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Abstract. We show that a projective variety with an int-amplified endomorphism
of degree invertible in the base field satisfies Bott vanishing. This is a new way to an-
alyze which varieties have nontrivial endomorphisms. In particular, we extend some
classification results on varieties admitting endomorphisms (for Fano threefolds of
Picard number one and several other cases) to any characteristic. The classification
results in characteristic zero are due to Amerik–Rovinsky–Van de Ven, Hwang–Mok,
Paranjape–Srinivas, Beauville, and Shao–Zhong. Our method also bounds the de-
gree of morphisms into a given variety. Finally, we relate endomorphisms to global
F -regularity.

1. Introduction

There is a long-standing conjecture about smooth Fano varieties admitting non-
invertible surjective endomorphisms.

Conjecture 1.1. Let X be a smooth Fano variety of Picard number 1 over an alge-
braically closed field of characteristic zero. Suppose that X admits a non-invertible
surjective endomorphism. Then X is isomorphic to projective space.

Conjecture 1.1 has been proved when

(1) dim X = 3 [Ame97, ARVdV99, HM03],
(2) dim X = 4 and X has Fano index greater than 1 [SZ24],
(3) X is a hypersurface [PS89, Bea01], or
(4) X is a homogeneous space [PS89].

The aim of this paper is to give a new approach to this problem and to generalize
cases (1), (2), and (3) above to arbitrary characteristic.

Theorem A. Let X be a smooth projective variety over an algebraically closed field k.
Assume that X admits an endomorphism whose degree is greater than 1 and invertible
in k. Suppose that one of the following holds.

(1) X is a smooth Fano threefold of Picard number 1.
(2) X is a smooth Fano fourfold of Picard number 1 and Fano index greater than

1.
(3) X is a hypersurface of dimension at least 3.

Then X is isomorphic to projective space.
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Our method also gives information on morphisms other than endomorphisms.
The following result was known in characteristic zero in cases (1) and (2) [Ame97],
[ARVdV99, Theorem 0.2], [HM03, Theorem 2], [SZ24, Theorem 1.5], and for quadrics
in characteristic zero in case (3) [Ame07, Theorem]. Our proof is short and valid in
arbitrary characteristic.

Theorem B. Let X be one of the varieties in Theorem A. Let Y be a smooth pro-
jective variety over k of the same dimension that also has Picard number 1. If X is
not isomorphic to projective space, then there is an upper bound on the degrees of all
morphisms Y → X that have degree invertible in k.

The following assertion is a key ingredient for Theorem A. An endomorphism
f : X → X is said to be int-amplified if there is an ample Cartier divisor H on
X such that f ∗H −H is ample [Men20, MZ20].

Theorem C. Let X be a normal projective variety over a perfect field k. Suppose
that X admits an int-amplified endomorphism whose degree is invertible in k. Then
X satisfies Bott vanishing for ample Weil divisors. That is,

H i(X,Ω
[j]
X (A)) = 0

for every i > 0, j ≥ 0, and A an ample Weil divisor.

Remark 1.2. The assumption “int-amplified” is weaker than some related conditions
on endomorphisms, such as polarized, meaning that there is an ample Cartier divisor
H with f ∗H ∼ qH for some integer q ≥ 2. For example, the endomorphism f(x, y) =
(x2, y3) of P1 × P1 is int-amplified, but no positive iterate of f is polarized. On the
other hand, for a variety with Picard group Z, every endomorphism of degree greater
than 1 is polarized and hence int-amplified.

Remark 1.3. A smooth Fano variety that satisfies Bott vanishing is rigid, since
H1(X,TX) = H1(X,Ωd−1

X (−KX)) = 0, where d is the dimension of X. So Theorem
C implies that only finitely many smooth complex Fano varieties in each dimension
admit an int-amplified endomorphism.

