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Abstract

In these two lectures I shall talk about some Indian mathe-
maticians and their work. I have chosen two examples: one
from the 7th century, Brahmagupta, and the other, Ra-
manujan, from the 20th century. Both of these are very
fascinating figures, and their histories illustrate various as-
pects of mathematics in ancient and modern times. In a
very real sense their works are still relevant to the mathe-
matics of today.



Some great ancient Indian figures of Science

Varahamihira (505–587)

Brahmagupta (598-670)

Bhaskara II (1114–1185)

The modern era

Ramanujan, S (1887–1920)

Raman, C. V (1888–1970)

Mahalanobis, P. C (1893–1972)

Harish-Chandra (1923–1983)

Bhaskara represents the peak of mathematical and astro-
nomical knowledge in the 12th century. He reached an un-
derstanding of calculus, astronomy, the number systems,
and solving equations, which were not to be achieved any-
where else in the world for several centuries...(Wikipedia).

Indian science languished after that, the British colonial
occupation did not help, but in the 19th century there was
a renaissance of arts and sciences, and Indian Science even-
tually reached a level comparable to western science.



BRAHMAGUPTA (598–670c)

Some quotations of Brahmagupta

As the sun eclipses the stars by its brilliancy, so the man of

knowledge will eclipse the fame of others in assemblies of

the people if he proposes algebraic problems, and still more,

if he solves them.

Quoted in F Cajori, A History of Mathematics

A person who can, within a year, solve x2 − 92y2 = 1, is a

mathematician.



Life

Brahmagupta was born in 598 CE in Bhinmal city in the
state of Rajasthan of northwest India. He was the head
of the astronomical observatory at Ujjain, and during his
tenure there wrote four texts on mathematics and astron-
omy.

Ujjain is in northwestern India and was the location of a
great astronomical observatory. It was place of great tra-
dition in mathematics and astronomy, lasting several cen-
turies. Varahamihira was a predecessor to Brahmagupta in
that observatory.

The Brahmasphutasiddhanta (628) is his most famous
work. It was brought to the middle east and translated
into arabic.

The observations he made and published of the angles of
some specific fixed stars, combined with measurements of
the angles in modern times and the fact that the period
of revolution of the earth around the fixed stars is 26,000
years, allow one to calculate his epoch.

For additional detail go to Wikipedia and look under brah-

magupta.



Mathematics

Brahmagupta made fundamental contributions to many
branches of mathematics.

• cyclic quadrilaterals (geometry)

• diophantine equations (arithmetic)

Constructed the complete solutions of all first
order diophantine equations and elucidated the
structure of solutions of a remarkable class
of second order diophantine equations; found
Pythagorean triplets, and discovered solutions for
the problem of finding traingles with integer sides
whose areas are rational.

• Number systems

He knew about zero and its additive and mul-
tiplicative properties, although he was not quite
sure of what happens when one divides by zero.

• Trigonometry and applied mathematics

He constructed tables of the sine function, knew
of trigonometric identities (already discovered by
Varahamihira), gave approximate values for π,
and had ideas about gravitation.

His textbooks on astronomy were very influential and ele-
vated him to the level of an acharya, a great teacher.



Geometry

A cyclic quadrilateral is a quadrilateral whose 4 vertices lie
on a circle. If a, b, c, d are the sides of such a quadrilateral,
Brahmagupta’s formula for its area is

√

(s − a)(s − b)(s − c)(s − d)

where s is the semiperimeter , namely,

s =
a + b + c + d

2
.

If we take a = 0 this specializes into the ancient formula
for the area of a triangle, due to Heron.

He also derived the formulae for the lengths m, n of the two
diagonals for such a quadrilateral, namely,

m2 =
(ab + cd)(ac + bd)

ad + bc
, n2 =

(ac + bd)(ad + bc)

(ab + cd)
.



Diophantine equations

Diophantus of Alexandria lived around 250 A. D., and
is chiefly remembered for his studies of polynomial equa-
tions in many unknowns with integer coefficients. These
are called Diophantine equations . Some of the most famous
problems in number theory ask for solutions of diophantine
equations.

