
4. The concept of a Lie group

4.1. The category of manifolds and the definition of Lie groups.
We have discussed the concept of a manifold-Cr, k-analytic, algebraic. To
define the category corresponding to each type of manifold we must define
what the morphisms are. Since all the types of manifolds were defined
as instances of ringed spaces of functions it is enough to define what is a
morphism between two such ringed spaces. If (X,OX), (Y,OY ) are ringed
spaces of functions, a morphisn f(X −→ Y ) is a continuous map such
that the pull back f∗ takes OY to OX . More precisely f∗ := ϕ ◦ f is
a homomorphism from OY (V ) to OX (f−1(U)) for each open V ⊂ Y .
Compositions of morphisms are morphisms and so we have categories of
manifolds for each of the type discussed.

All the categories of manifolds defined above admit products. To
define a Lie group in one of these categories we take a manifold G which
is also a group and require that the group maps are morphisms, namely,
the maps

µ : G × G −→ G, µ(x, y) = xy, i : G −→ G, i(x) = x−1

are morphisms. A morphism between Lie groups is a homomorphism
which is a morphism of the underlying manifolds. So we get the corre-
sponding category of Lie groups. If the category is the category of affine
algebraic varieties we get the category of linear algebraic groups; it is a ba-
sic result that the linear algebraic groups are precisely the (Zariski) closed
subgroups of some GL(n).

The simplest example of a Lie group is GL(n, k). One can view this
as a Lie group in all categories. The coordinates are the matrix entries
aij and the group maps are

cij =
∑

k

aikbkj , aij = det((aij))
−1Aij

where Aij is the cofactor of aij . For k = R,C we obtain a real or complex
analytic Lie group, and for k non-archimedean we obtain a k-analytic Lie
group. In the algebraic category we get a linear algebraic group; we can
view GL(n, k) for k algebraically closed as Spec(k[. . . aij , . . .det−1]). To
view it as a closed subgroup of GL(n + 1, k) we consider the map

A 7−→

(

A 0
0 det(A)−1

)

.
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It gives an isomorphism with a closed subgroup of SL(n + 1, k).

If Gi(i = 1, 2) are Lie groups, then G1 ×G2 is also one. This extends
obviously to products of an arbitrary number of factors. There is a con-
struction, namely a semi direct product which is important. Here Gi are
given Lie groups and in addition we are given an action (smooth) of G1 as
automorphisms of G2. We define the semi direct product G = G1×

′ G2 as
follows .The underlying manifold is the product. The group multiplication
is defined by

(g1, g2)(h1, h2) = (g1h1, g1[h2]g2).

It is easy to verify that this defines a group and that it is a Lie group.
The standard examples are when G2 is a vector space and the action of
G1 is via linear maps.

Problems

1. Find the closed subgroup of GL(n+1, k) to which GL(n.k) is isomor-
phic (in the discussion above) and construct the inverse morphism.

2. Verify that the additive group kn is a Lie group.

3. Verify that Tn := Rn/Zn is a real analytic Lie group, the torus of
dimension n.

4. Let L be a lattice in Cn, namely an additive subgroup which is discrete
with Cn/L compact; for instance, for n = 1 take L as the group
generated by 1 and τ where Im(τ) > 0. Verify that Cn/L is a compact
complex Lie group.

5. Prove the statements regarding semi direct producrs made in the
discussion above.

To define further examples of Lie groups the simplest and best method
is to look for subgroups of GL(n). It is a theorem that most (in some sense)
Lie groups are subgroups of GL(n). But for doing this we must know how
to define submanifolds of manifolds.

4.2. Submanifolds. Let (X,OX) be a ringed space of functions. If
Y ⊂ X is open, then V 7−→ OX(V ) is a ringed space of functions on Y ;
we refer to Y as the open subspace of X . Suppose now Y is only closed.
Then there is a natural ringed space on Y defined by X which we denote
by OY . We view Y as a topological space with the topology inherited from
X . If V ⊂ Y is open in Y and f(V −→ k) is a function, then f ∈ OY (V )
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if and only if the following is satisfied: for each y ∈ V , there is an open U
in X such that

y ∈ U, U ∩ Y ⊂ V, ∃g ∈ OX(U) such that g
∣

∣

U∩Y
= f

∣

∣

U∩V
.

In other words, f ∈ OY (V ) if and only if f is, locally on V , the restriction
of a function from OX . The local nature of this definition implies that
OY is a sheaf and so (Y,OY ) is a ringed space of functions; we call it the
ringed subspace of X defined by Y .

This construction can be slightly generalized. By a locally closed

subset of X we mean a subset Y such that Y ⊂ Z ⊂ X where Z is open
and Y is closed in Z. Then Y becomes a ringed space if we first go from
X to Z (open subspace) and then from Z to Y (closed subspace).

The ringed space Y above has the following universal property:

Theorem 1. We have (1) The identity map I(Y −→ X) is a morphism

(2) If Z is a ringed space of functions and f(Z −→ Y ) is a morphism,

then f is a morphism of Z ito X ; conversely, a morphism of Z into X
which has image contained in Y is a morphism of Z into Y .

Even when X s a manifold it is seldom the case that Y is a manifold.
There is a simple way to ensure this. The following theorem is classical.

Theorem. 2 Let X be a manifold and let Y ⊂ X. Suppose that for

each y ∈ U there is an open neighborhood U of y in X and functions

f1, f2, . . . , fp ∈ OX(U) such that (a) U ∩ Y = {x ⊂ U | f1(x) = . . . =
fp(x) = 0} (b) df1, . . . , dfp are linearly independent at y. Then Y is locally

closed and (Y,OY ) is a manifold of dimension dim(X) − p.