Remark 1.4. In proving Theorem C for singular varieties, we develop some interesting
tools. In particular, we prove the finiteness of flat cohomology H1(X,µp) for smooth
varieties X over an algebraically closed field of characteristic p (Lemma 2.1).

Finally, we show that a Fano variety with a suitable endomorphism is well-behaved
in characteristic p:

Theorem D. Let X be a Fano variety over a perfect field k of characteristic p > 0.
Suppose that X admits an int-amplified endomorphism of degree prime to p. If X is
strongly F -regular (for example, smooth), then it is globally F -regular.

It is known that the mod p reductions of a klt Fano variety in characteristic zero
are globally F -regular for sufficiently large primes p ([SS10, Theorem 1.2]). The point
of Theorem D is that it holds even if p is small. In this respect, Fano varieties with
a suitably nontrivial endomorphism behave well, somewhat like toric varieties. For
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example, Petrov showed that the Hodge spectral sequence degenerates for all smooth
projective varieties that are globally F -split (which follows from globally F -regular)
[Bha22, Corollary 2.7.6].

For hypersurfaces of dimension at least 3 and degree at least 2, it is straightforward
to see that Bott vanishing fails. This implies Theorem A(3) by Theorem C.

The proof of Theorem A is similar for cases (1) and (2). To describe case (1):
we show that projective space is the only smooth Fano threefold of Picard number
1 that satisfies Bott vanishing (see also Remark 1.5). In characteristic zero, this is
an easy consequence of the classification [IP99]. So assume that the characteristic p
is greater than 0. Since we do not have such a complete classification in this case,

we lift X to characteristic zero. By Theorem C, we can take a lift X̃K of X, which
is a smooth Fano threefold of Picard number 1 over an algebraically closed field K
of characteristic zero. However, lifting endomorphisms is difficult in general, and

therefore we prove that X̃K satisfies Bott vanishing instead. Then X̃K
∼= P3

K
by the

argument in characteristic zero. Finally, observing that the Fano indices are preserved
by lifting, we conclude that X ∼= P3

k.

Remark 1.5. The paper [Tot24] determines which smooth Fano threefolds in char-
acteristic zero satisfy Bott vanishing [Tot24, Theorem 0.1]. For smooth Fano three-
folds in positive characteristic that are constructed in the same way as smooth Fano
threefolds in characteristic zero, that paper also determines which ones satisfy Bott
vanishing. After this paper appeared on the arXiv, Tanaka showed that the classifi-
cation of smooth Fano threefolds takes essentially the same form in any characteristic
[Tan23b, Theorem 1.1], [Tan23a, Theorem 1.1]. Independent of Tanaka’s results,
we show unconditionally that projective space is the only smooth Fano threefold of
Picard number 1 in any characteristic that satisfies Bott vanishing (Proposition 3.8).

1.1. Related results.

1.1.1. Two-dimensional case in positive characteristic. Nakayama showed that a
smooth projective rational surface in characteristic p that admits an endomorphism
whose degree is greater than 1 and prime to p must be toric [Nak10, Proposition
4.4]. On the other hand, he found a smooth rational surface that admits a separable
polarized endomorphism but is not toric [Nak10, Example 4.5].

1.1.2. Failure of Bott vanishing for separable polarized endomorphisms. Answering a
question in the first version of this paper, we give an example to show that Theorem
C fails (that is, Bott vanishing fails) if the assumption that the endomorphism f has
degree invertible in k is weakened to the assumption that f is separable (Proposition
5.1). We do not know whether Theorems A and B hold for f separable rather than
for f of degree invertible in k.

1.1.3. Three-dimensional case in arbitrary characteristic. Normal projective Q-
Gorenstein threefolds that admit polarized endomorphisms in arbitrary characteristic
were studied in detail by Cascini–Meng–Zhang [CMZ20, Theorem 1.8]. In particular,
they proved that a smooth rationally chain connected threefold in characteristic p
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admitting a polarized endomorphism f has an f -equivariant minimal model program
if p > 5 and the degree of the Galois closure fGal of f is prime to p.

