First Name:	ID#	
Last Name:	(1a	Tuesday with S. Kim
	1b	Thursday with S. Kim
Section:	- $1c$	Tuesday with J. Murphy
		Thursday with J. Murphy
	1e	Tuesday with F. Robinson
	1f	Thursday with F. Robinson

Rules:

- There are **FOUR** problems for a total of 40 points.
- Use the backs of the pages.
- No calculators, computers, notes, books, e.t.c..
- Out of consideration for your classmates, no chewing, humming, pen-twirling, snoring, e.t.c.. Try to sit still.
- Turn off your cell-phone.

1	2	3	4	\sum

(1) (10 points)

Find the general solution to the equation

$$x'' - 2x' - 3x = 3te^{2t}.$$

(2) (10 points)

Consider the equation

$$t^2 x'' - tx' + x = 4t \ln(t)$$
 for $t > 0$.

(a) Verify that $\phi_1(t) = t$ and $\phi_2(t) = t \ln(t)$ form a fundamental set of solutions to the corresponding homogeneous equation for $t \in (0, \infty)$.

- (b) Find a particular solution to the given inhomogeneous equation.
- (c) Write down the general solution to the equation.

(3) (10 points)

Find the solution to the following initial-value problem

$$x'' - 8x' + 17x = 0$$
 with $x(0) = 4$ and $x'(0) = -1$.

(4) (10 points)

Consider the equation

$$(3t+1)x'' - (9t+6)x' + 9x = 1 \quad \text{for} \quad t > -\frac{1}{3}.$$
 (1)

(a) Verify that $\phi_1(t) = e^{3t}$ is a solution to the associated homogeneous equation.

(b) Look for a solution to equation (1) of the form $\phi_2(t) = v(t)\phi_1(t)$. Plug this into the equation and derive a differential equation for v(t). Find the general solution for v(t).

- (c) Write down the general solution to equation (1).
- (d) Write down a fundamental set of solutions to the associated homogenous equation

$$(3t+1)x'' - (9t+6)x' + 9x = 0$$
 for $t \in (-\frac{1}{3}, \infty)$.