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Abstract

Consider an analytic map of a domain in the complex plane to itself. Three basic
theorems asserting the existence of an analytic conjugation to a normal form near a
fixed point are due respectively to Koenigs, Leau and Boettcher. The conjugating
functions are solutions to certain functional equations. We convert each of the three
functional equations to a resolvent equation for a composition operator. This leads to
proofs of each of the conjugation theorems as a consequence of the convergence of the
Neumann series for the resolvent equation.

Let ϕ(z) be an analytic map defined on a neighborhood of z = 0 with fixed point at

0. Then

ϕ(z) = µz +O(z2), |z| < δ,(1)

where µ = ϕ′(0) is called the multiplier of ϕ(z) at 0. The fixed point is attracting if |µ| < 1,

neutral if |µ| = 1, and repelling if |µ| > 1. If µ = 0 we say it is superattracting.

Under a change of variables w = f(z), with f(0) = 0, the map ϕ(z) is transformed to

the map ψ = f ◦ϕ◦f−1. The map ψ(w) also has a fixed point at 0, with the same multiplier

as ϕ. The basic identity relating ϕ(z) and ψ(w) is given by the functional equation

f(ϕ(z)) = ψ(f(z)), |z| < δ.(2)

We say that f conjugates ϕ to ψ.

The idea of an analytic conjugation was introduced by E. Schröder in the early 1870’s.

He was interested in conjugating ϕ(z) to the dilation ψ(w) = µw, in which case the basic
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conjugation identity (2) becomes Schröder’s functional equation

f(ϕ(z)) = µf(z), |z| < δ.(3)

Schröder was interested in studying the iterates of ϕ(z). Any f conjugating ϕ(z) to ψ(w) =

µw also conjugates the mth iterate ϕm(z) = (ϕ ◦ . . . ◦ ϕ)(z) (m times) to the mth iterate

ψm(w) = µmw of ψ. This makes transparent the behavior of the iterates of ϕ, which was

Schröder’s goal. The fundamental existence theorem for solutions to Schröder’s equation

was proved a decade later by G. Koenigs.

Theorem (Koenigs, 1884). If the fixed point z = 0 for ϕ(z) is attracting but not

superattracting, or if it is repelling, then Schröder’s equation (3) has an analytic solution of

the form

f(z) = z +O(z2), |z| < δ.

Any other solution of Schröder’s equation (with µ the multiplier of ϕ(z) at z = 0) is a

constant multiple of f(z).

In the case of a superattracting fixed point, we can assume after a preliminary dilation

that ϕ(z) has the form

ϕ(z) = zp +O(zp+1), |z| < δ.(4)

The power p ≥ 2 is a conjugation invariant. In this case we might hope that ϕ(z) is conjugate

to the power function ψ(w) = wp. The basic conjugation identity (2) becomes

f(ϕ(z)) = f(z)p, |z| < δ,(5)

which we refer to as Boettcher’s equation.

Theorem (Boettcher, 1904). If ϕ(z) has a superattracting fixed point at z = 0,

then Boettcher’s equation (5) has an analytic solution of the form

f(z) = z +O(z2), |z| < δ.(6)

Any other solution of Boettcher’s equation that is not identically zero is a multiple of f(z)

by a (p− 1)th root of unity.

The case of a neutral fixed point at 0 breaks into two subcases, depending on whether

the multiplier µ is a root of unity or not. The fixed point is rationally neutral if µm = 1 for
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some integer m ≥ 1, otherwise it is irrationally neutral. The rationally neutral case µm = 1

can be reduced to the case µ = 1 by replacing ϕ(z) by its mth iterate ϕm(z). We assume

then that µ = 1, and we also assume that ϕ(z) is not the identity function z. Then after a

preliminary dilation, ϕ(z) has the form

ϕ(z) = z − zq+1 +O(zq+2) = z(1− zq) +O(zq+2),

for some integer q ≥ 1. The attracting directions are the angles of the rays for which zq > 0.

Near the origin, points on these rays are mapped closer to the origin by ϕ(z). The repelling

directions are the angles of the rays for which zq < 0. Points on these rays near the origin

are mapped further from the origin by ϕ(z).

