COMPLEX ANALYSIS

by T.W. Gamelin

Springer-Verlag, UTM Series

Errata for the second (= third) printing, compiled June 19, 2006

CHAPTER I

- p.9, l.-7: Change " $e^{i\phi/n}$ " to " $e^{i\phi}$ "
- p.9, Ex.1, l.2: Change "cartesian" to "Cartesian" (upper case "C")
- p.12, l.-6 and l.-5: Change "lattitude" to "latitude" (spelling, twice)
- p.13, Ex.1, l.3: Change "lattitude" to "latitude" (spelling)

CHAPTER II

- p.40, Ex.10: Insert "Each function is defined to have value 0 at z = 0."
- p.41, Ex.19, l.-1: Change "P" to "p" (lower case)
- p.59, l.14: Change " z_0 " to " $z_0 = \gamma_0(0) = \gamma_1(0)$ "
- p.59, l.16: Change " z_0 " to " 0 " (four times)

CHAPTER III

- p.73, l.3: Change " $\int_{(1,0)}^{(0,0)}$ " to " $\int_{(0,1)}^{(0,0)}$ "
- p.83, l.16: Change "(2.1)" to "(2.2)"
- p.94, l.-14: Change " $1/\bar{z} = z/|z|^2$ " to " $C/\bar{z} = Cz/|z|^2$ "
- p.95, l.-10: Change the exponent " $-\pi/\alpha$ " to " $-\alpha/\pi$ "
- p.99, l.1: Change " (2π) " to " $(2/\pi)$ "

CHAPTER IV

- p.105, l.-3: Change " $\sqrt{2t}$ " to " $\sqrt{2}\,t$ "
- p.107, l.-4: Change "from 1 to i" to "from 0 to 1+i"
- p.110, l.-6: Change "III.1.1" to "III.1"
- p.111, Ex.1, l.3: Change " $\infty < t < \infty$ " to " $-\infty < t < \infty$ "
- p.118, l.13: Change "one" to "m!"

CHAPTER V

p.137, l.10: Change "Exercises 4 and 5" to "Exercises 11 and 12"

p.139, l.-1: Change "-" to "+"

p.143, Ex.4, l.4: Change "open set " to "domain "

p.152, l.11: Change " a_k " to " b_k "

p.152, l.19: In the displayed formula, change the second " a_i " to " b_i "

p.152, l.-8: Change "VI.2.6" to "VI.2.9"

p.157, Ex.1(i): Change "
$$\frac{\text{Log }z}{z}$$
 " to " $\frac{\text{Log }z}{z-1}$ "

p.159, l.-2: Change " $a_n(s) = f_t^{(m)}(\gamma(s))/m!$ for s near t " to " $a_n(t) = f_t^{(n)}(\gamma(t))/n!$ "

p.163, Ex.5, l.4: Change "open set" to "domain"

CHAPTER VI

p.180, l.13: Change " of q(z) " to " of p(z)"

p.180, l.14: Change " of p(z) " to " of q(z)"

p.180, l.-4: Change " $c_1 z^{n_1} q(z)$ " to " $c_1 z^{n_1}$ "

p.184, l.8: Change " ω " to " ω_1 "

p.187, l.6: Change " $f(re^{i\theta})$ " to " $f(e^{i\theta})$ "

CHAPTER VII

p.200, figure caption: Change "senicircular" to "semicircular"

p.217, l.12: Change "z = 1" to " of z = 0"

p.221, dogbone figure: Change " Γ_{ε} " to " γ_{ε} "

CHAPTER VIII

p.228, figure: Change "8" to "32" (redraw figure)

p.232, l.3: Change "Exercise 2" to "Exercise 1"

p.257, l.13: Change "Exercise 7" to "Exercise 8"

CHAPTER XI

p.309, l.14: Change " $\overline{G(z_0)}z$ " to " $\overline{G(z_0)}G(z)$ "

p.330, Ex.2, l.2: Change " $P(z) = z^2 + 2$ " to " $P(z) = z^2 + 1$ "

CHAPTER XIV

p.363, l.3: Change "
$$\left(\frac{n}{n-1}\right)^z$$
" to " $\frac{n^z}{(n-1)^{z+1}}$ "

CHAPTER XV

p.414, l.-8: Insert "on ∂D_n " before "for n large"

HINTS AND SOLUTIONS FOR SELECTED EXERCISES

p.447, I.2, Ex.1(e): Change to " $-2, 2e^{\pm \pi i/3} = 1 \pm i\sqrt{3}$ " (multiply given answer by -1)

p.449, II.1, Ex.10: Interchange the solutions to 10(c) and 10(d)

p.451, II.7, Ex.9, l.-2: Change " x_2 " to " x_3 "

p.454, V.3, Ex.5(b): Delete "-z+"

p.455, V.6, Ex.1: Change " $(1/12)z^6$ " to " $(61/720)z^6$ "

p.455, V.7, Ex.1(d): Change " $n\pi$ " to " $2n\pi$ "

p.456, VI.2, Ex.3(c): Change to " $a_1 = 1 - 8/\pi^2$ " (change plus sign to minus sign)

p.457, VI.4, Ex.2(b): Change the two minus signs in the linear combination to plus signs

p.457, VI.6, Ex.2: Change " $k \ge 1$ " to " $k \ne 0$ " and delete " $c_k = -i(-1)^k/k$ for k < -1,"

p.459, VIII.1, Ex.5, l.1: Change " $\alpha<1$ and $\alpha>3$ " to " $1<\alpha<3$ ", and change " $1\leq\alpha\leq3$ " to " $\alpha\leq1$ and $\alpha\geq3$ ".

p.462, IX.2, Ex.12(c): Change "two" to "four", and change " f(z)=2/z " to " f(z)=2/z, f(z)=(2-z)/(1+z) and f(z)=2(z+1)/(z-2)"

Assorted Comments

p.71, l.-9 to -7: Technically the sum appearing in line -9 is not a Riemann sum, because functions are evaluated at two different points in each interval. However, the sum does approximate the integral.