HOMEWORK 2

Problem 1. Let $\omega : \mathbb{R}^d \to [0, \infty)$ given by $\omega(x) = |x|^{\alpha}$. (a) Show that $\omega \, dx$ is a doubling measure if and only if $\alpha > -d$. (b) Show that $\omega \in A_p$ with $1 if and only if <math>-d < \alpha < (p-1)d$.

Problem 2. Fix $1 \le p < \infty$ and let $\omega \in A_p$. (a) Show that $M_{\omega} : L^1(\omega \, dx) \to L^{1,\infty}(\omega \, dx)$, where

$$M_{\omega}f(x) = \sup_{r>0} \frac{1}{\omega(B(x,r))} \int_{B(x,r)} |f(y)|\omega(y) \, dy.$$

(b) Show that $(Mf)^p \leq M_{\omega}(f^p)$ for all $f \geq 0$, where M denotes the Hardy-Littlewood maximal function.

(c) Conclude that $M: L^p(\omega \, dx) \to L^{p,\infty}(\omega \, dx)$.

Problem 3. The dyadic cubes in \mathbb{R}^d are sets of the form

$$Q_{n,k} = [k_1 2^n, (k_1 + 1)2^n) \times \dots \times [k_d 2^n, (k_d + 1)2^n),$$

where n ranges over \mathbb{Z} and $k \in \mathbb{Z}^d$.

(a) Given a collection of dyadic cubes with bounded maximal diameter, show that one may find a subcollection which covers the same region of \mathbb{R}^d , but with all cubes disjoint.

(b) Define the dyadic maximal function by

$$[M_D f](x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)| \, dy,$$

where the supremum is taken over all dyadic cubes that contain x. Show M_D is of weak-type (1, 1) and of type (p, p) for all 1 .

Problem 4. Let M_D denote the dyadic maximal function defined above and let $Q_0 := [0, 1)^d$.

(a) For $\alpha > 0$, show that

$$|\{x \in \mathbb{R}^d : [M_D f](x) > \alpha\}| \lesssim \frac{1}{\alpha} \int_{|f| > c\alpha} |f(y)| \, dy$$

for some small constant c.

(b) Deduce that if f is supported on Q_0 and $|f|\log[2+|f|] \in L^1(Q_0)$, then $M_D f \in L^1(Q_0)$.

(c) Given $f \in L^1(Q_0)$ and $\alpha > \int_{Q_0} |f(y)| dy$, show that

$$|\{x \in Q_0 : [M_D f](x) > \alpha\}| \gtrsim \frac{1}{\alpha} \int_{|f| > \alpha} |f(y)| \, dy$$

Hint: perform a Calderon–Zygmund style decomposition. (d) Deduce that if $M_D f \in L^1(Q_0)$, then $|f| \log[2 + |f|] \in L^1(Q_0)$. **Problem 5** (Schur's test with weights). Suppose $(X, d\mu)$ and $(Y, d\nu)$ are measure spaces and let w(x, y) be a positive measurable function defined on $X \times Y$. Let $K(x, y) : X \times Y \to \mathbb{C}$ satisfy

$$\sup_{x \in X} \int_{Y} w(x, y)^{\frac{1}{p}} |K(x, y)| \, d\nu(y) = C_0 < \infty, \tag{1}$$

$$\sup_{y \in Y} \int_X w(x,y)^{-\frac{1}{p'}} |K(x,y)| \, d\mu(x) = C_1 < \infty, \tag{2}$$

for some 1 . Then the operator defined by

$$Tf(x) = \int_{Y} K(x, y) f(y) \, d\nu(y)$$

is a bounded operator from $L^p(Y, d\nu)$ to $L^p(X, d\mu)$. In particular,

$$||Tf||_{L^p(X,d\mu)} \lesssim C_0^{\frac{1}{p'}} C_1^{\frac{1}{p}} ||f||_{L^p(Y,d\nu)}.$$

Remark. This is essentially a theorem of Aronszajn. When $K \ge 0$, Gagliardo has shown that the existence of a weight w(x, y) = a(x)b(y) obeying (1) and (2) is necessary for the L^p boundedness of T.

Problem 6 (Hardy's inequality). Let $f \in \mathcal{S}(\mathbb{R}^d)$ and $0 \leq s < d$. Show that

$$\left\|\frac{f(x)}{|x|^s}\right\|_p \lesssim \||\nabla|^s f\|_p \quad \text{for all} \quad 1$$

Hint: Show that there exists $g \in L^p$ so that $f = |\nabla|^{-s}g$ and then use Problem 5 for the kernel $K(x, y) = |x|^{-s} |x - y|^{s-d}$.