
7. Baker-Campbell-Hausdorff formula

7.1. Formulation. Let G ⊂ GL(n,R) be a matrix Lie group and let
g = Lie(G). The exponential map is an analytic diffeomorphim of a neigh-
borhood of 0 in g with a neighborhood of 1 in G. So for X, Y ∈ g suffi-
ciently close to 0 we can write

expX expY = expZ

where
Z : (X, Y ) 7−→ Z(X, Y ) (|X |, |Y | < a)

is an analytic map into g. It turns out that one can compute this map
explicitly. The resulting formula is called the Baker-Campbell-Hausdorff

formula. For fixed X, Y we replace X and Y by tX and tY so that

exp tX exp tY = expZ(tX, tY ) = expZ(t, X, Y ).

Then Z(t, X, Y ) is analytic for small t and so we can write

Z(t, X, Y ) =

∞
∑

n=0

tnzn(X, Y )

where the series converges for small t. It is almost obvious that zn is a
homogeneous polynomial map of g × g into g of degree n. But it is far
less obvious that it is a Lie polynomial , namely, that it is made up of
commutators involving X, Y of degree n. This is the essence of the BCH
formula. The zn can be explicitly determined and are given by a famous
formula due to Dynkin.

One can have an idea of what is involved by computing zn for very
small n. This is a formal exercise and so we can operate in the associative
algebra P of formal power series in two non-commutative indeterminates
x, y. Then

z = log(exey) =
∞
∑

n=1

(−1)n−1 1

n
(exey − 1)

n
.

It is now a question of replacing the exponentials by their power series and
calculating the term zn as the part of the expansion of degree n. It is ob-
vious that zn is an associative polynomial. A straightforward calculation
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gives (with [a, b] = ab− ba in P)

z0 = 0

z1 = x+ y

z2 =
1

2
[x, y]

z3 =
1

12
[x, [x, y]]−

1

12
[y, [x, y]]

z4 = −
1

48
[x, x, [x, y]]]−

1

48
[y, x, [x, y]]]etc.

One can proceed further but the calculations become prohibitive very
rapidly unless one uses a computer. That all the zn are Lie polynomials
is thus a formal fact of considerable interest and difficulty to establish.

Our method of attack is to start with the equation

exp tX exp tY = expZ(tX, tY ) = expZ(t, X, Y ).

and obtain a differential equation (ordinary, but non-linear) for Z(t, X, Y )
from which the zn can be determined by resursion. The structure of the
recursion will make it clear that the zn are Lie polynomials and that the
series

Z(X, Y ) =

∞
∑

n=0

zn(X, Y )

will converge for small X, Y . But in order to carry this out we need to
know how to compute the derivative of the exponential function eX at an
arbitrary point X . We have done this only at X = 0 and the result for
arbitrary X is much more involved.

7.2. Derivative of eX at an arbitrary X. Since X is a matrix variable,
the derivative has to be along an arbitrary direction Y . We thus wish to
determine

(

d

dt

)

t=0

eX+tY .

We shall transfer the calculation to I by left translating by eX so that we
really calculate

DY (eX) := e−X

(

d

dt

)

t=0

eX+tY
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instead of

dY (eX) :=

(

d

dt

)

t=0

eX+tY .

The result is the following. Let g be the entire function

g(z) =
1 − e−z

z
=

∞
∑

m=0

(−1)m

(m+ 1)!
zm.

Theorem 1. We have

DY (eX) =

∞
∑

m=0

(−1)m

(m+ 1)!
(ad X)m(Y ) = g(ad X)(Y ).

Equivalently

dY (eX) = eX

∞
∑

m=0

(−1)m

(m+ 1)!
(ad X)m(Y ) = eXg(ad X)(Y ).

Proof. We have

DY (eX) = e−X
∑

n≥1

(

d

dt

)

t=0

(X + tY )n

n!

=
∑

r≥0,n≥0,0≤s≤n

(−1)r

r!(n+ 1)!
XrXsY Xn−s.

