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Abstract

Let A be a uniform algebra, and let φ be a self-map of the spectrum MA of A that
induces a composition operator Cφ on A. It is shown that the image of MA under
some iterate φn of φ is hyperbolically bounded if and only if φ has a finite number of
attracting cycles to which the iterates of φ converge. On the other hand, the image
of the spectrum of A under φ is not hyperbolically bounded if and only if there is a
subspace of A∗∗ “almost” isometric to `∞ on which C∗∗φ is “almost” an isometry. A
corollary of these characterizations is that if Cφ is weakly compact, and if the spectrum
of A is connected, then φ has a unique fixed point, to which the iterates of φ converge.
The corresponding theorem for compact composition operators was proved in 1980 by
H. Kamowitz [Ka].

MCS 2000 Primary 46J10, Secondary 47B38, 47B48

1 Background

Let A be a uniform algebra, with spectrum MA. We regard A as an algebra of continuous
functions on MA, so that A is a closed unital subalgebra of C(MA).

Recall that the pseudohyperbolic metric ρ on the open unit disk D = {|z| < 1} in the
complex plane is defined by

ρ(z, w) =
|z − w|
|1− wz|

, z, w ∈ D.

The pseudohyperbolic metric of D is invariant under the conformal self-maps of D. It satisfies
a sharpened form of the triangle inequality,

ρ(z, w) ≤ ρ(z, ζ) + ρ(ζ, w)

1 + ρ(z, ζ)ρ(ζ, w)
, z, ζ, w ∈ D.

(To see this, proceed as follows. Map ζ to 0 and w to s > 0 by a conformal self-map of D, to
reduce to the estimate ρ(z, s) ≤ (|z| + s)/(1 + s|z|). Then use the fact that the hyperbolic
∗The author thanks Postech University, Pohang, Korea, for support during work on this paper.
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circle centered at s and passing through −r is a Euclidean circle to argue that the maximum
of ρ(z, s) over the circle |z| = r is attained at z = −r.)

We use the pseudohyperbolic metric on D to define the pseudohyperbolic metric ρA on
the spectrum MA by

ρA(x, y) = sup{ρ(f(x), f(y)) : f ∈ A, ||f || < 1}.

Evidently ρA(x, y) ≤ 1. Since (s + t)/(1 + st) is an increasing function of s and t for
0 ≤ s, t ≤ 1, the sharpened form of the triangle inequality for ρ(z, w) easily yields the same
inequality for ρA(x, y),

ρA(x, y) ≤ ρA(x, u) + ρA(u, y)

1 + ρA(x, u)ρA(u, y)
, x, u, y ∈MA.(1)

This inequality was introduced in the context of uniform algebras by H. König [Kö]. It shows
in particular that ρA is a metric on MA.

The open unit ball of A is invariant under post-composition with conformal self-maps of
D. By composing f with a conformal self-map of D that sends f(y) to 0, we obtain

ρA(x, y) = sup{|f(x)| : f ∈ A, ||f || < 1, f(y) = 0}.

Thus ρA(x, y) is the norm of the evaluation functional at x on the null-space of the evaluation
functional at y,

ρA(x, y) = ||x|y−1(0)||, x, y ∈MA.

It follows that ρA(x, y) ≤ ||x− y||. Since ρ(z, w) ≥ |z−w|/2, also ρA(x, y) ≥ ||x− y||/2, and
we obtain

||x− y||
2

≤ ρA(x, y) ≤ ||x− y||, x, y ∈MA.

Thus convergence in the pseudohyperbolic metric of MA is tantamount to convergence in
the norm of A∗.

From König’s inequality (1) it is easy to see that any two open pseudohyperbolic balls
in MA of radius 1 either are disjoint or coincide. (See the proof of Lemma 2.1.) These open
balls are called the Gleason parts of A. For a discussion of Gleason parts, see Chapter VI of
[Ga1].

The bidual A∗∗ of A is also a uniform algebra. For a description of the bidual of A, see
[Ga2]. The evaluation functionals at points ofMA extend uniquely to be weak-star continuous
multiplicative functionals on A∗∗, so we can regard MA as a subset of the spectrum of A∗∗.
The restrictions of the functions in A∗∗ to MA are the pointwise limits of bounded nets in
A. These restrictions are not necessarily continuous on MA. According to work of B. Cole
(see [Ga2]), the restriction algebra A∗∗|MA

includes all bounded functions on MA that are
constant on each Gleason part. It follows that each Gleason part of A is relatively weakly
open and closed in MA (the weak topology being the A∗∗-topology). Consequently each
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weakly precompact subset of MA meets only finitely many Gleason parts (Theorem 1.1(c)
of [OW]; see also [Ül] or [GL]).

Under the canonical embedding of A in A∗∗, the unit ball of A is weak-star dense in the
unit ball of A∗∗. It follows that the canonical embedding induces an isometry with respect
to hyperbolic metrics,

ρA(x, y) = ρA∗∗(x, y), x, y ∈MA.

Hence each Gleason part of MA∗∗ either meets MA in a Gleason part for A or is disjoint from
MA.

2 Hyperbolically Bounded Sets

A subset of the open unit disk is bounded with respect to the hyperbolic metric if and only
if it is contained in a pseudohyperbolic ball of radius strictly less that 1. This occurs just as
soon as it is contained in a finite union of pseudohyperbolic balls of radii strictly less than
1. Proceeding in analogy with the disk case, we define a subset E of MA to be hyperbolically
bounded if it is contained in a finite union of pseudohyperbolic balls whose radii are strictly
less than 1. Each such ball is contained in a single Gleason part, so that a hyperbolically
bounded subset of MA meets only a finite number of Gleason parts of MA.

Lemma 2.1 Let E be a hyperbolically bounded subset of MA. If E is contained in a single
Gleason part, then there is a constant c < 1 such that ρA(x, y) ≤ c for all x, y ∈ E.

