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School children meet the number line in the early grades. By high school algebra and geometry, the real number line has become a central concept. But really, what is the real number line? Is it a figment of our imagination? How do we define it as something more concrete?

A child’s intuition of the real number line as a straight line in a plane or in space is derived from experience with straight line segments in real life, as the edge of a ruler, the border of a page of paper, the lines on graph paper, the edges of tables, or the lines where the walls meet the ceiling. But what if the line is extended into space, say to Jupiter, or beyond? What happens as the line approaches the outer reaches of space? Even the concept of space itself is based on a precise notion for number line.  

And what are the individual real numbers? The child’s intuitive model for a real number corresponds to a dot made with pencil on paper. But each dot really corresponds to a multitude of points, a mound of graphite. Does the heap of graphite represent something other than vacuum? What really are “pi” and “the square root of  2”?

An intuitively appealing construction of the rational numbers is based upon Euclidean geometry. It runs as follows. One starts with a straight line, one marks a point and labels it  0, and one marks a different point and labels it  1. Then one constructs the other integers by marking off steps of equal length, and one constructs the rational numbers by dividing the segments between integers into equal parts. In this model, the real number line, stripped of its arithmetic, is taken as a primitive concept and subjected to the axioms of Euclidean geometry (say Hilbert’s axioms, which are studied in a course on the foundations of geometry; Euclid himself simply proceeded with blind faith that the constructions he performed did not stumble into any holes). And how do we know there is a model of Euclidean geometry? The canonical model for Euclidean geometry is the Cartesian plane consisting of ordered pairs of real numbers, and the verification of the axioms of Euclidean geometry depends on the properties of the real number line. If we follow this route to construct the real numbers from a Euclidean straight line, we find we have traveled in a logical circle.  

The circular reasoning that appears in some high school algebra textbooks is not so subtle. In one of them, the rational numbers are defined as quotients of integers, the irrational numbers are defined as the real numbers that are not rational, and then the real numbers are defined as the aggregate of the rational and the irrational numbers.

The book Mathematics for High School Teachers, by Usiskin, Stanley, et al., treats the real numbers in Chapters 2 and 6. In Chapter 2, reference is made to various methods of constructing the real numbers from the rational numbers, without attempting to give a precise definition of the real numbers. Then the authors take a straight line, mark off  0 and  1, represent the rational numbers on the line, and go on to explore in some detail the decimal representation of real numbers. They return in Chapter 6 to the field axioms, and they establish the uniqueness of a complete ordered field. The question of existence is never completely nailed down. Yet they come close, when they say: “In school algebra, real numbers are commonly described as numbers that can be represented by finite or infinite decimals.” 

EXERCISE: Suppose a persistent high school student asks you to explain exactly what real numbers are. What explanation would you give the student?

The goal of these notes is to bring you to a point where you can give the student a satisfactory answer to this question. Your answer might be brief, but you should feel confident that you can supply as much detail as the student might insist upon. In particular, you should understand in what sense the real numbers “are” the set of decimals. 

the REAL Number LIne

Rather than specify concretely what a real number is, we will describe the real number line by listing its properties. This is done by defining an axiom system. The primitive concepts in the axiom system are points (real numbers), the operations of addition and multiplication, and an order relation. The list of axioms is quite long, but with one exception they are not difficult to understand. They are familiar properties of the rational numbers. The one exception is the “completeness axiom,” which says that there are no “holes” in the real number line. We refer to any model for the axiom system as “the real number line” or “the field of real numbers.”  In other words, the real number line is a set with arithmetic and ordering that satisfies the “real number axioms.” 

There are two important facts that justify our use of the expression “the real number line.” First, there is a model for the axiom system. Second, any two models for the axiom system are isomorphic, that is, they can be put in a one-to-one correspondence so that the arithmetic and the ordering correspond. In other words, the real number line exists, and it is unique. We may perform arithmetic operations on the set with confidence, without pausing to consider where the set comes from or where it is going. (The K-12 student is generally happy to perform arithmetic operations on real numbers, oblivious of the defining properties of the real numbers, confident that there is such an entity, and not the least concerned about whether such an entity is unique.) 

