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1 Introduction 

Grothendieck [-4] pointed out that, for any topological space X, one can make 
the set IF] H2i(X; z) into a commutative ring, denoted M(X), in such a way 

i_>0 
that the augmented total Chern class 

C: K~ ~ M(X) 

becomes a homomorphism of rings. Here the augmented total Chern class c: 
K~ ~ 1-[ H2i(x; Z) sends a vector bundle E over X to its rank in H~ Z) 

i>0 
and to its ith Chern class cg~H2i(X; Z) for i=> 1. The definition of the ring 
structure on M(X) uses the standard formulas for the total Chern class of a 
direct sum and tensor product of vector bundles. 

It is well known that the ring K~ is the 0th group of a multiplicative 
cohomology theory K ' X ,  and it is natural to ask whether the ring M(X) has 
a similar extension to a cohomology theory. Segal [-5] defined a cohomology 
theory whose 0th group was isomorphic to M(X), but this theory did not have 
the desired property that the Chern class map K ~  M(X) should extend 
to a map ofcohomology theories. Recently Boyer et al. [3], using Chow varieties, 
defined a different cohomology theory M* X such that the abelian group M~ 
is naturally isomorphic to M(X), and such that the Chern class map K~ 
-~M~ extends to a map of cohomoiogy theories k * X ~ M * X .  (Here k*X 
denotes connective K-theory.) This solved Segal's problem (b) in [5]. 

In this paper we show that the ring-homomorphism c: K ~ 1 7 6  does 
not extend to any map of multiplicative cohomology theories k * X ~ M * X .  
In fact, the abelian group M~ is not the 0-term of any multiplicative cohomo- 
logy theory. This solves Segal's problem (a) in [5]. The proof is an elementary 
transfer calculation. 
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2 Statement, and outline of proof 

To begin, we define the abelian group M (X). For any space X, let 

MiX) = n ~  z) x il  x [ I  n~'(x; z)), 
i ~ 1  

with the group structure on H~ Z) being addition, and with the group struc- 
ture ~ on 1 x H H2~(X; Z) given by the cup product in ordinary cohomology: 

i > l  

(Xo; 1 + x l + x 2 + - . - ) ~ ( Y o  ; 1 +Yl +Y2+ ...) 
=(Xo +Yo ; 1 +(xl  + yl) +(x2 +Xl Yl +Y2)+ . .-)- 

Theorem 1 Let M* be a cohomology theory such that there is a natural isomorph- 
ism M~ ~-MiX) of abelian groups. Then M* cannot be given the structure of 
a multiplicative cohomology theory. 

As explained in the introduction, the hypothesis of the theorem applies to at 
least two examples, namely the cohomology theory defined by Segal and the 
one defined by Boyer et al. 

Our references for the notion of a multiplicative cohomology theory, or 
equivalently of a ring-spectrum, are Adams's books [1] and [2]. In particular, 
a multiplicative cohomology theory's multiplication is not assumed to be either 
commutative or associative. 

The strategy of the proof is to show that the projection formu]a f ,  ixf*y) 
= ( f ,  x)y, which is the basic property of the transfer homomorphism in a multi- 
plicative cohomology theory, cannot hold. (Here f :  X--, Y is a covering map 
of topological spaces.) 

Specifically, let G=Z/2•Z/2, H=Z/2~G,  and consider the double cover 
f : B H ~ B G .  We will exhibit an element yeM~ such that f*y=OeM~ 
but (assuming that there is a multiplication | on the cohomology theory M*) 
f ,  I|176 This contradicts the projection formula. So, in fact, there 
is no multiplicative cohomology theory M* with the given 0th group. 

The inconvenience in this proof is that we have not made any explicit assump- 
tions about the transfer f ,  and the product | in M~ So we need to derive 
some information about them from the general situation in order to check 
that f ,  1 |  4:0 in our specific covering. 