Proof. Suppose E is contained in the union of the pseudohyperbolic balls with centers
xj and radii rj, where rj < 1, 1 ≤ j ≤ n. Let r be the maximum of the rj’s and the
distances ρA(x1, xj), 1 ≤ j ≤ n. Thus r < 1. König’s inequality (1) shows that ρA(x1, y) ≤
2r/(1 + r2) = b < 1 for any y in the jth ball, hence for any y ∈ E. If ρA(x1, x) ≤ b and
ρA(x1, y) ≤ b, then ρA(x, y) ≤ 2b/(1 + b2) = c < 1, again by (1). �

2.1 Interpolating Sequences for A∗∗

A sequence {xn} in MA is an interpolating sequence for A∗∗ if the restriction of A∗∗ to the
sequence is isomorphic to `∞. Since the unit ball of A is weak-star dense in the unit ball of
A∗∗, this occurs if and only if for a given λ = {λn} ∈ `∞, there are C ≥ 0 and a sequence
{fm} in A such that ||fm|| ≤ C for m ≥ 1, and fm(xn)→ λn as m→∞.

By duality of `1 and `∞, the sequence {xn} is an interpolating sequence for A∗∗ if and
only if {xn} is an `1-sequence, that is, the correspondence en 7→ xn, where en is the nth
canonical basis element of `1, extends to an isomorphism of `1 onto the closed linear span of
the xn’s in A∗. Let M be the norm of the operator `1 7→ A∗. The duality shows that each
λ ∈ `∞ can be interpolated by a function F ∈ A∗∗ satisfying ||F || ≤ (M+ε)||λ||∞. By taking
a weak-star limit of interpolating functions as ε → 0, we can find an interpolating function
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F such that ||F || ≤ M ||λ||∞. The constant M is best possible; it is called the interpolation
constant for the interpolating sequence {xn}.

Theorem 2.2 Let A be a uniform algebra, let E be a subset of MA, and let ε > 0. If E is not
hyperbolically bounded, then E contains an interpolating sequence for A∗∗ with interpolation
constant M < 1 + ε.

Proof. The bounded functions on MA that are constant on each Gleason part belong to
A∗∗. Thus any sequence of points from different Gleason parts is an interpolating sequence
for A∗∗ with interpolation constant M = 1.

We assume then that E is contained in a single Gleason part, and we follow the line of
proof of Theorem 5.5 of [CCG]. By hypothesis, there is a sequence {xn}∞n=0 in E such that
ρA(xn, x0) → 1 as n → ∞. According to Chapter VI of [Ga1], there are functions fn ∈ A
that satisfy Re fn > 0, fn(x0) = 1, and Re fn(xn)→ +∞. Passing to a subsequence, we can
assume that 2−nRe fn(xn)→ +∞. Let

gn =
n∑
k=1

2−kfk.

Then gn ∈ A, Re gn > 0, gn(x0) → 1, and Re gn(xn) → +∞. Set Gn = (gn − 1)/(gn + 1).
Then Gn ∈ A, |Gn| < 1, Gn(x0) → 0, and Gn(xn) → 1 as n → ∞. Let G ∈ A∗∗ be a
weak-star adherent point of the Gn’s as n → ∞. Then |G| ≤ 1, and G(x0) = 0. If m ≥ n,
then Re gm ≥ Re gn. Composing with the map w = (z − 1)/(z + 1), we see that Gm(xn) lies
in the disk with diameter on the real axis having endpoints (Re gn(xn)− 1)/(Re gn(xn) + 1)
and 1. Since the length of this diameter does not exceed 2/Re gn(xn), we obtain

|Gm(xn)− 1| ≤ 2/Re gn(xn), m ≥ n.

In the limit we obtain the same estimate for |G(xn) − 1|. Hence |G(xn) − 1| → 0, and
G(xn) → 1 as n → ∞. Let P denote the Gleason part of x0 in MA. Since G(x0) = 0,
and the xn’s belong to P , we have |G(xn)| < 1 for n ≥ 1. Passing to a subsequence, we
can assume that {G(xn)} is an interpolating sequence for the algebra H∞(D) of bounded
analytic functions on the unit disk D, with interpolation constant M < 1 + ε. (See [Gar].)
Since any function in H∞(D) is a pointwise limit of a bounded sequence of polynomials with
the same sup-norm over D, and since any polynomial in G belongs to A∗∗, the composition
of G|P with any function g ∈ H∞(D) is the restriction to P of a function in A∗∗ whose norm
coincides with that of g. By composing G with interpolating functions in H∞(D), we see
that {xn} is an interpolating sequence for A∗∗, with interpolation constant M < 1 + ε. �

The converse of Theorem 2.2 is trivially true. Indeed, interpolation of the values 0 and 1
at two points x, y ∈ E by a function of norm at most 1+ε already implies ρA(x, y) ≥ 1/(1+ε).

Corollary 2.3 Let E be a subset of MA. If every sequence in E has a weak Cauchy subse-
quence, then E is hyperbolically bounded. In particular, if E is weakly precompact, then E
is hyperbolically bounded.
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Proof. Here the weak topology of E is the A∗∗-topology. For the first statement, note that
the interpolating sequence of the theorem does not have a weak Cauchy subsequence. For
the second statement, apply Eberlein’s theorem. �

2.2 Linear Interpolation Operators

Davie’s example [Da] shows that there are algebras A with an interpolating sequence in
MA for A∗∗, for which there is no linear interpolation (extension) operator from `∞ to A∗∗.
Towards finding linear interpolation operators, we begin with the following.

Lemma 2.4 Let A be a uniform algebra, and let {xj}∞j=1 be a sequence of points in MA.
Suppose there is M ≥ 1 such that for each finite collection {λ1, · · · , λn} of complex numbers
of unit modulus, there is f ∈ A satisfying f(xj) = λj, 1 ≤ j ≤ n, and ||f || ≤M . Then there
is a sequence of functions {Fk}∞k=1 in A∗∗ such that Fk(xj) = 0 for j 6= k, Fk(xk) = 1, and∑∞

k=1 |Fk| ≤M2 on MA∗∗.