We go to summation variables m, r, s where m = r + n; the ranges are
m ≥ 0, r ≥ 0, s ≥ 0, r + s ≤ m. Thus

DY (eX) =
∑

m,r,s

(−1)r

r!(m+ 1 − r)!
Xr+sY Xm−r−s

=
∑

m≥0,0≤k≤m,0≤r≤k

(−1)m

(m+ 1)!
(−1)m−k

(

m+ 1

r

)

XkY Xm−k.

We now use the identity

k
∑

r=0

(−1)r

(

m+ 1

r

)

= (−1)k

(

m

k

)
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which is easily established by induction on r. Moreover, if λ, ρ are the
endomorphisms of the algebra of n×n matrices of left and right multipli-
cation by X , they commute with each other, ad X = λ− ρ, and

(ad X)m(Y ) =

m
∑

k=0

(−1)m−k

(

m

k

)

λkρm−k(Y )

=

m
∑

k=0

(−1)m−k

(

m

k

)

XkY Xm−k.

Hence

DY (eX) =
∞
∑

m=0

(−1)m

(m+ 1)!
(ad X)m(Y ) = g(ad X)(Y )

as we wanted to prove.

Corollary 2. If F is a matrix function of t, then

d

dt
eF (t) = eF (t)g(ad F )(F ′(t)).

Proof. The map t 7−→ eF (t) is the composition of t 7−→ F (t) and X 7−→
eX . The formula is then immediate from the chain rule for mappings.

Problems

1. Let r > 0 and let Ar be the algebra of power series converging on the
disk |z| < r. Let V be a Banach space. For each f =

∑

fnz
n ∈ Ar

and any bounded operator L(V −→ V ) show that f(L) =
∑

n fnL
n

is a well defined bounded operator provided ||L|| < r and that the
map f 7−→ f(L) is an algebra homomorphism.

2. Let S be the space of skew hermitian matrices of order n. Prove that
the polar decomposition map

u,X 7−→ u expX

from U(n) × S into GL(n,C) is an analytic diffeomorphism with
GL(n,C). Prove also the corresponding results for SL(n) and for
GL(n,R), either directly or as a consequence of the result over C.
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7.3. Analytic derivation of BCH formula. We write

euXevY = eZ(u,v,X,Y )

where Z is analytic in u, v near (0, 0) for each pair (X, Y ). Moreover Z
vanishes at u = v = 0. Differentiating with respect to v we get

euXevY Y = eZg(ad Z)

(

∂Z

∂v

)

.

To calculate ∂Z
∂v

we must invert g(ad Z). Let h = 1/g. Then h is analytic
for |z| < 2π and h(−z) = h(z) − 1

2z. Let us therefore set

f(z) = h(z) −
1

2
z = f(−z).

Then
f(z) = 1 +

∑

p≥1

k2pz
2p

where the kr are rational numbers. Thus

∂Z

∂v
= h(ad Z)(Y ) = f(ad Z)(Y ) +

1

2
[Z, Y ].

To get ∂Z
∂u

we invert the basic equation and use the evenness of f to derive
from

e−vY e−uX = e−Z

the equation

∂Z

∂u
= h(ad Z)(Y ) = f(ad Z)(X) −

1

2
[Z,X ].

If we now set u = v = t and F (t, X, Y ) = Z(t, t, X, Y ), we get, from

dF

dt
=

(

∂Z

∂u
+
∂Z

∂v

)

u=v=t

the differential equation

dF

dt
= f(ad F )(X + Y ) +

1

2
[X − Y, F ].
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We write

F = z1t+ z2t
2 + . . . ad F = tad z1 + t2ad z2 + . . .

so that
(ad F )m =

∑

n≥1

tn
∑

r1+...+rm=n

ad zr1
. . . ad zrm

.

The differential equation is

dF

dt
= X + Y +

∑

k2p(ad F )2p(X + Y ) +
1

2
[X − Y, F ]

leading to the recursion formulae:

z1 = X + Y

(n+ 1)zn+1 =
1

2
[X − Y, zn]

+
∑

p≥1,2p≤n

k2p

∑

ri≥1,r1+...+r2p=n

[zr1
, [zr2

, . . . [zr2p
, X + Y ]] . . .].