The positive real axis corresponds to an attracting direction, and the angles ±π/q are

repelling directions. If the sector {|arg z| < π/q} is mapped to the slit ζ-plane C\(−∞, 0]

by qζ = 1/zq, the map ϕ(z) is conjugated to a map of the form

φ(ζ) = ζ + 1 +O(|ζ|−1/q), ζ ∈ C\(−∞, 0],

which behaves asymptotically like the translation ψ(w) = w + 1. In this case the goal is

to conjugate φ(ζ) to the translation ψ(w) = w + 1 on a sector {|arg w| < π − ε}, thereby

conjugating ϕ(z) to ψ(w) in some sector-like domain with vertex at 0. The basic conjugation

identity (2) becomes Abel’s equation

f(φ(ζ)) = f(ζ) + 1, |arg ζ| < π − ε.(7)

The existence of a solution of Abel’s equation was first obtained by L. Leau. A more

transparent existence proof together with asymptotic estimates for the solution were given

some years later by P. Fatou.

Theorem (Leau, 1897; Fatou, 1919). Let γ > 0, let 0 < α < π, and let C0 > 0.

Suppose that φ(ζ) is an analytic map of the sector C0 + {|arg ζ| < α} into itself, such that

φ(ζ) = ζ + 1 +O(|ζ|−γ), |ζ| → ∞, ζ ∈ C0.(8)

Then for any ε > 0 and for suitably large C1 > C0, Abel’s equation (7) has an analytic

solution f(ζ) in the smaller sector C1 + {|arg ζ| < α− ε} satisfying

f(ζ) =

{
ζ +O(log |ζ|), γ = 1,

ζ +O(|ζ|1−γ), γ 6= 1.
(9)
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There are many proofs of these three fundamental theorems on conjugating to normal

forms. Most proofs involve some sort of iteration scheme towards a fixed point in function

space. Our aim is to give reasonably simple proofs of each of these theorems based in

principle on the Neumann series

(λI − T )−1 =
∞∑
k=0

T k

λk+1
, |λ| > ‖T‖,(10)

for a bounded linear operator T on some Banach space. The connection with the iteration

schemes is as follows. For a fixed vector y, the solution of the resolvent equation (λI−T )x = y

is the fixed point for the nonlinear mapping

S(x) = (y + Tx)/λ.

If |λ| > ‖T‖, the mapping S is a contraction mapping. When we apply the iterates of S to

the initial vector 0, we obtain precisely the partial sums of the Neumann series,

Sm(0) =
m∑
k=0

T kx

λk
.

The contraction mapping principle can be invoked to conclude that these iterates converge

to the solution of the resolvent equation.

For the proofs of the theorems of Boettcher and Koenigs, we consider the composition

operator

(Tf)(z) = f(ϕ(z)).

The Banach space we consider is the space A(∆δ) of continuous function on the disk ∆δ =

{|z| ≤ δ} that are analytic on the interior of the disk. At this stage we are interested only

in finding solutions analytic in some small neighborhood of 0, so we are allowed to shrink

δ when convenient. We choose δ > 0 such that |ϕ(z)| < δ when |z| ≤ δ. Then ϕ(∆δ) is

a compact subset of the interior of ∆δ, and the composition operator T is well-defined and

satisfies ‖T‖ ≤ 1, T (1) = 1. Let A0 be the subspace of functions f ∈ A(∆δ) satisfying

f(0) = 0, and denote by T0 the restriction of T to A0.

Proof of Boettcher’s Theorem. In this case, ϕ(z) = zp +O(zp+1), where p ≥ 2. We assume

that 0 < δ < 1/2, and that |ϕ(z)| ≤ 2|z|p for |z| ≤ δ. Then |ϕ(ϕ(z))| ≤ 2|ϕ(z)|p ≤ 21+p|z|p2
,

and proceeding by induction we obtain

|ϕm(z)| ≤ 21+p+···+pm−1|z|pm ≤ (2|z|)pm ≤ (2δ)p
m

.
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If g ∈ A0 satisfies ‖g‖ ≤ 1, then using the Schwarz lemma, we obtain

|(Tm0 g)(z)| = |g(ϕm(z))| ≤ |ϕm(z)| ≤ (2δ)p
m

.

Consequently ‖Tm0 ‖ ≤ (2δ)p
m

. This estimate shows that the Neumann series (10) for T0

converges for all λ 6= 0. (Since ‖Tm0 ‖1/m → 0, the spectral radius of T0 is zero, and T0 is

quasi-nilpotent.) We seek a solution f(z) to Boettcher’s equation (5), normalized so that

f(0) = 0 and f ′(0) = 1. Define g, h ∈ A0 by

g(z) = log(f(z)/z), h(z) = log (ϕ(z)/zp) .