Proof. The proof depends on a theorem of Varopoulos (see p.298 of [Gar]). Given n ≥ 1
and εn > 0, that theorem provides functions fn1, · · · , fnn ∈ A that satisfy fnk(xk) = 1 for
1 ≤ k ≤ n, fnk(xj) = 0 for j 6= k, 1 ≤ j, k ≤ n, and

∑n
k=1 |fnk| ≤ M2 + εn on MA. Since

bounded sets in A are weak-star precompact in A∗∗, we can find a net nα such that fnak
converges weak-star to Fk ∈ A∗∗ for 1 ≤ k < ∞. Evidently Fk satisfies the interpolation
conditions. Fix m ≥ 1, and let a1, · · · , am be complex numbers of unit modulus. For any
n ≥ m we have |

∑m
k=1 akfnk| ≤

∑m
k=1 |fnk| ≤ M2 + εn. Passing to the weak-star limit, we

obtain ||
∑m

k=1 akFk|| ≤ M2. Since this is true for all such choices of the ak’s, we obtain∑m
k=1 |Fk| ≤ M2. Since this is true for all m, we may sum to ∞, and the lemma is proved.

�

If we apply this lemma in the situation in the proof of Theorem 2.2, we obtain the
following result, where we have set M2 = 1 + ε.

Theorem 2.5 Let A be a uniform algebra, with spectrum MA and bidual A∗∗. Let E be a
subset of MA that is not hyperbolically bounded. Then for each ε > 0, there are a sequence
of points {xj}∞j=1 in E and a sequence of functions {Fk}∞k=1 in A∗∗ such that Fk(xj) = 0 for
j 6= k, Fk(xk) = 1, and

∑∞
k=1 |Fk| ≤ 1 + ε on MA∗∗.

Proof. If E meets infinitely many Gleason parts, we select the xj’s from different Gleason
parts, and we take Fj ∈ A∗∗ to be the idempotent corresponding to the part containing xj.
These do the trick, with

∑
|Fk| = 1. If E has infinitely many points in the same Gleason

part, we take 1 < M <
√

1 + ε, and we let G and the xj’s be as in the proof of Theorem 2.2.
Any interpolation problem on a finite subset of the sequence {G(xj)} can be solved with
interpolation constant M equal to the interpolation constant associated with the infinite
sequence {G(xj)} in the open unit disk. Composing G with analytic interpolating functions,
we are able to solve any interpolation problem for a finite subset of the xj’s with functions
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in A∗∗ and with the same interpolation constant M . By approximating the interpolating
functions in A∗∗ weak-star by functions in A, we obtain interpolating functions in A for the
finite interpolation problem, with possibly a small increase in the interpolation constant, say
to
√

1 + ε. Now we apply Lemma 2.4, and we are done. �

We will denote the pairing of L ∈ A∗ and F ∈ A∗∗ by 〈L, F 〉. Regarded as a functional on
A∗∗, L is represented by a finite measure on MA∗∗ . The condition

∑
|Fk| ≤M in Theorem 2.5

then guarantees that
∑
|〈L, Fk〉| ≤M ||L|| for L ∈ A∗. This leads to the following corollary,

where the notation is the same as above, and the projection of A∗∗ onto the subspace spanned
by the Fk’s is given by F 7→

∑
F (xk)Fk.

Corollary 2.6 Let the Fk’s be as above. The map V : L 7→ {〈L, Fk〉} is a continuous
linear operator from A∗ onto `1, with norm ||V || ≤ 1 + ε. Its adjoint V ∗ is an embedding
λ 7→

∑
λkFk of `∞ onto a complemented subspace of A∗∗. The operator V ∗ is a linear

interpolation operator, in the sense that F = V ∗(λ) solves the interpolation problem F (xk) =
λk, 1 ≤ k <∞.

2.3 Hyperbolically Separated Sequences

We say that a sequence {xn} in MA is hyperbolically separated if there is ε > 0 such that
ρA(xn, xm) ≥ ε for all n 6= m. If E is a subset of MA that is not precompact with respect
to the pseudohyperbolic metric, then E contains a sequence {xn} that is hyperbolically
separated.

We are interested in conditions on a subset E of MA that guarantee that E contains an
interpolating sequence for A∗∗, that is, that E contains an `1-sequence. We might begin by
asking whether each hyperbolically separated sequence {xn} in MA has a subsequence that
is interpolating for A∗∗. The answer turns out to be “yes” for some algebras A and “no” for
others.

Let D be a bounded domain in the complex plane, and let A(D) be the algebra of
continuous functions on the closure D of D that are analytic on D. The spectrum of A(D) is
D. From [GG] it follows that any hyperbolically separated sequence in D has a subsequence
that is an `1-sequence. The same result holds for the algebra R(K) generated by the functions
analytic in a neighborhood of some fixed compact subset K of the complex plane.

For another class of examples, let B be the open unit ball of a Banach space X, and let
A be a uniform algebra on B that contains the functions in X∗. One such algebra is the
algebra H∞(B) of bounded analytic functions on B. Another such algebra is the algebra
A(B) of analytic functions on B that extend to be weak-star continuous on the closed unit
ball of the bidual X∗∗ of X. (See [ACG].) For any such algebra A, the points of B belong to
the same Gleason part of A, and the usual Schwarz estimate for the intersections of B with
one-dimensional subspaces shows that ρA(0, x) = ||x|| for x ∈ B.

For a very simple example of a hyperbolically bounded interpolating sequence, we take
X = `1, with standard basis {en}, and set xn = en/2. Since ρA(xn, 0) = ||xn|| = 1/2,
the sequence is hyperbolically bounded. We may regard any α ∈ `∞ as an element of
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(`1)∗ ⊆ A(B). The function f = 2α ∈ A(B) then interpolates α on {xn}. Thus {xn} is an
interpolating sequence for A(B), and also for H∞(B). Note that the interpolation constant
for any subsequence of this sequence is M = 2.

