HOMEWORK 2

Problem 1. a) Show that

$$||f_N||_p + ||f_{\leq N}||_p \lesssim ||f||_p \quad \text{for all} \quad 1 \leq p \leq \infty.$$

b) Show that for $f \in L^1_{loc}$,

$$|f_N| + |f_{\leq N}| \lesssim Mf \quad a.e.$$

where Mf denotes the Hardy–Littlewood maximal function of f. c) For $f \in L^p$ with $1 show that <math>\sum_{K=N}^M f_K$ converges in L^p to f as $N \to 0$ and $M \to \infty$. d) For $f \in L^p$ with $1 show that <math>\sum_{K=N}^M f_K$ converges to f almost everywhere as $N \to 0$ and $M \to \infty$. e) Show that

e) Snow that

$$||f_N||_q + ||f_{\leq N}||_q \lesssim N^{\frac{d}{p} - \frac{d}{q}} ||f||_p \text{ for all } 1 \le p \le q \le \infty.$$

f) Show that

$$\||\nabla|^s f_N\|_p \sim N^s \|f_N\|_p$$
 for all $s \in \mathbb{R}$ and $1 \le p \le \infty$.

Deduce that

$$\||\nabla|^{s} f_{\leq N}\|_{p} \lesssim N^{s} \|f\|_{p}$$
 and $\|f_{\geq N}\|_{p} \lesssim N^{-s} \||\nabla|^{s} f\|_{p}$

for all $s \ge 0$ and 1 .

Remark. Using the fattened Littlewood–Paley projections $\tilde{P}_N = P_{N/2} + P_N + P_{2N}$, one can *a posteriori* strengthen the statement in part (*e*) above to read

$$||f_N||_q \lesssim N^{\frac{a}{p}-\frac{a}{q}} ||f_N||_p$$
 and $||f_{\leq N}||_q \lesssim N^{\frac{a}{p}-\frac{a}{q}} ||f_{\leq N}||_p$ for all $1 \leq p \leq q \leq \infty$.

Problem 2. Show that for $f \in L^1(\mathbb{R}^d)$, $f_{\leq N}$ converges to f in L^1 as $N \to \infty$.

Problem 3 (Schur's test with weights). Suppose $(X, d\mu)$ and $(Y, d\nu)$ are measure spaces and let w(x, y) be a positive measurable function defined on $X \times Y$. Let $K(x, y) : X \times Y \to \mathbb{C}$ satisfy

$$\sup_{x \in X} \int_{Y} w(x, y)^{\frac{1}{p}} |K(x, y)| \, d\nu(y) = C_0 < \infty, \tag{1}$$

$$\sup_{y \in Y} \int_X w(x, y)^{-\frac{1}{p'}} |K(x, y)| \, d\mu(x) = C_1 < \infty, \tag{2}$$

for some 1 . Then the operator defined by

$$Tf(x) = \int_Y K(x, y) f(y) \, d\nu(y)$$

is a bounded operator from $L^p(Y, d\nu)$ to $L^p(X, d\mu)$. In particular,

$$\|Tf\|_{L^{p}(X,d\mu)} \lesssim C_{0}^{\frac{1}{p'}} C_{1}^{\frac{1}{p}} \|f\|_{L^{p}(Y,d\nu)}.$$

Remark. This is essentially a theorem of Aronszajn. When $K \ge 0$, Gagliardo has shown that the existence of a weight w(x, y) = a(x)b(y) obeying (1) and (2) is necessary for the L^p boundedness of T.

Problem 4 (Hardy's inequality). Let $f \in \mathcal{S}(\mathbb{R}^d)$ and $0 \leq s < d$. Show that

$$\left\| \frac{f(x)}{|x|^s} \right\|_p \lesssim \||\nabla|^s f\|_p \quad \text{for all} \quad 1$$

Hint: Show that there exists $g \in L^p$ so that $f = |\nabla|^{-s}g$ and then use Problem 3 for the kernel $K(x, y) = |x|^{-s} |x - y|^{s-d}$.

Problem 5. Let $f \in \mathcal{S}(\mathbb{R}^d)$. Show that

$$\begin{split} \left\| \frac{\partial^2 f}{\partial x_j \partial x_k} \right\|_p \lesssim_p \|\Delta f\|_p \quad \text{for all} \quad 1 where $\Delta f = \sum_{j=1}^d \frac{\partial^2 f}{\partial x_j^2}.$$$

Problem 6 (Gagliardo–Nirenberg inequality). Fix $d \ge 1$ and 0 for <math>d = 1, 2 or $0 for <math>d \ge 3$. Show that for all $f \in \mathcal{S}(\mathbb{R}^d)$,

$$\left\|f\right\|_{p+2}^{p+2} \le \left\|f\right\|_{2}^{p+2-\frac{pd}{2}} \left\|\nabla f\right\|_{2}^{\frac{pd}{2}}.$$

Problem 7 (Brezis–Wainger inequality). Let $f \in \mathcal{S}(\mathbb{R}^2)$. Show that

$$||f||_{L^{\infty}} \lesssim ||f||_{H^1} \left[1 + \log\left(\frac{||f||_{H^s}}{||f||_{H^1}}\right)\right]^{1/2} \text{ for all } s > 1.$$

Recall that for s > 0, the Sobolev space $H^s(\mathbb{R}^d)$ is defined as the completion of $\mathcal{S}(\mathbb{R}^d)$ under the norm

$$\|f\|_{H^s} = \|\langle \nabla \rangle^s f\|_{L^2}$$

where $\langle x \rangle := (1 + |x|^2)^{1/2}$.