In terms of g(z), Boettcher’s equation becomes

g(ϕ(z)) = log

(
f(ϕ(z))

ϕ(z)

)
= log

(
f(z)p

ϕ(z)

)
= log

(
f(z)p

zp

)
− h(z) = p g(z)− h(z).

Thus Boettcher’s equation is equivalent to the resolvent equation

(pI − T0)g = h.

To prove Boettcher’s theorem, we simply solve this resolvent equation for g ∈ A0 and we set

f(z) = zeg(z).

Proof of Koenigs’ Theorem. We assume that ϕ(z) = µz +O(z2), where 0 < |µ| < 1. Choose

ε > 0 so small that |µ|+ ε < 1, and choose 0 < δ < 1 so that

|ϕ(z)| ≤ (|λ|+ ε)|z|, |z| ≤ δ.

Then ϕ maps the disk {|z| ≤ δ} into the proper subdisk {|z| ≤ (|λ| + ε)δ}. Let A1 be the

subspace of functions g ∈ A(∆δ) such that g(0) = g′(0) = 0, and let T1 be the restriction of

T to A1. If g ∈ A1 satisfies ‖g‖ ≤ 1, then |g(z)| ≤ |z|2/δ2, and consequently

|g(ϕ(z))| ≤ |ϕ(z)|2

δ2
≤ (|µ|+ ε)2|z|2

δ2
≤ (|µ|+ ε)2.

Hence ‖T1g‖ ≤ (|µ|+ ε)2, and we conclude that

‖T1‖ ≤ (|µ|+ ε)2.(11)

We may assume that ε was originally chosen so small that

(|µ|+ ε)2 < |µ|.
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Then from (11) we have ‖T1‖ < |µ|, and µI − T1 is invertible on A1. Set h0(z) = z. Then

Th0 = ϕ(z) = µz +O(z2), so (µI − T )h0 ∈ A1. Since ‖T1‖ < |µ|, we can solve the resolvent

equation

(µI − T1)h1 = (µI − T )h0.

for h1 ∈ A1. If f = h0 − h1 = z + O(z2), then (µI − T )f = 0, and f satisfies Schröder’s

equation (3).

The proof of Koenigs’ theorem can be modified to identify the eigenvalues and eigen-

functions of T . The solution to Schröder’s equation given by Koenigs’ theorem is called

the principal eigenfunction of the composition operator T . Its eigenvalue is the multiplier

µ = ϕ′(0).

Theorem. Suppose ϕ(z) = µz + O(z2), where 0 < |µ| < 1, and suppose f(z) is

the principal eigenfunction of the composition operator T . Suppose g(z) is analytic in some

neighborhood of 0 and is not identically zero. If g(z) and λ satisfy

g(ϕ(z)) = λg(z)

for z near 0, then λ = µm for some integer m ≥ 0, and g(z) is a constant multiple of f(z)m.

Proof. First note that the function fm(z) = f(z)m = zm +O(zm+1) is an eigenfunction of T

with eigenvalue µm,

(Tfm)(z) = f(ϕ(z))m = µmf(z)m = µmfm(z).

Fix m ≥ 1. We proceed as above, choosing ε so that additionally

(|µ|+ ε)m+1 < |µ|m.

Let Am denote the space of function g ∈ A(∆δ) satisfying

g(0) = g′(0) = · · · = g(m)(0) = 0.

Estimates similar to those used to established (11) show that if Tm is the restriction of T to

Am, then

‖Tm‖ ≤ (|µ|+ ε)m+1 < |µ|m.

Now λI−Tm is invertible on Am for |λ| > ‖Tm‖. Since Am has codimension m+ 1 in A(∆δ),

T can have at most m + 1 linearly independent eigenfunctions in A(∆δ) corresponding to
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eigenvalues λ satisfying |λ| > ‖Tm‖. Since the functions fk(z) = f(z)k, 0 ≤ k ≤ m, are

linearly independent eigenfunctions with eigenvalues µk, 0 ≤ k ≤ m, these must account for

all eigenfunctions with eigenvalues |λ| > ‖Tm‖, hence for all eigenfunctions with eigenvalues

|λ| ≥ |µ|m.