To find an example of a hyperbolically separated sequence with no interpolating subse-
quence, we take X to be the (original) Tsirelson space. If 0 < r < 1, the closed ball rB is
a weakly compact subset of A(B)∗. (This is because polynomials on X are X∗-continuous
on bounded sets, and the Taylor series of a bounded analytic function on B converges uni-
formly on rB; see [AAD], [AGL], [GLR].) Hence rB has no interpolating sequence for
A(B)∗∗. However, rB is not norm compact, and consequently it contains hyperbolically
separated sequences. In fact, any sequence in rB with no norm-convergent subsequence is
hyperbolically separated.

3 Unital Homomorphisms of a Uniform Algebra

We focus now on unital homomorphisms of the uniform algebra A. These are in one-to-one
correspondence with continuous maps φ : MA 7→ MA such that f ◦ φ ∈ A whenever f ∈ A.
For such a map φ, the composition operator

Cφ(f) = f ◦ φ, f ∈ A,

is evidently a unital homomorphism of A, that is, Cφ is multiplicative and Cφ(1) = 1. For a
given homomorphism T : A 7→ A, the restriction of the adjoint T ∗ to MA yields the mapping
φ such that T = Cφ.

U. Klein [Kl] has shown that such a map φ is nonexpanding with respect to the pseudo-
hyperbolic metric of MA. More precisely, he obtained the sharp estimate

ρA(φ(x), φ(y)) ≤ cρA(x, y), x, y ∈MA,

where c is the pseudohyperbolic diameter of φ(MA),

c = sup{ρA(φ(x), φ(y)) : x, y ∈MA}.

This estimate, which is valid for unital homomorphisms from one uniform algebra to another,
is established as follows. Suppose f ∈ A satisfies ||f || < 1 and f(φ(y)) = 0. If u ∈MA, then
|f(φ(u))| = ρ(f(φ(u)), f(φ(y))) ≤ ρA(φ(u), φ(y)) ≤ c. Thus g = (f ◦ φ)/c satisfies ||g|| ≤ 1
and g(y) = 0. Hence |g(x)| ≤ ρA(x, y), and |f(φ(x))| ≤ cρA(x, y). Now take the supremum
over such f .

According to Klein’s theorem, φ is a (strict) contraction mapping with respect to the
pseudohyperbolic metric if and only if its image φ(MA) is a hyperbolically bounded subset
of a single Gleason part. In this case, the contraction mapping theorem applies, and the
iterates of φ converge uniformly in the pseudohyperbolic metric (or equivalently, in the norm
of A∗) to a unique fixed point for φ.

It is easy to check that the pseudohyperbolic diameter of φ(MA) is strictly less than 1
whenever the homomorphism Cφ is compact and MA is connected. By invoking the contrac-
tion mapping theorem, Klein [Kl] obtained as a corollary a theorem of H. Kamowitz [Ka],
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that in this case the iterates of φ converge in the norm of A∗ to a unique fixed point for
φ. See [KSW] for more references on compact endomorphisms of Banach algebras, and see
[Ga3] for an exposition of Klein’s work.

3.1 Weakly Compact Homomorphisms

To extend Klein’s theorems on compact homomorphisms to a more general setting, it is
natural to focus on weakly compact homomorphisms.

Theorem 3.1 Let A be a uniform algebra with connected spectrum MA, and let Cφ be a
unital homomorphism of A. If Cφ is weakly compact, then φ(MA) is hyperbolically bounded,
and φ is a (strict) contraction mapping with respect to the pseudohyperbolic metric. Conse-
quently φ has a unique fixed point x0, and the iterates of φ converge uniformly on MA to x0

in the pseudohyperbolic metric (or, equivalently, in the norm of A∗).

Proof. Since Cφ is a weakly compact operator, so is C∗φ. Since φ is the restriction of C∗φ to
MA, φ(MA) is a weakly compact subset of A∗, and consequently φ(MA) meets only finitely
many Gleason parts. Since MA is connected, φ(MA) is connected in the weak topology. As
observed before, Gleason parts are relatively weakly open, hence φ(MA) is contained in a
single Gleason part. That φ is a contraction now follows from Corollary 2.3 and Klein’s
theorem cited above. �

We might also ask what can be said about the spectrum of a weakly compact homo-
morphism. Unlike compact homomorphisms, weakly compact homomorphisms can have
nonzero eigenvalues of infinite multiplicity. For such an example, we return to the uniform
algebra A(B) on the open unit ball B of the Tsirelson space. Fix a complex number λ such
that 0 < |λ| < 1, and consider the unital homomorphism Cφ determined by the analytic
map φ(x) = λx, x ∈ B. As shown in [AGL], the operator Cφ is weakly compact though
not compact. The spectrum of Cφ consists of 0 together with the sequence of eigenvalues
{λm}∞m=0. The eigenspace corresponding to the eigenvalue λm is the restriction to B of the
space of m-homogeneous analytic functions on X. For m ≥ 1, these eigenspaces are infinite
dimensional.

This example can be modified to obtain the following.

Theorem 3.2 Any sequence of complex numbers {λn} satisfying sup |λn| < 1 can be eigen-
values for a weakly compact composition operator on a uniform algebra.

Proof. We take X to be the Tsirelson space, with unit ball B, and we take A = H∞(B).
By construction, X is a sequence space with a natural lattice structure. (See p.17 of [CS].)
For x = {xn} ∈ B, we define φ(x) = {λnxn}. Then φ : B 7→ B is well defined, linear, and
continuous. The argument in [AGL] (see also [GLR]) shows that the operator Cφ is weakly
compact. The nth coordinate projection πn is an eigenfunction of the composition operator
Cφ with eigenvalue λn. �
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In connection with these examples, we might ask the following question: If the spectrum
of a weakly compact homomorphism contains points other than 0 and 1, does the spectrum
have an eigenvalue other than 1?