3 Analysis of the product | on M ~  

The reader is advised to skip this section. Lemma 2, at the end of the section, 
gives some technical information about an arbitrary product on M~ which 
is needed for the proof of Theorem 1. The whole section could be omitted if 
we were willing to assume that the product | on M~ was given by the 
usual formula for the Chern classes of a tensor product, but it seems preferable 
to prove Theorem 1 as stated. 

In this section we analyze the product | on M ~ We will make the weak 
assumption that ( M~ | is a contravariant functor from spaces to (possibly) 
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non-associative rings. That is, the abelian group M ~  has a bilinear product 
M~ X |  M~ X -* M~ X with a multiplicative identity 1 ~ M~ X. 

For example, consider the case X=po in t .  Then the additive group M ~  
= H ~ ( X ; Z ) =  Z. Since the multiplication on this group is bilinear over addition, 
it must have the form a| = kab for some fixed keZ.  In order to have a multipli- 
cative identity, we must have k--_+ 1. If k = -  1, then by reversing the sign 
of our identification of M ~  with M(X)  we can arrange that k = l ;  so we 
can assume that k =  i. That is, M~ as a ring. 

By functoriality, for any space X, the element 1 in the ring M ~  is the 
pullback via the map X ~p t .  of l~M~ That is, it is the element 

1=(1; 1 + 0 + 0 +  ...)~M~176215 H H2"(X; Z) �9 
n > l  

Lemma 1 Suppose that M ~ is a contravariant functor from spaces to rings such 
that M ~  as abelian groups. (The rings M ~  are not assumed to be 
commutative or even associative.) Then there are integers p, q such that, for every 
space X, the multiplication on M~ X satisfies: 

(0; 1 +xx + x 2 +  . .3 |  l + 0 + y 2 + 0 +  ...) 
=(0;  1 +O+O+pxl  Yz +q( x 2 -  2x2)y2 + ...). 

Here the various ellipses "'... " denote arbitrary cohomoiogy classes of dimension 
greater than the dimension of the classes shown. 

Proof. The tensor product we are considering, |  M ~  • M ~  ~ M ~  corre- 
sponds to a map of classifying spaces 

(l-I K(Z, Zn))x ( H  K(Z, Zn))--* 1-I K(Z, 2n). 
n > 0  n>_-0 n > 0  

For  the lemma, we consider only the restriction of this map to the product 
A x B defined as 

(,) A •  I K(Z,  2n) )x (K(Z ,  4)x  l-] K(Z, 2n)) -~ YI K(Z, Zn). 
n__>l n_>_4 n>=l 

In what follows, we will denote by x =(0; 1 + X x + x2 + . . . )  elements of [X, A] 
'= l--[ H2n(x;  Z), and by y=(0 ;  1 +O+y2 +0 . . . )  elements of I-X, B]. The tensor 

n_>_l 

product map (*) can be described by cohomology classes z,~H2"(A x B;Z), 
n >  1. The form of such classes is clear, since the cohomology of Eilenberg- 
MacLane spaces is known: 

Z l = a X  1 

z2=bx2 +CXz +dy2 

z3=exal + f xl x2+gx3+hxa  YE 
z4=ix~+jx~ x2 +kx, x3+lx,+my~+nx~ Y2+OX2 y~ 

+ PY4 + q t(y2) + r t (x2). 

Here a, b, etc. are integers. Also teHS(K(Z,  4); Z)tors~Z/2 is the only relevant 
torsion class. 
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We now use bilinearity of the product | over |  Note that, for any space 
X , A ( X )  and B(X) are subgroups of M ~  under @. In particular, z, must 
be 0 if all of the x~ are 0, or if all of the y~ are 0. This simple observation 
suffices to show that the z~ must have the following special form: 

Z I = 0  

Z2~0 

23 =px1  Y2 

Z4=qX21 y2 + r x 2  Y2, 

p, q, r eZ .  The addition G has a simple form on such z's in dimensions < 8 :  

(0;1 + 0 + 0 + z 3 + z 4 +  ...)| 1 + 0 + 0 + z ; + z ; +  ...) 