So what are the real number axioms? The axioms come in three batches corresponding to arithmetic, ordering, and completeness. The axioms taken together assert that the real numbers form a “complete ordered field.”

The construction of the real numbers is usually carried out in a foundational upper division course in analysis (Math 131A at UCLA). The arithmetic axioms, in various combinations, are studied in more detail in upper division algebra courses (Math 110AB and Math 117 at UCLA). The arithmetic axioms assert that the real numbers form a field. The completeness axiom in the form of the Least Upper Bound Axiom is usually introduced in the first calculus course. Completeness is treated in more detail in the foundational analysis course or in a more advanced topology course (Math 121 at UCLA), in the context of metric spaces. The ordering and completeness axioms also appear in some form in Hilbert’s axiom system for Euclidean geometry, which is treated in a course on the foundations of geometry (Math 123 at UCLA).

THE ARITHMETIC AXIOMS  

The axioms for arithmetic assert that there are two operations, addition and multiplication, and these operations satisfy certain rules. 

There are four axioms for addition.

1. The associative law,  (x + y) + z = x + (y + z), tells us we can perform the operation of addition in any order. Thus the expression  x + y + z  has an unambiguous meaning.

2. The commutative law,  x + y = y + x, allows us to switch the orders of the addends.

3. There exists an additive identity, denoted by  0, that satisfies  0 + x = x = x + 0  for all  x.

4. Each  x  has an additive inverse, denoted by  -x,  such that  x + -x = 0 = -x + x.

We define the operation of subtraction to be addition of the additive inverse, so that  

x  minus  y, written  x – y, is defined to be  x + -y. The usual rules for subtraction hold. They are not axioms, but are consequences of the axioms for addition. Subtraction is completely subservient to addition, in the sense that any statement about subtraction can be restated as a statement about addition and additive inverses.

There are four axioms for multiplication, and they are virtually the same as the axioms for addition. 

5. The associative law,  (xy)z = x(yz), tells us we can perform the operation of multiplication in any order. Thus the expression  xyz  has an unambiguous meaning.

6. The commutative law,  xy = yx, allows us to switch the orders of the factors.

7. There exists a multiplicative identity, denoted by  1, that is different from  0  and that satisfies  1x = x = x1  for all  x. 

8. Each  x  other than  0  has a multiplicative inverse, denoted by  1/x,  such that  x(1/x) = 1 = (1/x)x.

We define the operation of division to be multiplication by the multiplicative inverse, so that  x  divided by  y, written  x/y, is defined to be  x(1/y). Note that division by  y  is defined only for those  y’s that have a multiplicative inverse. Division by  0  is not defined. 

The usual rules for division hold. They are not axioms, but are consequences of the axioms for multiplication. Division is completely subservient to multiplication, in the sense that any statement about division can be restated as a statement about multiplication and multiplicative inverses.

Finally there is an axiom that guarantees that addition and multiplication are compatible.

9. The distributive law,  x(y + z)  =  xy + xz, relates the operations of addition and multiplication. 

A set with two operations, addition and multiplication, that satisfies these axioms is called a field. Examples of fields abound. The rational numbers form a field. So do the real numbers, and so do the complex numbers.

EXERCISE: Deduce from the field axioms that  0  times anything is  0, so that  0 cannot have a multiplicative inverse.

EXERCISE: Deduce from the field axioms that  (-1)(-1) = 1.

EXERCISE: Suppose a high school student asks you why we cannot divide by zero. What explanation would you give to the student?

There are some “funny” fields that do not look at all like the rational numbers. One example of a “funny” field is a field consisting of just two elements, which must be the additive and the multiplicative identities. In this field we define addition by  1+1=0=0+0 and  1+0=0+1=1, and we define multiplication so that  0  times anything is  0, and  1 times 1 is 1. 

EXERCISE: Let  p  be a prime number, and let  Zp  be the set of congruence classes of integers  mod p. The addition and multiplication in  Zp  is defined to be the usual addition and multiplication  mod p. Show that every  m  in  Zp  other than  0  has a multiplicative inverse. Remark:  Zp  is a field with  p  elements.