Another question has to do with the existence of point derivations. Suppose that MA

is connected. Klein [Kl] proved that if Cφ is compact, and if the spectrum of Cφ is larger
than {0, 1}, then there is a nonzero continuous point derivation of A at the fixed point x0 of
φ. The point derivation can be regarded as a vestige of an analytic structure at x0 in MA.
Question: Is there an analog of Klein’s result for weakly compact homomorphisms?

3.2 Homomorphisms with Attracting Cycles

In [Kl], Klein focuses on power-compact homomorphisms of uniform algebras. In the next
two theorems, we modify Klein’s development to extend certain of his results to their natural
boundaries. First we clarify notation.

We denote the kth iterate of φ by φk, so that φ1 = φ, and φk = φk−1 ◦ φ for k ≥ 2.
With this notation, the kth power of Cφ coincides with the operator of composition with φk,
Ck
φ = Cφk .

A point x ∈ MA is a periodic point of φ if φk(x) = x for some k ≥ 1. The least such k
is called the period of x. The points {x, φ(x), φ2(x), · · · , φk−1(x)} are said to form a cycle of
length k.

Theorem 3.3 Let Cφ be a unital homomorphism of the uniform algebra A. Then φn is
hyperbolically bounded for some n ≥ 1 if and only if there is a decomposition of MA into
disjoint clopen subsets F1, . . . , Fm such that the iterates of φ converge uniformly on each Fj
in the pseudohyperbolic metric to a cycle Cj in Fj for φ.

Proof. Suppose first that φn(MA) is hyperbolically bounded. Then φn(MA) is contained
in finitely many Gleason parts Q1, · · · , Qp. Since φ is nonexpanding, each image φi(Qj) of
Qj is contained in a single Gleason part, and further φn(Qj) is contained in one of the Qi’s.
Thus there is a collection of at most np Gleason parts such that φ maps each of them to
another. Consequently the images of a given Qj under the iterates of φ must eventually cycle
around a subset of the Gleason parts in the collection. Since the collection is finite, there
is a subset {G1, . . . , Gq} of the collection consisting of Gleason parts that are permuted by
φ, such that the iterates of each x ∈ MA eventually land in the Gj’s. Choose N so large
that φN(MA) ⊂ ∪Gj. By taking N to be a multiple of the periods of the cycles of Gj’s, we
can also assume that φN(Gj) ⊂ Gj for 1 ≤ j ≤ N . Let Ej be the set of x ∈ MA such that
φN(x) ∈ Gj. From the definition of the pseudohyperbolic metric in MA, we see that for fixed
r < 1 and y ∈ MA, the pseudohyperbolic ball consisting of x ∈ MA satisfying ρA(x, y) ≤ r
is a closed subset of MA. Using the fact that φN(MA) is hyperbolically bounded and closed,
we see that each φN(MA) ∩Gj is closed in MA. Consequently each Ej is a closed subset of
MA. Thus the sets E1, . . . , Eq form a decomposition of MA into disjoint clopen subsets. By
the Shilov idempotent theorem, there is a corresponding decomposition of the algebra A as
a finite direct sum of subalgebras, A = B1 ⊕ · · · ⊕ Bq, such that the spectrum of Bj is Ej.
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Since each of the Ej’s is invariant under φN , each of the algebras Bj is invariant under the
operator CN

φ of composition with φN . The image φN(Ej) is a hyperbolically bounded subset
of Gj, so by Klein’s estimate, φN is a pseudohyperbolic contraction of Gj. Hence there is a
unique fixed point xj ∈ Gj for φN , such that the iterates φkN of φN converge uniformly on
Ej to xj as k → ∞. The fixed points {x1, . . . , xq} of φN are permuted by φ. Thus we can
partition them into a finite number of cycles C1, . . . , Cm. Let Fj be the union of the Ei’s
corresponding to the points in the jth cycle Cj. The sets F1, . . . , Fm form a decomposition
of MA into disjoint clopen subsets, and the iterates of φ converge uniformly on Fj to the
cycle Cj.

The proof of the converse is easy. Suppose there are a finite number of cycles C1, . . . , Cm
to which the iterates of points of MA converge. Then for large n, φn(MA) is contained in the
union of pseudohyperbolic balls centered at points of ∪Cj of small radii, and in particular
φn(MA) is hyperbolically bounded. �

We refer to Cj as an atttracting cycle for φ, and we refer to the clopen set Fj as the basin
of attraction of Cj.

Theorem 3.4 Let Cφ be a unital homomorphism of the uniform algebra A, and suppose
φn(MA) is hyperbolically bounded. Let x1, . . . , xk be the periodic points in MA of φ. Let N
be a common multiple of the periods of the xj’s, and define

κ = max
1≤j≤k

lim sup
x→xj

[
ρA(φN(x), xj)

ρA(x, xj)

]1/N

< 1.

Then the spectrum of Cφ is the union of a subset of the disk {|λ| ≤ κ} and a finite set of
eigenvalues of finite multiplicity lying on the unit circle. Further, the eigenvalues of Cφ lying
on the unit circle are roots of unity. The multiplicity of the eigenvalue 1 is the number of
cycles of φ, and the corresponding eigenspace is spanned by the characteristic functions of
the basins of attraction of the attracting cycles of φ.

Proof. We continue with the same notation as in the preceding proof. Let Sj be the operator
obtained by restricting CN

φ to the functions in Bj that vanish at xj. According to one of
Klein’s main results (Theorem 9 in [Ga3]), the spectral radius ||Sj||r of Sj is estimated by
the local contraction constant at xj,

||Sj||r ≤ lim sup
x→xj

ρBj(φ
N(x), xj)

ρBj(x, xj)
, 1 ≤ j ≤ n.