=(0; 1 +0+0+(z3  +z;)+(z4+z:,)+ ...). 

Therefore each of z3 and z 4 must be bilinear functions of x and y (with respect 
to •). 

We can use the linearity of z4 as a function of x (for fixed y) to produce 
a relation between q and r in the formula for z4. The addition in x has the 
following form. 

(0; 1 + x l  + x a +  ...)@(0; 1 +x'l +x~  + ...) 

=(0;  14-(Xt + X'I)+(X2 + X 1 X' 1 -? X'2)+ ...). 

The linearity of z a = q x ~ y 2 + r x 2 y 2 = ( q x ~ + r x 2 ) y :  in x implies the linearity 
o f q x } + r x z  in x, that is: 

q(xl + x'O2 +r(x~ + xl x'l + x'2)=qx~ +rx2 +q(x'2)2 +rx2.  

So (2q+r)x l  x'l =0.  Since this is to be true for all cohomology classes x~, x'~ 
in H 2 of any space, we must have 2 q + r = 0 e Z .  So z 4 = q ( x ~ - - 2 x z )  y2, which 
completes the proof  of the lemma. 

Lemma 2 Suppose that M ~ is a contravariant functor from spaces to rings such 
that M~ X ~- M (X) as abelian groups. (The ring M~ X is not assumed to be associa- 
tive.) Then there are integers p, q such that for all spaces X, the product in 
M ~ X satisfies: 

(2; 1 + x l + x 2 +  ...) |  l + 0 + y 2 )  

=(0;  1 + 0  + 2y a +px~ Y2 +(Y~ + q(xZt - 2 x z )  Y2) + ..-). 

Proof. In addition to Lemma l, we use the fact, mentioned earlier in this section, 
that (1; 1 ) e M ~  is the multiplicative identity, so that (2; l ) |  for any 
x ~ M ~  

( 2 ; l + X l + X 2 +  ...) |  1 +O+y2)  

=(2;  1)| 1 +O+y2)Q(O;  1 +x~ - x 2  + ...)Q(O; 1 +O+y2)  

= (0 ; (1+0+y2)2 (1  +O+O+ pxl  y2 + q(x~-- 2x2) Y2 + ...) 

=(0;  l +O+ 2y2 + px  1 yz +(y22 + q ( x Z -  2x2) y2)+ ...). 
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4 Proof  of Theorem 1 

Let M* be a cohomology theory such that M ~  as abelian groups. 
Suppose that M ~  is given a natural ring structure |  which need not be 
either commutat ive or associative. Thus M ~  is just an abelian group with 
a bilinear product M ~  |  M ~ 1 7 6  which has a multiplicative identity 
1 e M ~ X. We will produce a finite covering map f :  X --+ Y and an element y e  M ~ Y 
such that f ' y = 0  but ( f ,  1 ) |  This violates the projection formula, and 
therefore M* cannot be made into a multiplicative cohomology theory. 

It is not obvious how to compute jr, 1| K since we have not made any 
explicit assumption on the transfer map f ,  or on the product |  But at least 
we can say that if f :  X ~ Y is a covering map of degree d, then f ,  1 has " r ank  d "  
in M ~ Y (Lemma 3), and we can try to find a covering f :  X ~ Y of some degree 
d and an element y E M ~  such that f ' y = 0  and y |  (anything of rank d in 
M ~ Y) is not 0 (Lemma 4). 

Lemma 3 Let M* be a cohomology theory such that M ~  as abelian 
groups. Let f :  X - *  Y be a covering map of  degree d. Suppose Y is connected. 
Then the transfer f ,  : M~ X -* M ~ Y satisfies 

f ,  1 =(d; ! + . . . )~M ~ Y. 

We will say that f ,  1 has "rank d "  in M ~ Y. 