A lot of effort in school mathematics goes into defining and interpreting subtraction and division. From a purely mathematical point of view, the definitions are quite simple. “Subtraction of  x” is defined to be “addition of the additive inverse of  x.”  “Division by x” is defined to be “multiplication by the multiplicative inverse of  x.”   

THE ORDER AXIOMS 

The order axioms assert that there is a relation “ < ” defined between certain elements, which satisfies the following rules.

1. The trichotomy law asserts that exactly one of the relations  x<y,  y<x,  or  x=y  holds between any two given  x  and  y.

We write  x <= y  as shorthand for  x < y  or  x = y. Also, we write  y > x  to mean  x < y, and we write  y >= x  to mean  x <= y.

2. The law of transitivity asserts that if  x<y  and  y<z, then  x<z.

3. The law of compatibility with addition asserts that if  x < y, then  x+z < y+z.

4. The law of compatibility with multiplication asserts that if  x < y  and  a > 0, then  ax < ay.

A field with an ordering that satisfies these axioms is called an ordered field.

Exercise: Show from the axioms that  -1 < 0  and  0 < 1.

Exercise: Show from the axioms that  x2 >= 0 for any x in an ordered field. Deduce from this that the complex numbers cannot be ordered to become an ordered field. 

Exercise: Show from the axioms that in an ordered field, the elements 1, 1+1, 1+1+1, 1+1+1+1, … are distinct. 

If the elements  1, 1+1, 1+1+1, 1+1+1+1, …  of a field are distinct, we say that the field has characteristic zero. If these elements are not distinct, there is a first positive integer  p such that  1+1+…+1  [p  summands] is  0. In this case, we say that the field has characteristic  p. 

Exercise: Show that the characteristic of a field is either  0  or a prime, that is, show that the number  p  above is a prime number.

There is some standard notation that is convenient. In any field, we write 1+1 = 2, 1+1+1 = 3, 1+1+1+1 = 4, and so on. As usual,  -n  denotes the additive inverse of  n. If the field has characteristic zero, we identify these elements with the integers  Z,  and we regard  Z  as a subset of the field. Under this identification, addition and multiplication in  Z  are the same as addition and multiplication in the field. Further, the subfield generated by  0  and  1  (the smallest subfield containing  0  and  1) is isomorphic to the field of rational numbers. In other words, we can regard the rational numbers as being a subset of any field of characteristic zero, and in particular of any ordered field.

EXERCISE: Define the absolute value function by  |x| = x  if  x>= 0, and  |x| = -x  if   x < 0. Show from the axioms that  |x+y| <= |x| + |y|.  Hint: Consider four cases. 

There is another important property of the ordering of the real numbers that cannot be derived directly from the other order axioms.

Archimedean Order Axiom: If  a > 0  and  b > 0, there is an integer  m>0  such that  ma > b.

If the ordered field satisfies the Archimedean order axiom, we call it an Archimedean ordered field. By taking  a=1 in the Archimedean ordering axiom we see that each  b > 0  in the field is bounded above by some positive integer  m. Let  n  be the first integer such that  b < n+1. Then  n >= 0, and  n <= b < n+1. The integer  n  is the leading entry in the decimal expansion of   b. We return to decimal expansions later.

EXERCISE: In an ordered field, let  (a,b)  denote the open interval from  a  to  b, that is, the set of x in the field satisfying  a < x < b. Define  [a,b), [a,b], and  (a,b] similarly. Show that an Archimedean ordered field is the union over integers n of the semi-open intervals  [n,n+1). Show that these semi-open intervals are pairwise disjoint. 

The following exercise will be used later, in the discussion of the uniqueness of the real numbers.

Exercise: In an Archimedean ordered field, show that if  x > 0, there is a positive integer  n  such that  x > 1/10n.

THE COMPLETENESS AXIOM 

The completeness axiom for the real numbers is the tersest, yet the most difficult to understand. To state it, we need some preliminary definitions. Let  S  be a subset of the ordered field. We say that  b  is an upper bound for  S  if   x <= b  for all elements  x  of  S. We say that  b  is a least upper bound for  S  if  b  is an upper bound for  S, and   

b <= c  for any other upper bound  c  for  S. 

Exercise: Show that a subset of an ordered field has at most one least upper bound.