Let A0 be the ideal of functions f ∈ A such that f(xj) = 0 for 1 ≤ j ≤ n. The ideal A0 is
invariant under Cφ. Let T0 = Cφ|A0 be the restriction of Cφ to A0. The spectral radius of
the restriction of CN

φ to A0 is the maximum of the spectral radii of the Sj’s. Consequently
the spectral radius of T0 is given by

||T0||r = (max{||S1||r, . . . , ||S1||r})1/N .
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Since the invariant subspace A0 has finite codimension in A, the spectrum of Cφ is obtained
from the spectrum of T0 by adjoining the eigenvalues of the quotient operator T (f + A0) =
Cφf+A0 on the quotient space A/A0. Since CN

φ is the identity map on ∪Cj, CN
φ (f)−f ∈ A0

for all f ∈ A. Hence TN is the identity operator on A/A0, and the spectrum of T consists
only of Nth roots of unity.

It is easy to identify explicitly the spectrum of T in terms of the lengths of the cycles
C1, · · · , Cm. The quotient space A/A0 is a direct sum of m subspaces corresponding to the
functions supported on the jth cycle for 1 ≤ j ≤ m. The subspace corresponding to the jth
cycle is an invariant subspace of the operator T on the quotient space A/A0, whose dimension
is the length mj of Cj. On this subspace, T is essentially the composition operator induced
by the action of φ on the cycle. The eigenvalues of T on this subspace are the mjth roots
of unity, and each of these is a simple eigenvalue of the restriction of T to the subspace. In
particular, the multiplicity of the eigenvalue 1 is the number of cycles m. The corresponding
eigenspace includes the characteristic functions of the clopen sets F1, · · · , Fm of Theorem
3.3. Since these functions are linearly independent, they span the eigenspace. �

Recall that an operator V is quasi-compact if there is an integer m ≥ 1 and a compact
operator K such that ||V m + K|| < 1. We mention the following corollary of the preceding
analysis.

Corollary 3.5 Let Cφ be a unital homomorphism of the uniform algebra A. If φn(MA) is
hyperbolically bounded for some n ≥ 1, then Cφ is quasi-compact.

Proof. Let S be the finite-dimensional operator defined so that S = 0 on A0, while S
coincides with Cφ on the eigenspaces of Cφ corresponding to eigenvalues of unit modulus.
Then ||Cφ − S||r < 1, so ||(Cφ − S)m|| < 1 for large m. Thus ||Cm

φ + K|| < 1 for some
finite-dimensional operator K, and Cφ is quasi-compact. �

3.3 Factorization of Operators

We say that an operator S factors through an operator T if there are operators U and V
with appropriate domains and ranges such that S = U ◦T ◦V . We say that S factors almost
isometrically through T if, moreover, for any ε > 0 we can choose the operators U and V so
that (1− ε)||x|| ≤ ||Ux|| ≤ (1 + ε)||x|| and (1− ε)||x|| ≤ ||V x|| ≤ (1 + ε)||x||.

We will be interested in factoring the identity operator of `p through an operator T .
This boils down to finding a subspace “almost” isometric to `p on which T is “almost” an
isometry.

Theorem 3.6 Let Cφ be a composition operator on the uniform algebra A. The following
are equivalent:
(i) φ(MA) is not hyperbolically bounded,
(ii) for each n ≥ 1, the identity operator of `n∞ factors almost isometrically through Cφ,
(iii) the identity operator of `∞ factors almost isometrically through C∗∗φ ,
(iv) the identity operator of `1 factors almost isometrically through C∗φ.
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Proof. Suppose first that (i) holds. Let ε > 0, and let {yj}∞j=1 be a sequence of points in
MA whose images xj = φ(yj) have the properties of Theorem 2.5. Thus there are functions
{Fk} in A∗∗ such that Fk(xj) = 0 for j 6= k, Fk(xk) = 1, and

∑
|Fk| ≤ 1 + ε. Define the

operator U : `1 7→ A∗ by

U(ξ) =
∑

ξjyj, ξ ∈ `1.

Then ||U(ξ)|| ≤ ||ξ||, so ||U || ≤ 1. Let V : A∗ 7→ `1 be defined as in Corollary 2.6, so
that V (L) is the sequence {〈L, Fk〉} ∈ `1 for L ∈ A∗. By representing L as a measure on
MA∗∗ and estimating an integral, we obtain ||V (L)|| ≤ (1 + ε)||L||, or ||V || ≤ 1 + ε. Since
C∗φ(yj) = φ(yj) = xj, we have V (C∗φ(U(ξ)))k = 〈C∗φ(

∑
ξjyj), Fk〉 =

∑
ξj〈xj, Fk〉 = ξk, and

V ◦ C∗φ ◦ U is the identity map of `1. Using ||C∗φ|| = 1, we obtain ||ξ|| = ||V (C∗φ(U(ξ)))|| ≤
||V || ||C∗φ|| ||U(ξ)|| ≤ (1 + ε)||U(ξ)|| and ||ξ|| = ||V (L)|| ≤ (1 + ε)||L|| for L = C∗φ(U(ξ)).
These show that U is close to isometry on `1, and V is close to isometry from the range of
C∗φ ◦ U onto `1. Thus (iv) holds.

We obtain (iii) from (iv) by taking adjoints. We obtain (ii) from (iii) and the principle
of local reflexivity, or by using the functions from the proof of Lemma 2.4.

Suppose finally that (ii) holds. Let r < 1 and n ≥ 1, and let ε > 0 be small. Let
fj ∈ A be the image of the jth basis element ej of `n∞ under the operator that is close to
being an isometry. Then 1 − ε < ||fj ◦ φ|| < 1 + ε, so we can find yj = φ(xj) such that
1 − ε < |fj(yj)| < 1 + ε. If k 6= j, then ||ej ± ek|| = 1, so that ||fj ± fk|| < 1 + ε, and
|fj(yj) ± fk(yj)| < 1 + ε. It follows that |fk(yj)| < τ(ε), where τ(ε) → 0 as ε → 0. (Take
τ(ε) = 2

√
ε.) Thus ρA(yj, yk) ≥ 1− δ(ε), where δ(ε)→ 0 as ε→ 0. Consequently the points

y1, . . . , yn are not contained in any collection of n−1 hyperbolic balls of radius r, and φ(MA)
is not hyperbolically bounded. �

Corollary 3.7 Let Cφ be a composition operator on the uniform algebra A. If C∗φ belongs
to an operator ideal to which the identity operator on `1 does not belong, then φ(MA) is
hyperbolically bounded.