Proof. Let y be a point in Y. Then the covering becomes trivial over y. But 
for any trivial covering map  LI z ~ z ,  the transfer map of a cohomology 

dcopies 

theory is just the addition in that theory. Since the addition | in M ~  restricts 
to addition in M~ Z, the result follows. Q.E.D. 

Lemma 4 Let (M ~ @) be a contravariant functor from spaces to (possibly nonas- 
sociative) rings such that M ~  ~-M(X) as abelian groups. There is a space Y 
with a double cover f :  X -~ Y and an element y~ M ~ Y such that f *  y = 0  and 

y| of rank 2 in M ~ Y)~O. 

Proof. By Lemma 2, it suffices to find a space Y with a double cover f :  X -~ Y, 
and a class yE~Hg(Y; Z), such that f ' Y 2  = 0  and 

y2 + q(x2-- 2x2) yz *O~HS(  g; Z) 

for any q~Z,  xl EH2(y; Z), x2~ H4(X ; Z). 

Let 
G = z / 2  | z /2 ,  

H =  Z/2 c G. 

We will show that the double cover f :  BH--,  BG has the required properties. 
(Thus X = BH and Y = BG, in the statement of the lemma.) We know that 

H 2 (BG; Z) ~ Z/2 �9 Z/2. 

Let a and b the generators for this group such that f * a = O  in H2(BH; Z ) = Z / 2 .  
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Let yz=abeHa(BG; Z); clearly f 'Y2  =0  and 2y2=0.  According to the first 
paragraph of this proof, we need to show that 

y~ + q(xZ-- 2x2) Y2 = yz(y2 + qx~)=~O, 
for any qEZ, xt~H2(BG; Z), xz~H4(BH; Z). Since 2y2=0,  this expression sim- 
plifies to yz(y2+qx~). Now the even-dimensional cohomology HeV(BG;Z) is 
a Z/2-polynomial algebra generated by a and b. Since y2=ab is not a Z/2- 
multiple of a square in the polynomial ring Z/2[a,  b], we have Y2 +qx~ +0 
for any q~Z. Since He'(BG; Z) is an integral domain, we have 

y~ + b(x~-2x2) Y2 = Yz(Y2 + bx2):~OeHS(BG; Z). QED 

Suppose that there is a multiplicative cohomology theory (M*, |  such that 
M~ as abelian groups. Let f:BH--*BG be the covering map con- 
structed in the proof of Lemma 4. Lemmas 3 and 4 combine to prove that 
(0; l+O+ab)eM~ has the property that f*(O; l+O+ab)=O~M~ but 
that 

f ,  1| I+O+ab)~O~M~ 
In fact, Lemma 3 shows that f ,  1 has rank 2 in M~ and Lemma 3 shows 
that the product of (0; 1 +O+ab)~M~ with any element of rank 2 in M~ 
is not zero. 

We recall that the projection formula is valid for any multiplicative cohomo- 
logy theory A*, by [2, pp. 127-128]. It asserts (about A ~ that, for a finite 
covering f :  X ~ 1I, x~A~ yEA ~ Y, 

f , ( x f*y )=( f ,  x) y. 
In particular, ( f ,  1) y= f , ( f*y)  must be 0 if f ' y = 0 .  Therefore the previous 
paragraph's result contradicts the projection formula. So there is no multiplica- 
tive cohomology theory M* such that M~ as abelian groups. The 
theorem is proved. 

5 Variants 

A similar proof shows that the ring MR(X)= IF] H"(X; Z/2), which is related 
n > O  

to Stiefel-Whitney classes, cannot be made into a multiplicative cohomology 
theory. We can use the same covering map BH ~ BG, and we can find classes 
a, beHI(BG; Z/2) such that, for any ring structure on Mk(X), the product in 
MR(BG) of (0; l + 0 + a b )  with any element of rank 2 is not zero. Then the 
proof goes as before. 
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