First Name:	ID#	
Last Name:	$\int 1a$	Tuesday with M. Bulkow
Section:	$=\begin{cases} 1b\\ 1c \end{cases}$	Thursday with M. Bulkow Tuesday with L. Vera
	1d	Tuesday with M. Bulkow Thursday with M. Bulkow Tuesday with L. Vera Thursday with L. Vera Tuesday with A. Mennen Thursday with A. Mennen
	(1f) Rules.	Thursday with A. Mennen

- There are **FIVE** problems; ten points per problem.
- This is a 50 minute exam.
- Use the backs of the pages.
- No calculators, computers, notes, books, crib-sheets,...
- Out of consideration for your class-mates, no chewing, humming, pen-twirling, snoring,... Try to sit still.
- Turn off your cell-phone, pager,...

1	2	3	4	5	\sum

- (1) Indicate TRUE/FALSE or fill in the missing number, as appropriate:
 - T / F: The intersection of two subspaces is a subspace.
 - **T** / **F** : dim(span{ $\vec{v_1}, \vec{v_2}$ }) = 2 for any $\vec{v_1}, \vec{v_2}$ in \mathbb{R}^5 .

If A is a 3×5 matrix then dim(im(A)) + dim(ker(A)) =_____.

 \mathbf{T} / \mathbf{F} : Reversing the order of the rows in a 4 × 4 matrix does not change the determinant.

If A is an invertible 5×5 matrix then $\dim(\operatorname{im}(A)) \times \dim(\ker(A)) =$ _____.

T / **F** : If $A\vec{x} = A\vec{y}$ then $x - y \in \ker(A)$.

If $\vec{x} \cdot (A\vec{y}) = 0$ for all \vec{x} and \vec{y} then dim(im(A)) =_____.

T / **F** : If R is the matrix of a rotation through 180° , then det(R) = -1.

If
$$A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 then dim(im(A)) = ____, and dim(ker(A)) = ____.

(2) Consider two bases for \mathbb{R}^4 . First, the standard basis $\mathcal{S} = (\vec{e}_1, \vec{e}_2, \vec{e}_3, \vec{e}_4)$ and secondly $\mathcal{B} = (\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$ where

$$\vec{v}_{1} = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \quad \vec{v}_{2} = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \quad \vec{v}_{3} = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix} \quad \vec{v}_{4} = \begin{bmatrix} 1\\-1\\1\\4 \end{bmatrix}$$
(a) If $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, find $[\vec{x}]_{\mathcal{S}}$.
(b) If the linear transformation T has $[T]_{\mathcal{B}} = \begin{bmatrix} -1 & 0 & 0 & 0\\0 & -1 & 0 & 0\\0 & 0 & +1 & 0\\0 & 0 & 0 & +1 \end{bmatrix}$ find $[T]_{\mathcal{S}}$

extra paper

(3) (a)Finish this definition:

We say that a subset W of \mathbb{R}^m is a (*linear*) subspace if and only if ...

(b) Let *P* denote the plane passing through the points $\begin{bmatrix} 5\\2\\1 \end{bmatrix}$, $\begin{bmatrix} 7\\2\\3 \end{bmatrix}$, and $\begin{bmatrix} 5\\5\\1 \end{bmatrix}$.

(Notice that this plane does not pass through the origin.)

Find the point on P that is nearest to $\begin{bmatrix} 10\\10\\10 \end{bmatrix}$.

(4) (a)Finish this definition:

A square matrix Q is called *orthogonal* if and only if ...

- (b) Find an orthonormal basis for im(A) where $A = \begin{bmatrix} 1 & 1 & 4 \\ 1 & 2 & 3 \\ 1 & 3 & 2 \\ 1 & 4 & 1 \end{bmatrix}$.
- (c) Express the third column of A in terms of this orthonormal basis.

(5) (a)Finish this definition:

We say that vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are *linearly independent* if and only if ...

(b) Compute the determinant of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 1 \\ 4 & 4 & 3 & 2 & 2 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

extra paper