This corollary applies, in particular, when Cφ is weakly compact.

3.4 Uniform Algebras on Arbitrary Sets

We say that A is a uniform algebra on a set Y if A is a uniformly closed subalgebra of
bounded functions on Y that contains the constants and separates the points of Y . The
norm of A is given by

||f || = sup{|f(y)| : y ∈ Y }, f ∈ A.(2)

We can identify Y with a subset of the spectrum MA of A, and we take the topology of Y
to be the weak topology determined by the functions in A, that is, the topology inherited
from MA. If Y is any subset of MA such that (2) holds, then we may view A as a uniform
algebra on Y .
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If φ : Y 7→ Y is such that f ◦ φ ∈ A whenever f ∈ A, then the operator f 7→ f ◦ φ is
a unital homomorphism of A, and consequently φ extends to a self-map of MA. We denote
this extension also by φ, so that the homomorphism coincides with Cφ.

We say that φ is hyperbolically bounded on Y if φ(Y ) is a hyperbolically bounded subset
of MA, that is, if φ(Y ) is contained in a finite union of pseudohyperbolic balls whose radii
are strictly less than 1.

Lemma 3.8 Let A be a uniform algebra on Y , and suppose φ : Y 7→ Y is such that f ◦φ ∈ A
whenever f ∈ A. If φ is hyperbolically bounded on Y , then (the extended) φ is hyperbolically
bounded on MA. Further, φ(MA) is contained in the Gleason parts that meet Y .

Proof. Choose r < 1 and points yj ∈ Y , 1 ≤ j ≤ m, such that φ(Y ) is contained in
the pseudohyperbolic balls {ρA(φ(yj), x) ≤ r}. We may assume that the φ(yj)’s belong to
different Gleason parts of MA. Suppose that φ(MA) is not hyperbolically bounded. Then
there are points wi ∈ MA and functions fi ∈ A such that ||fi|| < 1, fi(φ(yj)) = 0 for
1 ≤ j ≤ m, and fi(φ(wi)) → 1. Then |fi(x)| ≤ r for all x ∈ φ(Y ), so |fi ◦ φ| ≤ r on Y . By
(2), ||fi ◦ φ|| ≤ r. In particular, |fi(φ(wi))| ≤ r. This contradiction shows that φ(MA) is
hyperbolically bounded. The same argument shows that φ(MA) is contained in the Gleason
parts of the φ(yj)’s. �

Theorem 3.9 Let A be a uniform algebra on Y . Suppose φ : Y 7→ Y is such that f ◦ φ ∈ A
whenever f ∈ A. If φn(Y ) is hyperbolically bounded for some n ≥ 1, then (the extended) φ
has a finite number of periodic points in MA, all of which belong to the norm closure of Y .
Further, the iterates φk of φ converge uniformly on Y to the set of periodic points.

Proof. By the preceding lemma, each point u of φn(MA) is contained in the same Gleason
part as a point v of φn(Y ). Since ρA(φk(u), φk(v))→ 0 as k →∞, the iterates of any point
of MA accumulate on the norm-closure of Y in MA. Thus the periodic points belong to the
norm-closure of Y . The remaining assertions of the theorem follow from Theorem 3.3. �

For certain algebras it is possible to improve on Theorem 3.6 by factoring the identity
operator of `∞ through Cφ rather than through its double dual C∗∗φ .

Theorem 3.10 Let A be a uniform algebra on Y such that the limit of any bounded net of
functions in A that converges pointwise on Y also belongs to A. Let φ : Y 7→ Y be such that
f ◦ φ ∈ A whenever f ∈ A. Suppose φ is not hyperbolically bounded on Y . Then the identity
operator of `∞ factors almost isometrically through Cφ. Further, A is a dual Banach space,
Cφ is the adjoint of an operator on the predual of A, and the identity operator of `1 factors
almost isometrically through the predual of Cφ.

Proof. The condition on pointwise bounded limits guarantees that A is a weak-star closed
subspace of `∞(Y ), by the Krein-Schmulian theorem. (For a similar argument, see p.100
of [Ga1].) It follows that the restriction of any function in A∗∗ to Y coincides on Y with a
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function in A. Thus we can replace the functions Fk in the proof of Theorem 3.6 by functions
fk ∈ A that satisfy the interpolation conditions and the estimate

∑
|fk(y)| ≤ 1+ε for y ∈ Y .

Thus |
∑m

k=1 akfk| ≤ 1 + ε on Y for any choice of the unimodular constants a1, · · · , am, and
since by (2) the norm on A is the sup-norm over Y , ||

∑m
k=1 akfk|| ≤ 1+ε. It follows as before

that
∑
|fk| ≤ 1 + ε on MA. We define R : `∞ 7→ A and S : A 7→ `∞ by Rλ =

∑
λjfj and

Sf = {f(yk)}, and we compute that (S ◦Cφ◦R)(λ)k = Cφ((
∑

j λjfj)(yk)) =
∑

j(λjfj)(xk) =
λk, so that S ◦ Cφ ◦ R is the identity on `∞. The estimates on the norms of R and S are
obtained as before.

Since A is a weak-star closed subspace of `∞(Y ), the quotient Banach space A∗ =
`1(Y )/(`1(Y ) ∩ A⊥) has A as its dual. Let δy ∈ `1(Y ) be the characteristic function of
the singleton {y}. The correspondence δy → δφ(y) induces an operator on `1(Y ) that leaves
A⊥ invariant. It induces a quotient operator on A∗, which is readily seen to have Cφ as its
dual. We define an operator R∗ : A∗ → `1 by

R∗(µ+ A⊥) =

{∑
y∈Y

µyfj(y)

}∞
j=1

, where µ =
∑

µyδy ∈ `1(Y ),

and we define an operator S∗ : `1 → A∗ by

S∗(λ) =
∑
j

λjδyj + A⊥, λ ∈ `1.

