HOMEWORK

Problem 1. Let $d \ge 1$. Using Gaussian wave packets prove that for any $\varepsilon > 0$,

$$\sup_{f \in \mathcal{S}(\mathbb{R}^d), f \neq 0} \frac{\int_{\mathbb{R}} \int_{|x| \le 1} |(e^{it\Delta}f)(x)|^2 \, dx \, dt}{\|\langle \nabla \rangle^{-1/2 - \varepsilon} f\|_2^2} = \infty.$$

Problem 2. (Subcritical unconditional uniqueness) Let $d \ge 1$, p > 0, and $0 \le 1$ $s \leq 1$ such that $s > s_c := \frac{d}{2} - \frac{2}{p}$. Let $u : [0,T] \times \mathbb{R}^d \to \mathbb{C}$ be the strong solution (constructed in class) to

$$iu_t + \Delta u = \pm |u|^p u$$
 with $u(0) = u_0 \in H^s(\mathbb{R}^d)$.

Let $v \in C_t H^s_x([0,T] \times \mathbb{R}^d)$ be such that

$$v(t) = e^{it\Delta}u_0 \mp i \int_0^t e^{i(t-s)\Delta} (|u|^p u)(s) \, ds \quad \text{for all} \quad t \in [0,T].$$

Prove that u(t) = v(t) a.e. for all $t \in [0, T]$ in the following cases:

• 1 = d > 2s and $p \le \frac{1+2s}{1-2s}$ • $d \ge 2, d > 2s$, and $p \le \frac{2+2s}{d-2s}$, with $p < \frac{2+2s}{d-2s}$ if d = 2 or s = 1.

Problem 3. (Critical blowup criterion) Let $d \ge 1$ and p > 0 such that the critical regularity satisfies $0 \leq s_c \leq 1$. Let initial data $u_0 \in H^{s_c}(\mathbb{R}^d)$ and let $u: [0, T_0) \times$ $\mathbb{R}^d \to \mathbb{C}$ be the unique strong solution to

$$iu_t - \Delta u = \pm |u|^p u$$
 with $u(0) = u_0$.

Assume that

$$\|u\|_{L^{\frac{p(d+2)}{2}}_{t,x^2}([0,T_0)\times\mathbb{R}^d)}<\infty.$$

Prove that there exists $\delta > 0$ such that u extends to a strong solution on $[0, T_0 + \delta]$.

Problem 4. (Existence of wave operators) Let $d \ge 1$ and p > 0 such that the critical regularity satisfies $0 \leq s_c \leq 1$. Let $u_+ \in H^{s_c}(\mathbb{R}^d)$. Prove that there exist $T \in \mathbb{R}$ and a unique strong solution $u : [T, \infty) \times \mathbb{R}^d \to \mathbb{C}$ to

$$iu_t - \Delta u = \pm |u|^p u$$

such that

$$\|u(t) - e^{it\Delta}u_+\|_{H^{s_c}(\mathbb{R}^d)} \to 0 \quad \text{as} \quad t \to \infty.$$

Problem 5. For any integer $k \geq 0$, let the weighted Sobolev space $H^{k,k}(\mathbb{R}^d)$ be the closure of Schwartz functions under the norm

$$\|f\|_{H^{k,k}(\mathbb{R}^d)} := \sum_{|\alpha|+|\beta| \le k} \left\| x^{\alpha} \partial_x^{\beta} f \right\|_{L^2(\mathbb{R}^d)},$$

where α, β are multi-indices of length d. 1) Prove that

$$\|e^{it\Delta}f\|_{H^{k,k}(\mathbb{R}^d)} \lesssim_{k,d} \langle t \rangle^k \|f\|_{H^{k,k}(\mathbb{R}^d)}.$$

HOMEWORK

2) Show that if $k > \frac{d}{2}$, then

 $||fg||_{H^{k,k}(\mathbb{R}^d)} \lesssim_{k,d} ||f||_{H^{k,k}(\mathbb{R}^d)} ||g||_{H^{k,k}(\mathbb{R}^d)}.$

Problem 6. (Classical NLS solutions) Let $d \ge 1$, $k > \frac{d}{2}$, and let p > 0 be an even integer. Then for any R > 0 there exists T = T(d, k, p, R) > 0 such that for all $u_0 \in \{f \in H^{k,k}(\mathbb{R}^d) : ||f||_{H^{k,k}(\mathbb{R}^d)} \le R\}$ there exists a unique solution $u \in C_t H^{k,k}_x([-T,T] \times \mathbb{R}^d)$ to

$$iu_t - \Delta u = \pm |u|^p u$$
 with $u(0) = u_0$.

Problem 7. (Failure of uniform continuity of the data-to-solution map) Let $d \ge 1$ and let p > 0 be an even integer such that $s_c > 0$. Show that the data-to-solution map for the initial-value problem

$$iu_t - \Delta u = \pm |u|^p u$$
 with $u(0) = u_0$

is not uniformly continuous in the L_x^2 topology, even on bounded sets. Specifically, show that for any $0 < \varepsilon, \delta < 1$ and any t > 0 there exist two solutions u_1, u_2 such that $u_1(0), u_2(0) \in \mathcal{S}(\mathbb{R}^d)$,

$$||u_1(0)||_{L^2_x} \le \varepsilon, \quad ||u_1(0)||_{L^2_x} \le \varepsilon, \text{ and } ||u_1(0) - u_2(0)||_{L^2_x} \le \delta,$$

but

$$||u_1(t) - u_2(t)||_{L^2_x} \gtrsim_{d,p} \varepsilon$$

(*Hint*: Use the construction in class with zero Galilei parameter.)

Problem 8. (Energy trapping) Let W denote the unique (up to scaling) nonnegative radial $\dot{H}^1(\mathbb{R}^3)$ solution to $\Delta W + W^5 = 0$. Let $u_0 \in \dot{H}^1(\mathbb{R}^3)$ be such that

$$E(u_0) \le (1 - \delta_0) E(W)$$
 for some $\delta_0 > 0$

Prove that there exist $\delta_1, \delta_2 > 0$ such that

1) If
$$\|\nabla u_0\|_2^2 \le \|\nabla W\|_2^2$$
, then $\|\nabla u_0\|_2^2 \le (1-\delta_1)\|\nabla W\|_2^2$.

2) If $\|\nabla u_0\|_2^2 \ge \|\nabla W\|_2^2$, then $\|\nabla u_0\|_2^2 \ge (1+\delta_2)\|\nabla W\|_2^2$. In this case,

$$\int_{\mathbb{R}^3} |\nabla u_0(x)|^2 - |u_0(x)|^6 \, dx < -2(\delta_0 + \delta_2) \|\nabla W\|_2^2.$$

Here E denotes the energy functional associated to the focusing energy-critical NLS.

Problem 9. (Refined Fatou) Let $d \ge 1$, $1 \le p < \infty$, and let $\{f_n\}_{n\ge 1} \subset L^p(\mathbb{R}^d)$ such that $\limsup \|f_n\|_{L^p} < \infty$. Show that if $f_n \to f$ almost everywhere, then

$$\int_{\mathbb{R}^d} \left| |f_n(x)|^p - |f_n(x) - f(x)|^p - |f(x)|^p \right| dx \to 0.$$

 $\mathbf{2}$