Let

Ln := { linear span of n-fold commutators involving X, Y }.

Then it is immediate by induction on n that

zn ∈ Ln for all n ≥ 2.

We have thus proved the following theorem.

Theorem 2. There are unique homogeneous polynomial maps

zn : g × g −→ g

with z1 = X + Y, zn(X, Y ) ∈ Ln for all n ≥ 2 such that

expX expY = expZ(X, Y ) Z(X, Y ) = X + Y +
∑

n≥2

zn(X, Y ),

the series converging for |X |, |Y | small.
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The convergence of the series for Z can be established independently
by the so-called method of majorants. The idea is the following: the coef-
ficients zn are determined by a recursion scheme involving the coefficients
k2p. We can set up a parallel recursion scheme where the k2p are replaced
by |k2p|. The solution to this parallel problem is always positive and de-
fines a convergent solution by inspection, while the original solution is
majorized by the solution to the parallel problem. This will prove the
convergence.

Let
H(z) = 1 +

∑

p≥1

|k2p|z
2p

and let us consider the scalar initial value problem

dy

dz
=

1

2
y +H(y), y(0) = 0.

Then there is a solution analytic in |z| < δ; if we write

y = c1z + c2z
2 + . . .

then c1 = 1 and

(n+ 1)cn+1 =
1

2
cn +

∑

p≥1,2p≤n

|k2p|
∑

ri≥1,r1+...+r2p=n

cr1
. . . cr2p

.

It is clear that all the cn are ≥ 0. It is possible to show that the zn are
majorized by the cn up to an exponential factor.

Problems

1. Let M > 0 be such that |[A,B]| ≤M |A||B| for all matrices A,B. Let
α = max(|X |, |Y |). Prove the estimate

|zn| ≤Mn−1(2α)ncn

where cn are as above. (Hint : Use induction on n.)

2. Let

n =

{

X ∈ g
∣

∣ |X | <
δ

2M

}

.
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Prove that the BCH series converges absolutely for X, Y ∈ n.

7.4. Formal aspects of the BCH series and Dynkin’s formula.
At the formal level the BCH formula works with two non-commuting in-
determinates x, y and the algebra P of formal power series in x and y
with coefficients in a field k of characteristic 0. For any f ∈ P with zero
constant term, the exponential ef is defined by

ef = 1 + f +
f2

2!
+ . . . .

Since fn begins only with terms of order n it is immediate that this is an
element of P. Similarly

log(1 + f) = f −
f2

2
+
f3

3
− . . . .

Thus, taking f = exey − 1 we see that for some z ∈ P with zero constant
term we have

exey = ez.

If Pn is the subspace of P of polynomials in x and y which are homogeneous
of degree n we can write

z =
∑

n≥1

zn, zn ∈ Pn.

There is a more refined grading of Prs; let Prs be the subspace of P of
elements which are separately homogeneous of degrees r in x and s in y.
Then

Pn = ⊕r+s=nPrs.

In particular

zn =
∑

r+s=n

zrs, zrs ∈ Prs.

One can obtain an explicit formula for the zrs. Notice that

exey = 1 + u, u =
∑

p+q≥1

xpyq

p!q!
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and so

z = log(1 + u) =
∑

m≥1

(−1)m−1

m





∑

p+q≥1

xpyq

p!q!





m

.

It follows from this that

zrs =
∑

m≥1

(−1)m−1

m

∑

pi+qi≥1,p1+...+pm=r,q1+...+qm=s

xp1yq1 . . . xpmyqm

p1!q1! . . . pm!qm!
.

Unfortunately this expression hides the fact that the zrs are Lie elements.
Let Fn be the linear span of commutators [a1, [a2, . . . , [an−1, an]]] . . .].
Then one can show that zrs ∈ Fr+s. Moreover there is a remarkable
explicit formula for the zrs due to Dynkin that makes the fact that zrs

belongs to Frs manifest. I shall sketch a proof of these results. However
we need to use some sophisticated results from Lie algebra theory.