One version of the completeness axiom is the least upper bound axiom for a fixed ordered field.

Least Upper Bound Axiom (LUB Axiom): If a nonempty subset of the ordered field has an upper bound, then it has a least upper bound. 

We say that a set is bounded above if it has an upper bound. The LUB axiom can be restated simply: a nonempty set that is bounded above has a LUB.

An ordered field that satisfies the LUB axiom is called a complete ordered field. Our goal is twofold. First, we aim to show that there exists a complete ordered field. Second, we aim to show that any two complete ordered fields are isomorphic. This complete ordered field, which is essentially unique, is called the field of real numbers. 

Before proceeding to the construction of the real numbers, we state a theorem and give a formal proof to illustrate how the LUB axiom is used.

Theorem:  A complete ordered field is Archimedean. 

Proof:  Fix  a > 0. Let S be the set of multiples  a, 2a, 3a, … of  a. Let  c  be an upper bound for  S. Then  (n+1)a <= c  for all positive integers  n, so that  na <= c – a  for all positive integers  n. Thus  c – a  is also an upper bound for  S, and further  c – a < c. We conclude that  S  does not have a least upper bound. By the LUB axiom,  S  is not bounded above. Consequently for each  b, there is some n such that  b < na. Thus the ordering is Archimedean.

Exercise:  Write out a formal proof of the theorem starting with the lines, “Suppose the field is not Archimedean. Then there are  a > 0  and  b > 0  such that  ma <= b  for all positive integers  m.” 

three models for the real number line

There are three methods that are often used to construct the real numbers. Each method has its advantages and its disadvantages. Each method leads to a model for the real numbers, that is, a set with addition, multiplication, and ordering that satisfy the axioms for complete ordered field. We shall refer to the three models respectively as the Weierstrass-Stolz model (decimal expansions, the most intuitive model), the Dedekind model (Dedekind cuts, the slickest model), and the Meray-Cantor model (completion of a metric space, the most far-reaching model).

Decimal expansions 

It was Otto Stolz (1886) who pointed out that decimal expansions can be used to define the real numbers. In the Weierstrass-Stolz model, we define the real numbers to be the set of all decimal expansions  a = a0.a1a2a3…, where a0 is an integer (positive or negative), and a1, a2, a3, … are integers between 0 and 9, except that we declare a decimal expansion that terminates in all nines to be the same real number as the (terminating) decimal expansion obtained by incrementing the last non-nine term by 1 and replacing the subsequent 9’s by 0’s. Thus for instance we regard 3.2599999… and 3.2600000… as the same real number. (This unfortunate complication is not an essential difficulty, but it does make the verification of the arithmetic axioms into a tedious exercise.)

We think of the decimal expansion  a0.a1a2a3… as representing the number a0+(a1/10)+(a2/100)+(a3/1000)+… . For positive numbers this is the usual decimal representation. For negative numbers, it’s not the usual decimal representation, but it is the most convenient for establishing the arithmetic axioms.

Exercise:  What are the two possible interpretations of the decimal  -2.71828?

How would you respond to a student who asks about the ambiguity?

We define addition and multiplication of these decimals by following the same procedures as we would for finite decimals, adding place by place and carrying if necessary. Checking that this makes sense and that the axioms for addition and multiplication hold is messy, but indeed the arithmetic axioms are satisfied. Defining the order is quite easy, and it is a straightforward task to establish the order axioms and the LUB axiom. The Weierstrass-Stolz model is a complete ordered field. (We should be proud of the model.) 

EXERCISE: Define the order relation between two decimal expansions and prove the trichotomy law.

Introducing arithmetic and ordering into the set of decimal expansions is the most intuitive method for constructing the real numbers. It is the model that appeals to school children. It is the model of most comfort to teachers, who can explain with confidence to inquisitive students that real numbers can be defined to be decimal expansions. The disadvantage of the method is that checking the arithmetic axioms is a laborious task. 

