HOMEWORK 4

Due on Monday, April 27th, in class.

Exercise 1. (10 points) Let (X, d) be a metric space. Prove that if a sequence $\{x_n\}_{n\geq 1}\subseteq X$ is convergent, then its limit is unique.

Exercise 2. (10 points) Let (X,d) be a metric space. Prove that a sequence $\{x_n\}_{n\geq 1}\subseteq X$ converges to some $x\in X$ if and only if every subsequence of $\{x_n\}_{n\geq 1}$ converges to x.

Exercise 3. (10 points) Let (X,d) be a metric space and let $\{x_n\}_{n\geq 1}\subseteq X$ be a convergent sequence. Prove that $\{x_n\}_{n\geq 1}$ is bounded, that is, there exist $a\in X$ and r>0 such that $\{x_n\}_{n\geq 1}\subseteq B_r(a)$.

Exercise 4. (10 points) Let (X, d) be a metric space and let $A \subseteq X$ be complete. Show that A is closed.

Exercise 5. (10 points) Let (X,d) be a complete metric space and let $F \subseteq X$ be a closed set. Show that F is complete.

Exercise 6. (10 points) Let 1 and let

$$l^p = \{\{x_n\}_{n\geq 1} \subseteq \mathbb{R} | (\sum_{n=1}^{\infty} |x_n|^p)^{1/p} < \infty\}.$$

Define $d_p: l^p \times l^p \to \mathbb{R}$ as follows: for any $x = \{x_n\}_{n \ge 1} \in l^p, \ y = \{y_n\}_{n \ge 1} \in l^p,$

$$d_p(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{1/p}.$$

Show that (l^p, d_p) is a complete metric space.

Exercise 7. (10 points) Let

$$l^{\infty} = \{\{x_n\}_{n \ge 1} \subseteq \mathbb{R} | \sup_{n \ge 1} |x_n| < \infty\}.$$

Define $d_{\infty}: l^{\infty} \times l^{\infty} \to \mathbb{R}$ as follows: for any $x = \{x_n\}_{n \geq 1} \in l^{\infty}, y = \{y_n\}_{n \geq 1} \in l^{\infty}$,

$$d_{\infty}(x,y) = \sup_{n \ge 1} |x_n - y_n|.$$

Show that (l^{∞}, d_{∞}) is a complete metric space.

Exercise 8. (10 points) Let $\alpha > 0$ and define the sequence $\{x_n\}_{n \geq 1} \subseteq \mathbb{R}$ as follows:

$$x_1 > \sqrt{\alpha}$$
 and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right)$ for all $n \ge 1$.

Prove that the sequence $\{x_n\}_{n\geq 1}$ converges to $\sqrt{\alpha}$.

Hint: prove the sequence is decreasing and bounded below.

Exercise 9. (20 points) Let $\alpha > 1$ and define the sequence $\{x_n\}_{n \geq 1} \subseteq \mathbb{R}$ as follows:

$$x_1 > \sqrt{\alpha}$$
 and $x_{n+1} = \frac{x_n + \alpha}{x_n + 1}$ for all $n \ge 1$.

- 1) Show that $\{x_{2n-1}\}_{n\geq 1}$ is decreasing and that $\{x_{2n}\}_{n\geq 1}$ is increasing. 2) Show that the sequence $\{x_n\}_{n\geq 1}$ converges to $\sqrt{\alpha}$.