There are two issues: the first is to show that zn is a Lie element,
and the second is to find an explicit expression. Both of these are done
in Serre’s Notes. I shall describe in the exercises a different method for
the first; in fact, the analytic method given earlier generalizes very nicely
in the formal situation and gives a proof that the zn are Lie elements.
In the formal development we must replace the derivatives ∂/∂u, ∂/∂v by
suitable continuous derivations of P; here continuity is with respect to the
usual adic topology in which the ideals Mn of elements beginning with
terms of degree n form a basis at 0.

Dynkin’s formula. The question is to calculate zrs explicitly given
that they are Lie elements. This depends on the theory of free Lie algebras

and their universal enveloping algebras. Let A be the free associative
algebra generated by n elements X1, X2, . . .Xn. We define [u, v] = uv−vu
for u, v ∈ A so that A becomes a Lie algebra. Let L the Lie subalgebra
generated by (Xi). A is graded in the obvious manner. We write Am for
the graded components of A. We have an endomorphism ψ of A into itself
defined by

ψ(Xi1 . . .Xim
) = [Xi1 , [Xi2 , [. . . [Xim−1

, Xim
]] . . .].

These considerations apply when n = 2 and X1 = x,X2 = y. The key is
the following result.

Lemma. Let Lm = Am∩L. Then L = ⊕Lm and ψ(u) = mu for u ∈ Lm.
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Dynkin’s formula is immediate. Since we know that zrs ∈ Lr+s we have

(r + s)zrs = ψ(zrs).

In computing ψ(xp1yq1 . . . xpmyqm) we note that it must vanish if qm ≥ 2
or if qm = 0 and pm ≥ 2. Hence

zrs = z′rs + z′′rs

where (r + s)z′rs is

∑

m≥1

(−1)m−1

m

∑

pi+qi≥1,
∑

pi=r,q1+...+qm−1=s−1

adxp1adyq1 . . . adxpm(y)

p1!q1! . . . pm!

and (r + s)z′′rs is

∑

m≥1

(−1)m−1

m

∑

pi+qi≥1,p1+...+pm−1=r−1,
∑

qi=s

adxp1adyq1 . . . adyqm−1(y)

p1!q1! . . . qm−1!
.

Problems

1. (a) Prove that there are unique continuous endomorphisms D1, D2 of
P such that D1u = ru for u ∈ Ars and D2v = sv for v ∈ Ars. Prove
that they are derivations.

(b) Prove that

D1z = −
1

2
[z, x] + x+

∑

p≥1

k2pad z2p(x)

D2z =
1

2
[z, x] + y +

∑

p≥1

k2pad z2p(y).

(c) Deduce that the zrs are Lie elements, z1 = x+ y, and that zn :=
∑

r+s=n zrs satisfy the recursion formulae obtained in the analytic
treatment.

2. Prove the formulae for z′rs, z
′′
rs.
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7.5. Remarks on free Lie algebras and their universal envelop-
ing algebras. We shall complete this discussion with some elucidating
remarks on free Lie algebras and enveloping algebras.

Universal enveloping algebra of a Lie algebra. Let g be a Lie
algebra. By an enveloping algebra of g we mean a pair (A, f) where A is
an associative algebra (with unit) and f is a linear map g −→ A such that
f(g) generates A as an associative algebra and

f([X, Y ]) = f(X)f(Y ) − f(Y )f(X).

In other words f converts the unfamiliar bracket in g into the familiar
commutator bracket of an associative algebra. There are of course many
enveloping algebras and so we are interested in the biggest, which is the
universal enveloping algebra. An enveloping algebra (U , g) is said to be
universal if for any enveloping algebra (A, f) there is a homomorphism
h(U −→ A) such that

h(g(X)) = f(X) ( for all X ∈ g).