Proof(Sketch). The result is local and so we may use coordinates. We
may assume that y = 0 ∈ kn and f − 1, . . . , fp functions in Okn(U) with
the required properties. The hypothesis means that the matrix

(

∂fi

∂xj

)

1≤i≤p,1≤j≤n

has rank p at 0. By permuting the coordinates xi we may assume that
the matrix

(

∂fi

∂xj

)

1≤i≤p,1≤j≤p
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is invertible at 0. If we define

yi = fi(1 ≤ i ≤ p), yi = xi(p + 1 ≤ i ≤ n)

we have
(

∂yi

∂xj

)

1≤i,j≤n

is invertible at 0. Hence the (yj) form a coordinate system at 0 in which
Y appears near 0 as the locus where the yi(1 ≤ i ≤ p) are 0. The theorem
is now obvious.

Remark. The Jacobian criterion used in the proof above for (yj)1≤j≤n to
form a system of local coordinates is the basic result in Calculus of several
variables and is valid in the C1 category. It is also valid in the k-analytic
category when k is a complete field with an absolute value (see Serre’s
Springer Lecture Notes for a proof or see problem below).

Problems

1. Prove that Y is locally closed if and only if it is open in its closure and
equivalently, if and only if each point of Y has an open neighborhood
U in X such that U ∩ Y is closed in U . Deduce that te submanifolds
defined above are locally closed in X .

2. Prove the Jacobian criterion for (yj)1≤j≤n to be a local coordinate
system in the k-analytic category.

3. If Z is a manifold and f is a morphism of Z into an X above such
that the image of f is contained in Y , then f is a morphism into Y .
Together with the fact that the identity map Y −→ X) is m mo-
prhism, this universal property characterizes the manifold structure
defined on Y .

4. Prove that if X is a topological group and Y is a locally open sub-
group, then Y is already closed in X .(Hint : Replace X by V cl to
assume Y dense open in X . Prove that Y is closed.)

4.3. Subgroups of Lie groups as Lie groups. We have

Theorem 1. Let G be a Lie group and and Ha closed subgroup which

defines a submanifold. Then H is a Lie group.
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Proof. Let IH be the identity map of H into G. Let µH be the multiplica-
tion H ×H −→ H. To prove that this is a morphism it is enough to show
that it is a morphism into G. But it is the composition µG ◦ IH × IH and
so is indeed a morpism. Similarly we prove that ιH , the map h 7−→ h−1

is a morphism of H into itself.

Example: SO(n). Let G = SO(n) ⊂ kn2

. The matrix entries aij are
coordinates and let A = (aij). Write

F = FT = AT A − I = (fij), fij = fji =
∑

r

ariarj − δij .

Then G is the set of points where the fij vanish and it is enough to show
that the (1/2)n(n + 1) differentials

dfij(i ≤ j)

are linearly independent at all points of G. We shall prove this at all
points g which are invertible. We must show that for a fixed invertible g,
if cij(i ≤ j) are constants,

∑

i≤j

cij(dfij)g = 0 =⇒ cij = 0.

This can be rewritten in matrix notation as

Tr(SdFg) = 0 =⇒ S = 0, S = ST

where S is the symmetric constant matrix

S = (sij), sij = sji, sij =

{

cij if i = j
(1/2)cij if i < j

Now
Tr(SdFg) = Tr(S(dAT g + gT dA))

= Tr(gT dAS) + Tr(SgTdA)

= 2Tr(dASgT ).

Since the coordinate differentials dA are linearly independent everywhere
we conclude that SgT = 0 and hence, as g is invertible, S = 0.
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Example: SL(n). Here there is only one equation, namely f(A) =
det(A) − 1 = 0. It is thus a question of showing that df is not zero at
any g ∈ SL(n). Once again we shall show that dfg 6= 0 at any g which is
invertible. We have

∂f

∂aij

= Aij

where Aij is the cofactor of aij ; certainly at each invertible g some cofactor
is not zero.

Example: U(n). Here the field is C but as complex conjugations are
involved, we have to view U(n) as a real Lie group. The coordinates are
the Re(aij) and Im(aij).

We proceed as before. Write X∗ for X̄T . Let

F = F ∗ = A∗A − I = (fij).

Notice that fsr = f̄rs; in particular, frr are real. Write frs = urs + ivrs.
We wish to prove that dfrr, durs, dvrs(r < s) are linearly independent at
any invertible g. If crr, ars, brs(r < s) are real constants, we have

∑

r

crrdfrr +
∑

r<s

(arsdurs + brsdvrs) = Re(Tr(EdF ))

where E = E∗ = (ers) is hermitian and given by

ers =







crr if r = s
(1/2)(ars − ibrs) if r < s
(1/2)(asr + ibsr) if r > s.

We shall see presently that Tr(EdF ) is real. As before, at the point g,

Tr(EdFg) = Tr(EdA∗g + g∗dAE)

= Tr(g∗dAE)conj) + Tr(g∗dAE)

= 2Re(Tr(g∗dAE))

= 2Re(Tr(dAEg∗)).

This shows that Tr(EdFg) is real and is given by

Tr(EdFg) = 2TrdXC) − 2Tr(dY D)
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where Eg∗ = C+iD (C, D real) and A = X+iY . Since dX, dY are linearly
independent everywhere, we must have C = D = 0, hence Eg∗ = 0, so
that E = 0.

Problems

1. Verify that Sp(2n, k) is a Lie group.

2. Verify that SU(n) is a real Lie group.

7


