HOMEWORK 3

Due on Wednesday, January 28th, in class.

Exercise 1. Show that a set with cardinality \aleph_0 is infinite.

Exercise 2. Suppose that A, B, and C are subsets of a set X such that $A \subseteq B \subseteq C$. Show that if A and C have the same cardinality, then A and B have the same cardinality.

Exercise 3. Show that $g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by

$$g(n,m) = \frac{(n+m-2)(n+m-1)}{2} + n \quad \text{for all} \quad n,m \in \mathbb{N}$$

is bijective. Conclude that the cardinality of $\mathbb{N} \times \mathbb{N}$ is \aleph_0 .

Exercise 4. Fix $n \ge 1$. Show that if A_1, A_2, \ldots, A_n are countable, then $A_1 \times A_2 \times \ldots \times A_n$ is countable.

Exercise 5. Prove that a subset of a countable set is countable.

Exercise 6. Show that the set of rational numbers \mathbb{Q} is countably infinite.

Exercise 7. Show that a countable union of countable sets is countable.

Exercise 8. Show that the set of all polynomial functions with integer coefficients is a countable set. Conclude that the set of *algebraic numbers* (that is, real numbers that are roots of polynomials with integer coefficients) is countable.

Exercise 9. Show that the cardinality of \mathbb{R} is 2^{\aleph_0} . You may use the fact that the interval (0,1) has cardinality 2^{\aleph_0} .

Exercise 10. Prove that the set of irrational numbers has the cardinality of \mathbb{R} .