Since the image of g in any enveloping algebra generates it, it is clear
that h is unique. For the usual reasons the universal enveloping algebra
is unique up to a unique isomorphism. Its existence is easy to see also.
et T be the tensor algebra over g and let J be the two-sided ideal in T
generated by all elements of the form

uX,Y = X ⊗ Y − Y ⊗X − [X, Y ].

The (T/J, π) is a universal enveloping algebra of g where π is the natural
map T −→ T/J .

It is not obvious that π is injective on g. Actually much more is true.
For simplicity let g be finite dimensional and let (Xi)1≤i≤n be a basis of
it. Let X̄i = π(Xi). We now observe that

X̄iX̄j = X̄jX̄i + [X̄i, X̄j]

from which it follows that any monomial in the X̄i can be written as a
linear combination of standard monomials

X̄r1

1 X̄r2

2 . . . X̄rn

n .
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The fundamental result in this circle of ideas is

Theorem (Poincaré-Birkhoff-Witt). The standard monomials form a

basis for the universal enveloping algebra. In particular g imbeds into the

universal enveloping algebra.

In a similar spirit we shall define what we mean by the free Lie algebra

generated by the Xi. It is by definition a Lie algebra L containing the Xi

and generated by it, with the following universal property : if m is any
Lie algebra and X ′

i ∈ m are arbitrary elements, there is a (unique) Lie
morphism f(L −→ m) such that f(Xi) = X ′

i. The free Lie algebra, if it
exists, is unique. Its existence is given by

Theorem. Let A be the free associative algebra generated by the Xi and

let L the Lie subalgebra generated by the Xi. Then L is the free Lie algebra

generated by the Xi.

Proof. This is an immediate consequence of the existence of the universal
enveloping algebra and the PBW theorem. Let m be any Lie algebra and
X ′

i ∈ m be arbitrary elements. Let M be the universal enveloping algebra
of m with m ⊂ M. There is a homomorphism h(A −→ M) such that
h(Xi) = X ′

i. The restriction of h to L is a Lie algebra map. But we must
show that this restriction maps L into m. Let L′ be the preimage of m

by h. Then L′is a Lie algebra and contains all the Xi, hence contains L,
proving that h(L) ⊂ m.

We are now in a position to address the issues concerning the map ψ
occurring in the proof of Dynkin’s formula. We consider first the adjoint

representation of L acting on A by

ad x : u 7−→ xu− ux (u ∈ A).

We may view ad as a map of L into End(A) such that

ad ([x, y]) = ad xad y − ad yad x

and so it extends to a homomorphisn θ of A into End(A):

θ(uv) = θ(u)θ(v) (u, v ∈ A), θ(x) = ad x (x ∈ L).
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Recall now that

ψ(Xi1 . . .Xim
) = [Xi1 , [Xi2 , [. . . [Xim−1

, Xim
]] . . .].

It follows from this that

ψ(uv) = θ(u)(ψ(v)).

First we shall show that the ψ(Xi1 . . .Xim
) span L. Indeed, if the

span is L′ ⊂ L, then L′ is stable under ad Xi for all i, and hence under
θ(u) for all u ∈ A. In particular [L,L′] ⊂ L′, hence [L′,L′] ⊂ L′, or L′ is
a Lie algebra. Since it contains all the Xi it contains L, hence must be
equal to L. Now A is naturally graded and the above result shows that L
is spanned by homogeneous elements. Let

Lm = L ∩ Am.

Then
L = ⊕mLm, Lm = span of ψ(Xi1 . . .Xim

).

We shall now prove by induction on m that

ψ(u) = mu (u ∈ Lm).

The result is trivial for m = 1. let m > 1 and let us assume the result for
lower values of m. Let u = [Xi, v] where v = ψ(w) for some w ∈ Am−1.
Then

ψ(u) = ψ(Xiv) − ψ(vXi) = [Xi, ψ(v)]− θ(v)(Xi)

= (m− 1)[Xi, v] − [v,Xi]

because θ(v) = ad v (since v ∈ L). hence

ψ(u) = (m− 1)[Xi, v] + [Xi, v] = m[Xi, v] = mu.
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