Fermat problem

Show that when n ≥ 3 there are no positive integer solu-
tions (x, y, z) to the equation

xn + yn = zn.

For n = 2 there are infinitely many solutions, the so-called
Pythagorean triples .

Pell’s equation

Find all integer solutions (x, y) to

x2 − Ny2 = 1 (N an integer ≥ 1).

Diophantine problems are still at the very center of modern
number theory.



Brahmagupta’s work on Pell’s equation

• Structure of set of solutions

Discovered that there are an infinity of solutions,
and that the set of solutions forms a commuta-

tive group in the modern sense. The key to this
is to define a suitable multiplication for pairs of
solutions which will give a third solution.

(x, y) = (a, b)∗(c, d) x = ac+Nbd, y = ad+bc.

This follows from Brahmagupta’s identity :

(a2 − Nb2)(c2 − Nd2) = x2 − Ny2.

• Construction of an infinity of solutions if one is
known

Thus, if we have one solution (p, q), we can
construct an infinity of solutions (pk, qk)(k =
0, 1, 2, . . . , (p0, q0) = (p, q) by the following recur-
sion formula

pk = ppk−1 + Nqqk−1, qk = qpk−1 + pqk−1.

He also knew (in many cases at least) how to get a minimal

solution in a finite number of steps, starting from some
(p, q) such that p2 − Nq2 = m where m is a small integer.



The Chakravala algorithm :

its subsequent discovery and proof

Eventually, a precise algorithm known as the Chakravala

or the cycle method was developed by Bhaskara (1114–
1185). In the west such problems were studied only from
the 17th century onwards, by Fermat (1601–1665) to be-
gin with. The solution to the Pell’s equation and the proof
of the validity of the Chakravala are consequences of the
work of Lagrange (1736–1813) who developed a gen-
eral theory of continued fractions of quadratic irrationali-
ties from which these results followed easily.

For details see

Weil, A., Number Theory : an approach through his-

tory from Hammurapi to Legendre, Birkhäuser, 1984.

Varadarajan, V. S, Algebra in Ancient and Modern

Times , AMS-Hindustan Book Agency, 1998.



The Chakravala algorithm : details

The algorithm starts with (p0, q0) such that p2
0 < N and

is as close to N as possible; then q0 is defined as 1. The
(pi, qi, mi)(i ≥ 1) are calculated by the following formulae
recursively, using intermediate quantities xi(i ≥ 1). First
xi+1 is found from

pi + xi+1qi ≡ 0( mod |mi|).

Then we use

pi+1 =
pixi+1 + Nqi

|mi|

qi+1 =
pi + xi+1qi

|mi|

mi+1 =
x2

i+1 − N

mi

In a finite number of steps (< 2
√

N) we will arrive at mk =
1; the corresponding (pk, qk) is the minimal solution.



Examples of Brahmagupta multiplication

Here are some examples of solutions of some Pell’s equa-
tions.

x2 − 3y2 = 1, (x, y) = (2, 1).

Application of the Brahmagupta multiplication gives, the
following sequence of solutions:

(2, 1), (7, 4), (26, 15), (97, 56), (362, 209), (1351, 780), . . .

Starting from the soution (1, 1) to x2 − 3y2 = −2 we get
solutions to this equation

(1, 1), (5, 3), (19, 11), (71, 41), (265, 13), . . .

In the general case (this is an exercise) (1, 0) is the identity
element and (a,−b) is the inverse of (a, b).

The solution (265, 153) leads to

265

153
<

√
3 <

1351

780

used by Archimedes in his famous approximation for π:

3
10

71
< π <

22

7
.



Examples of solutions of Pell’s equation

Here are some solutions where the numbers are large and
so it is clear that one cannot find these solutions by trial
and error.

x2 − 13y2 = 1, (x, y) = (649, 180)

x2 − 61y2 = 1, (x, y) = (1766319049, 226153980)

x2 − 67y2 = 1, (x, y) = (48842, 5967)

These are the smallest positive solutions !!