A straightforward computation reveals that the adjoint operators of R∗ and S∗ are respec-
tively R and S, and that R∗ and S∗ implement a factorization of the identity operator of `1

through the predual of Cφ. Estimates on the norms for R∗ and S∗ follow from those for R
and S, so that the identity of `1 factors almost isometrically through the predual of Cφ. �

3.5 Uniform Algebras of Analytic Functions

Let A be a uniform algebra on Y . A subset D of Y is an analytic disk if there is a one-to-one
map z of D onto an open disk in the complex plane such that the functions in A are analytic
functions of the coordinate map z on D. We say that Y is analytic-diskwise connected if
given any two points x, y ∈ Y , there is a finite collection of analytic disks D1, . . . , Dm in Y
such that x ∈ D1, y ∈ Dm, and Dj ∩ Dj+1 6= ∅ for 1 ≤ j < m. We state for emphasis the
following corollary to Theorem 3.9.

Theorem 3.11 Let A be a uniform algebra on Y . Suppose that Y is analytic-diskwise
connected. Let φ : Y 7→ Y be a map such that f ◦ φ ∈ A whenever f ∈ A. If φ is
hyperbolically bounded on Y , then the iterates of (the extended) φ converge uniformly to a
fixed point x0 of φ, which belongs to the norm closure of Y in A∗.

Proof. The connectedness hypothesis implies that A has no nontrivial idempotents. Con-
sequently MA is connected. Since the iterates of φ converge uniformly on MA to the set of
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periodic points, the set of periodic points is connected, and hence it consists of only one
point, which is a fixed point. �

Theorem 3.11 applies to H∞(Y ), the algebra of bounded analytic functions on Y , where
Y is any connected complex analytic variety (possibly infinite dimensional) such that H∞(Y )
separates the points of Y . In this case the metric ρA is essentially the Carathéodory metric
of Y .

In order to apply the theorem, we would like to have on hand a criterion for a subset of
Y to be hyperbolically bounded. One such obvious criterion is obtained by modifying the
definition of analytic-diskwise connectedness of a subset E of Y . Suppose there are N ≥ 1
and r < 1 such that for any two points x, y ∈ E, there is a collection of m ≤ N analytic disks
D1, . . . , Dm in Y so that x is the center of D1, y is the center of Dm, and for 1 ≤ j < m,
Dj meets Dj+1 at a point whose pseudohyperbolic distance from the center of each disk is
less than r. Then König’s inequality (1) shows that the pseudohyperbolic diameter of E is
strictly less than 1, so that E is hyperbolically bounded.

Theorem 3.12 Let D be a bounded convex domain in a Banach space X, and let A be a
uniform algebra on D that includes the functions in X∗. Then a subset E of D is hyper-
bolically bounded if and only if E is at a positive (norm) distance from the boundary ∂D of
D.

Proof. Without loss of generality we may assume 0 ∈ E. Suppose first that the distance
from E to ∂D is δ > 0. Let y ∈ E, and consider the intersection of the subspace spanned
by y with D. By considering disks of radius δ centered on the line segment joining 0 and y,
we see that the above criterion applies, and E is hyperbolically bounded. For the converse,
suppose there is a sequence xn ∈ E whose distances to ∂D tend to 0. Choose yn ∈ X such
that yn does not belong to the closure of D, and ||xn− yn|| → 0. By the separation theorem
for convex sets, there is Ln ∈ X∗ such that sup{Re (Ln(x)) : x ∈ D} < 1 = Ln(yn). Since
D contains the ball centered at 0 of radius δ, the norms ||Ln|| are uniformly bounded by
1/δ. Hence |Ln(xn − yn)| ≤ ||xn − yn||/δ → 0, and Ln(xn) → 1. Let fn = eLn−1 ∈ A.
Then ||fn|| < 1, fn(0) = 1/e, and fn(xn) → 1. It follows that ρA(0, xn) → 1, and E is not
hyperbolically bounded. �

As a special case, let B be the open unit ball of a Banach space X, and let A be a uniform
algebra on B that contains the functions in X∗. Let φ : B 7→ B be an analytic self-map of
B such that f ◦ φ ∈ A whenever f ∈ A. It was proved in [AGL] that if φ(B) ⊂ rB for some
r < 1, and if Cφ is compact, then φ has a unique fixed point x0 in B, to which the iterates of
φ converge uniformly; further, the spectrum of Cφ is the unital semigroup generated by the
spectrum of the Frechet derivative dCφ(x0) of Cφ at x0. The first of these two conclusions
is contained in Theorems 3.11 and 3.12, and further the result holds for bounded convex
domains just as soon as the composition operator is weakly compact. With respect to the
second conclusion, it would be of interest to say something about the spectrum of Cφ in the
case that Cφ is only weakly compact.

The proof in [AGL] depends on the Earle-Hamilton fixed point theorem (see p.187 of
[Ch], p.192 of [Di]), which asserts that if D is a bounded domain in a Banach space, and if
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φ is an analytic self-map of D such that the distance from φ(D) to the boundary of D is
strictly positive, then φ has a unique fixed point in D, to which the iterates of φ converge
uniformly. The proof of the Earle-Hamilton fixed point theorem depends on the contraction
properties of analytic maps with respect to a certain “hyperbolic” metric. As we have seen
above, the Earle-Hamilton fixed point theorem in the (simple) case of a bounded convex
domain in a Banach space is a consequence of Theorems 3.11 and 3.12. This is related to
work of L. Harris (see Proposition 23 on p. 381 of [Ha]), who treats a class of metrics on
domains in Banach spaces that includes the metric ρA.
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