Dedekind cuts 

The subtlest method for constructing the real numbers is due to Richard Dedekind (published in 1872). It is the model that appeared in the first chapter of the first edition of Walter Rudin’s classic textbook, Principles of Mathematical Analysis. Wading through Rudin’s construction of real numbers by Dedekind cuts became trial by fire for many college mathematics majors. The method is so slick that many mathematics majors find it hard to digest; they regard Dedekind cuts as being rather unkind. By the third edition, a kinder and gentler Rudin had relegated Dedekind cuts to an appendix.  

For this construction, one begins with the rational numbers. The idea is that a real number x is the right endpoint of a unique semi-infinite open interval  (– ∞, x), and this interval is uniquely determined by the rational numbers in the interval. With this idea to guide intuition, one defines a Dedekind cut to be a set  E  of rational numbers such that (1) if  x is in E and  y < x, then  y  is in  E, (2) neither  E  nor its complement is empty, and (3) E does not contain a largest number. 

EXERCISE: What sets  E  of rational numbers satisfy (1) but not (2) or (3)? 

In this model, the real numbers are defined to be the set of Dedekind cuts. Order is easy to define. We declare  E < F  if  E  is a subset of  F. Addition is also easy to define. The sum of the cuts  E  and  F  is the set of all sums  x + y, where  x  is in  E  and  y  is in  F. The product is a little more complicated to define. Once defined, it is straightforward to verify the real number axioms. The main disadvantage of this method is the level of sophistication required to organize and execute these “straightforward” verifications.

In any event, the Dedekind cuts form a complete ordered field. The additive identity in the Dedekind model is the open interval from minus infinity to  0. The multiplicative identity is the open interval from minus infinity to  1. More generally, each rational number  r  corresponds to the cut  (– ∞, r),  and this correspondence allows us to identify the rational numbers with a subfield of the Dedekind model for the real numbers.

COMPLETION by cauchy sequences 

The most far-reaching method for constructing the real numbers is due independently to Charles Meray (1869, 1872) and Georg Cantor (1872, 1883). Again one begins with the rational numbers. One considers the set of all sequences  {xn}  of rational numbers such that  xn-xm  tends to zero as  n  and  m  tend to infinity. Such sequences are called Cauchy sequences. We introduce an equivalence relation in the set of Cauchy sequences by declaring two Cauchy sequences  {xn}  and  {yn}  to be equivalent if   xn – yn   tends to zero as  n  tends to infinity. The real numbers are then defined to be the set of equivalence classes of Cauchy sequences. Addition and multiplication are easy to define. The sum of the equivalence classes represented by two such sequences  {xn}  and  {yn}  is defined to be the equivalence class of  {xn + yn}, and similarly for the product. It is straightforward to verify the axioms of an ordered field, and a little more complicated to verify the completion axiom. The main disadvantage of the method is the excess labor and the level of sophistication required for working with equivalence classes rather than just sequences. The advantage of the method is that it can be used in a fairly general context to embed metric spaces in “complete” spaces. (A metric space can be embedded as a dense subset of a complete metric space, which is essentially unique.)

other versions of the COMPLETeness axiom 

There are several other versions of the completeness axiom that are introduced and used in the calculus course sequence and the basic analysis course. In an ordered field, each of these is equivalent to the LUB axiom.

Every bounded increasing sequence converges.

A decreasing sequence of nonempty finite closed intervals has nonempty intersection.

Every Cauchy sequence converges.

In the context of metric spaces, the latter version of the completeness axiom becomes a definition. We say that a metric space is complete if every Cauchy sequence converges.

EXERCISE: Formulate a definition of a convergent sequence in an ordered field. Use your definition to show that in an ordered field with the LUB axiom, every bounded increasing sequence converges.

Uniqueness of the field of real numbers 

The uniqueness (up to isomorphism) of the field of real numbers is established in outline as follows. We start with a complete ordered field, and we show how to assign to each  x in the field a decimal expansion. The first step is to choose an integer  a0  such that

 a0  <=  x  <  a0+1. 

There is then a unique integer  a1,  0 <=  a1 <= 9, such that

a0  +  (a1/10)  <=  x  <  a0 + (a1/10) + 1/10.  

We continue in this manner, selecting at the nth stage the unique integer  an  such that 

 a0 + (a1/10) + … + (an/10n)  <=  x  <  a0 + (a1/10) + … + (an/10n) + 1/10n. 