For the problem in the quotation at the beginning,

x2 − 92y2 = 1, (x, y) = (1151, 120).

The Chakravala algorithm produces this in the 8th step:

(9, 1), (10, 1), (19, 2), (48, 5), (211, 22)

(470, 49), (681, 71), (1151, 120).

For a table of the minimal solutions up to N = 102 see

http://mathworld.wolfram.com/PellEquation.html

For more details see

V. S. Varadarajan, Algebra in Ancient and Modern

Times , AMS-Hindustan Book Agency, 1998.



RAMANUJAN (1887–1920)

Early life

Srinivasa Ramanujan was born in a lower middle class fam-
ily in 1887 in a small town in South India and grew up in
Kumbakonam, a town about 160 miles southwest of Chen-
nai, the major southern city in India. His brilliance in
mathematics ws recognized early by friends and others and
he received help in securing a very modest clerical job in the
Port Trust of Chennai so that he could pursue his mathe-
matical ideas.

Letters to Hardy

On the 16th of January, 1913 he wrote to G. H. Hardy,
a famous English mathematician at Trinity College, Cam-
bridge, detailing some of his results and asking Hardy to
look through them. This is one of the most famous letters
in the entire history of mathematics, and is the first of two
letters to Hardy; the second one was written on the 27th of
February, 1913, after a reply from Hardy to the first letter.



Invitation to Cambridge

Impressed by Ramanujan’s results as described in the let-
ters, and realizing that the results that Ramanujan had de-
scribed were only the tip of an iceberg, Hardy invited him to
visit Cambridge, and helped Ramanujan secure a fellowship
for this purpose. Many obstacles had to be overcome since
Ramanujan’s religious practices prohibited travel across the
seas. Eventually Ramanujan came to Cambridge in 1914
and stayed on till 1919. He wrote many famous papers, by
himself and with Hardy.

Return to India and last illness

Ramanujan became ill in the last year of his stay in Cam-
bridge. The source of his illness was not diagnosed and
he returned to India in 1919. But after a year of contin-
ued health problems he died in 1920. Opinions vary as to
what his illness was due to but there has been no conclusive
determination.



Some theorems from his letters to Hardy



Hardy’s reaction

The first question was whether I could recognize anything.
I had proved things rather like (1.7) myself, and seemed
vaguely familiar with (1.8). Actually (1.8) is classical; it is
a formula of Laplace, first proved properly by Jacobi; and
(1.9) occurs in a paper published by Rogers in 1907........

The formulae (1.10)–(1.13) were on a different level and
obviously both difficult and deep. ...... A single look at
them is enough to show that they could only be written
down by a mathematician of the highest class. They must
be true because, if they were not true, no one would have
had the imagination to invent them........



Hardy’s assessment

“It was his insight into algebraical formulae, transformation
of infinite series, and so forth, that was most amazing. On
this side most certainly I have never met his equal, and I
can compare him only with Euler or Jacobi. He worked, far
more than the majority of modern mathematicians, by in-
duction from numerical examples.....But with his memory,
his patience, and his power of calculation he combined a
feeling for form, and a capacity for rapid modification of his
hypotheses, that were often truly startling, and made him,
in his own peculiar field, without a rival in his day.......”

“There have been a good many more important, and I sup-
pose one must say greater, mathematicians than Ramanu-
jan in the last fifty years, but no one who could stand up
to him on his own ground. Playing the game of which
he knew the rules, he could give any mathemaician in the
world fifteen...”



Work

The following is a partial list of areas in which Ramanujan
made his remarkable contributions.

• Summation of convergent and divergent series

• Prime numbers and their distribution

• Hypergeometric series

• Continued fractions

• Number theory

• Modular forms

• Modular equations

• Definite integrals

Interest in his work is growing rapidly even today. His
formulae are finding applications in diverse fields.



The Ramanujan Notebooks

Before he came to Cambridge Ramanujan had written
down his results (without any proofs mostly) in Notebooks.
These were published and have made many people busy
for years trying to prove the theorems announced in them.
Bruce Berndt has edited all of them and has given proofs
to most, if not all, of the theorems stated in the Notebooks.
The Berndt volumes have been published by Springer.



