interesting application of the adjoint representation
in the theory of complex Lie groups. Notice first that if the adjoint repre-
sentation is the identity, then the elements of G commute with all expo-
nentials. Since a connected G is generated by the exponentials it follows
that G is commutative. If now G is a compact complex Lie group, we
know that it has no non-constant maps into affine space (as a complex
manifold) and so the adjoint representation is necessarily trivial. Hence
G is abelian. The exponential map is then a homomorphisn from g to G.
It follows from this that

G = g/L

where L is a lattice. However G is not necessarily a complex torus; for
that L will have to satisfy the so-called Riemann conditions.

Problems

1. Prove that G is generated by the elements of the form exp X(X ∈ g).

2. Prove that if G is commutative then exp is a Lie group morphism
from the additive group of g into G, i.e., exp(X + Y ) = exp X exp Y
for X, Y ∈ g.

3. Prove that for commutative G, the exponential map has bijective
differential everywhere and hence derive the representation G = g/L
for a suitable discrete subgroup L which is a lattice if we know that
G is compact.
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