Thus each  x  determines the infinite decimal  a0.a1a2a3…. We must show that the correspondence between  x  and the decimal expansion is a one-to-one correspondence that respects arithmetic and order, so that it is an isomorphism of the complete ordered field and the Weierstrass-Stolz model based on decimal expansions.

If  y  is different from  x, say  y > x, then there is  n  such that  y – x > 1/10n. (Recall the exercise based on the Archimedean ordering.) Then  x  and  y  do not belong to the same interval of length  1/10n, so the first  n+1  entries in the decimal representation of  y cannot be the same as those of  x, and the decimal representation of  y  is different from that of  x.

Next note that  x  =  a0 + (a1/10) + … + (an/10n), which belongs to the field, corresponds to the terminating decimal  a0.a1a2a3…an000…. On the other hand, the correspondence does not yield any decimal that terminates in 9’s. Indeed if  y  corresponds to the decimal  a0.a1a2a3…an999…, where  an < 9, and if  x  is the rational number with terminating decimal  a0.a1a2a3…(an+1), then  x>y  and  x – y < 1/10m  for all large  m, so  x = y, contradicting the fact that the decimal corresponding to  y  terminates with  9’s, not  0’s.

To show that the correspondence between  x  in the complete ordered field and the decimals in the decimal model is one-to-one, it suffices now to show that each decimal representation that does not terminate in  9’s arises from some x in the field. This step depends crucially upon the completeness axiom. Suppose  a0.a1a2a3… is a decimal that does not terminate in  9’s. The set  S  of elements in the field of the form 

a0  + (a1/10) + … + (an/10n), for  n >= 1, is bounded above by  a0 + 1. By the completeness axiom, the set  S  has a least upper bound, call it  x. One checks that the decimal corresponding to  x  is  a0.a1a2a3…, as required.

To complete the proof of the uniqueness, we must show that the correspondence preserves the arithmetic and ordering. That the correspondence respects the ordering follows directly from the definition. It is straightforward but somewhat of a hassle to show that the correspondence respects the arithmetic. That does it.

EXERCISE: Sketch an argument to show that an Archimedean ordered field is isomorphic to a subfield of the real numbers.

epilog 

We have defined “the real number line” to be something that satisfies the real number axioms, that is, we have defined it to be a complete ordered field. We have sketched the proof that there is a complete ordered field and that it is unique (up to isomorphism). The idea of this approach is quite simple in hindsight, yet it was quite difficult historically for mathematicians to arrive at this point of view. This approach has the effect of divorcing the concept of the real numbers from its geometric origins. This may seem simple, but actually it was quite a difficult step for mathematicians to take (and it is a step that we would not ask school children to take). As mathematicians such as Weierstrass and Dedekind were preparing their calculus lectures, they became ever more acutely aware, over a period of years, that the concept of the real number line was not on a firm footing. Though various ideas had been percolating for some time, the critical year in the historical development of the real number line was 1872, which saw the appearance of Dedekind’s monograph and papers of Meray, Cantor, and Heine (a student of Weierstrass).

The degeometrization of the real numbers was not carried out without skepticism. In his opus Mathematical Thought from Ancient to Modern Times, mathematics historian Morris Kline quotes Hermann Hankel (a brilliant mathematician, died in 1873 at age 34), who wrote in 1867: 

Every attempt to treat the irrational numbers formally and without the concept of [geometric] magnitude must lead to the most abstruse and troublesome artificialities, which, even if they can be carried through with complete rigor, as we have every right to doubt, do not have a higher scientific value.

It is not clear that even Dedekind grasped the import of what he had done. According to Kline again, when Heinrich Weber told Dedekind that he should say that an irrational number is no more than the cut, Dedekind responded (in a letter of 1888) that in fact the irrational number is not the cut itself but something distinct, which corresponds to the cut and brings about the cut.

We may compare the divorce of the construction of the real numbers from geometry to the divorce of the foundations of geometry from its origins in the Euclidean geometry of space. Those divorce proceedings lasted through the nineteenth century and beyond with the development and discovery of non-Euclidean geometries and various axiomatic approaches to geometry, including finite geometries.
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