Solution of Abel’s equation. For convenience we denote by D(C, β) the sector

D(C, β) = C + {|arg ζ| < β}

with vertex at C > 0 and aperture 2β, bisected by the interval (C,+∞). We are allowed to

increase C whenever convenient. We are assuming that φ(ζ) maps D(C, α) into itself, and

that φ(ζ) has the asymptotic form (8). By choosing C sufficiently large, we may assume that

Re φ(ζ) > Re ζ +
1

2
, ζ ∈ D(C, α).(12)

We may also assume that for some c0, 0 < c0 < π/2, we have |arg(φ(ζ) − ζ)| < c0, so that

the iterates of ζ under φ(ζ) remain in the same sector,

|arg(φk(ζ)− ζ)| < c0, k ≥ 1.(13)

Fix ε > 0, and consider the subsector D(C, α − ε). The distance from ζ ∈ D(C, α − ε) to

the boundary of D(C, α) is asymptotic to ε|ζ| as ζ → ∞. The Cauchy integral formula for

φ′(ζ) over a circle centered at ζ ∈ D(C, α− ε) of radius ε|ζ| leads to

φ′(ζ) = 1 +O(|ζ|−γ−1), ζ ∈ D(C, α− ε).

Consequently for ζ →∞ we have the asymptotic estimate

log φ′(ζ) = O(|ζ|)−γ−1, ζ ∈ D(C, α− ε).

If we differentiate Abel’s equation (7), we obtain

f ′(φ(z))φ′(z) = f(z),

or

log f ′(z)− log f ′(φ(z)) = log φ′(z).

Thus for the composition operator (Th)(z) = h(φ(z)) as before, and for

h(z) = log f ′(z), g(z) = log φ′(z),
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Abel’s equation becomes

(I − T )h = g.

The right-hand side of this resolvent equation satisfies

g(z) = O(|z|−γ−1), as z →∞,

and we seek a solution h(z) such that

h(z) = O(|z|−γ), as z →∞.

Having such an h(z), we set f ′(z) = eh(z) and integrate, thus obtaining a solution of Abel’s

equation (7) with the asymptotic behavior stated in the theorem.

In this case, the operator I − T is not invertible on any obvious space of analytic

functions. However, we may still consider the partial sums of the Neumann series for (I −
T )−1, and define

hm(z) = (I + T + · · ·+ Tm)g.

Then

(I − T )hm = g(z)− Tm+1g(z) = g(z)− g(φm+1(z)).

It is now easy to see that hm(z) converges normally to a solution of (I − T )h = g. Indeed,

(12) and (13) show that after at most finitely many iterations we are in the right half-plane.

Once there, we see from (12) that |Re φm(z)| ≥ m/2, and

g(φm(z)) = O
(

1

|φm(z)|γ+1

)
= O

(
1

mγ+1

)
.

Since the series
∑
m−γ−1 is summable, hm(z) converges normally to some analytic function

h(z), which satisfies (I−T )h = g. To determine the asymptotic behavior of h(z) as z →∞,

we must estimate more carefully. We represent h(z) explicitly as the series

h(z) =
∞∑
k=0

g(φk(z)),

and we break the sum into two pieces. Let S be the sector {|arg ζ| < π/4}. The estimate

(13) shows that the iterates φk(ζ) of any ζ eventually enter S. Further, the first integer

m0 for which φm0(ζ) ∈ S satisfies m0 ≤ c1|ζ| and |φm0(ζ)| ≥ c2|ζ|, where c1 and c2 are

independent of ζ. Then

m0−1∑
k=0

|g(φk(ζ))| ≤ c3

m0−1∑
k=0

|φk(ζ)|−γ−1 ≤ c3m0(c2|ζ|)−γ−1 ≤ c4|ζ|−γ.(14)
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To estimate the terms of the series beyond m0, note first using (12) that

|φn(ξ)| ≥ |ξ|+ c5n, ξ ∈ S,

and consequently

|g(φn(ξ))| ≤ c6

|φn(ξ)|γ+1
≤ c6

(|ξ|+ c5n)γ+1
, ξ ∈ S.

With ξ = φm0(ζ) and k = m0 + n, we then have

∞∑
k=m0

|g(φk(ζ))| ≤ c6

∞∑
n=0

1

(c2|ζ|+ c5n)γ+1
≤ c7|ζ|−γ.(15)

If we add (14) and (15), we obtain |h(ζ)| ≤ (c4 + c7)|ζ|−γ, as required.

It is interesting to note that the proof of the existence of a conjugation to a normal

form is the easiest in the superattracting case, where the composition operator is quasi-

nilpotent, yet historically this was the last of the three cases to be resolved.
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