Examples

Summation of convergent series

1 − 5

(

1

2

)3

+ 9

(

1.3

2.4

)3

− . . . =
2

π

113

e2π − 1
+

213

e4π − 1
+

313

e6π − 1
+ . . . =

1

24

Summation of divergent series

1 + 2 + 3 + 4 + . . . = − 1

12
1 − 1! + 2! − 3! + 4! − . . . = 0.596 . . .

The Ramanujan function τ(n)

Let

∆(x) = x

(

∏

n≥1

(1 − xn)

)24

=

∞
∑

n=1

τ(n)xn

Then

(a) τ(mn) = τ(m)τ(n) if (m, n) = 1

(b) τ(pr) = τ(p)τ(pr−1)−p11τ(pr−2) (p prime, r ≥ 1)

(c) |τ(p)| ≤ 2p
11

2 (p a prime)



The summation formula 1 + 2 + 3 + 4 + . . . = − 1

12

The zeta function

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ . . .

is defined for s > 1 as the series is convergent. It can
be continued as a complex analytic function to the entire
complex s-plane except for a pole at s = 1 where it behaves
like

1

s − 1
.

Riemann (1826-1866) proved these facts and also dis-
covered its functional equation:

ζ(1 − s) = 2(2π)−s cos
1

2
sπΓ(s)ζ(s)

This can be used to sum the divergent series

1 + 2 + 3 + 4 + . . . = ζ(−1)

A simple calculation gives

ζ(−1) = − 1

12
.



Remarks

Ramanujan had another method presumably although he
knew of the functional equation which he had derived him-
self (L. Euler (1707–1783)) had obtained the functional
equation 100 years before Riemann!)

This method of using zeta function is very much prevalent
in modern mathematics, and modern physics, as a tech-
nique to give meaning to certain infinite determinants. It
is called the zeta function regularisation.



The τ-function

Ramanujan defined the τ -function in his famous paper On

certain arithmetical functions , Trans. Cambridge Phil.
Soc., XXII, No., 9 (1916), 159–184; Collected Papers , 136–
162). He tabulated its values up to n = 30. He conjec-
tured, on the basis of this scanty numerical evidence, the
properties (a)-(c) described earlier! The relations (a) and
(b) allowed Ramanujan to prove that

∑ τ(n)

ns
=

∏

p

1

1 − τ(p)p−s + p11−2s

where the product is over the primes.

L. J. Mordell (1888–1972) proved (a) and (b) and these
results were extended by E. Hecke (1887–1947) to a huge
class of modular forms. The conjecture (c) defeated every-
body till Pierre Deligne (1944–) proved that they would
follow from the famous conjectures of A. Weil (1906–
1998). When he later proved the Weil conjectures, his
proof of the Ramanujan conjecture was complete. Deligne’s
proof uses the full resources of modern algebraic geometry;
no elementary proof of Ramanujan’s conjecture is known.



Discussion

Products taken over the primes like
∏

p

1

Pp(p−s
)

where Pp = 1+. . . is a polynomial of fixed degree, are called
Euler products because Euler was the first to discover and
study examples of them. The most famous Euler product
is for the Riemann zeta function

ζ(s) =
∏

p

1

1 − p−s

which Euler used to prove analytically that there are an in-
finity of primes. Lejune Dirichlet (1805–1859) defined
more general products where Pp is of degree 1 to show that
every arithmetic progression an + b where b is prime to a

contains an infinity of primes. Before Ramanujan no one
had considered Euler products of degree 2. It was a great
insight of Ramanujan to realize that modular forms are a
source of such higher degree Euler products.

Euler products arise naturally in algebraic geometry, partly
explainimg the use of algebraic geometric methods in
Deligne’s solution. That the Weil conjectures should im-
ply the Ramanujan conjecture was in principle known to
many, but no one had the technical power to carry through
the idea rigorously except Deligne.
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