1.1.4. Fano threefolds of arbitrary Picard number in characteristic zero. Meng–
Zhang–Zhong [MZZ22] proved that a smooth Fano threefold over an algebraically
closed field of characteristic zero that admits an int-amplified endomorphism is toric.
Therefore, it is natural to ask the following question. After the first version of this
paper, a positive answer was given in [Tot23, Theorem 6.1].

Question 1.6. Let X be a smooth Fano threefold over an algebraically closed field of
characteristic p > 0. Suppose that X admits an int-amplified endomorphism whose
degree is prime to p. Is X toric?

1.2. Notation and terminology. Unless otherwise mentioned, k is an algebraically
closed field of characteristic p ≥ 0 and a variety is defined over k.
A morphism of varieties f : Y → X over k is separable if it is dominant and k(Y )

is a separable field extension of k(X). Equivalently (for k algebraically closed), the
derivative of f is surjective at some smooth point of Y .

For a normal variety X over a field k and i ≥ 0, we write Ωi
X for Ωi

X/k. The sheaf of

reflexive differentials Ω
[i]
X is the double dual (Ωi

X)
∗∗. More generally, for a Weil divisor

D on X, we write Ω
[i]
X(D) for the reflexive sheaf (Ωi

X ⊗OX(D))∗∗. If X is smooth over

k, then OX(D) is a line bundle and Ω
[i]
X(D) is just the tensor product Ωi

X ⊗OX(D).

2. Bott vanishing and endomorphisms

In this section, we prove Theorem C, relating Bott vanishing with endomorphisms.
We also prove a general relation between Bott vanishing and morphisms into a given
variety, not just endomorphisms (Proposition 2.7).

2.1. Finiteness of flat cohomology. The following lemma may be known, but we
could not find a reference in this generality.

Lemma 2.1. Let X be a smooth variety over an algebraically closed field k, and let
s be a positive integer. Then the flat cohomology group H1(X,µs) is finite.

Proof. The problem reduces to the case where s is prime. If s is invertible in k, then
this finiteness holds for cohomology in all degrees [Mil80, Corollary VI.5.5]. So we can
assume that k has characteristic p > 0 and s = p. (The result here is special to H1.
Indeed, a supersingular K3 surface X over k has H2(X,µp) infinite, containing the
additive group k [Art74, Proposition 4.2].) It is straightforward to see that H1(X,µp)
injects into H1(k(X), µp) = k(X)∗/(k(X)∗)p [Kel22, Lemma 3.9].

Let X be a normal compactification of X. By de Jong, there is a separable alter-
ation f : Y → X [dJ96, Theorem 4.1]. That is, f is generically étale and Y is a smooth
projective variety over k. Let Y be the inverse image of X in Y . Here k(Y ) is a finite
separable extension of k(X), and so k(X)∗/(k(X)∗)p injects into k(Y )∗/(k(Y )∗)p. By
the previous paragraph, it follows that H1(X,µp) injects into H1(Y, µp).
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So it suffices to show that H1(Y, µp) is finite. Consider the Kummer sequence
O(Y )∗/(O(Y )∗)p → H1(Y, µp) → Pic(Y )[p]. The group of unitsO(Y )∗ is an extension
of a finitely generated abelian group by k∗ [Kah06, Lemme 1], and so O(Y )∗/(O(Y )∗)p

is finite. So it suffices to show that Pic(Y )[p] is finite.
Since Y is smooth, we have Pic(Y ) = Pic(Y )/M , where M is the subgroup gener-

ated by the codimension-1 subvarieties of Y contained in Y − Y . In particular, the
abelian group M is finitely generated. Applying the snake lemma to the map of exact
sequences

0 // M //

p

��

Pic(Y ) //

p

��

Pic(Y ) //

p

��

0

0 // M // Pic(Y ) // Pic(Y ) // 0,

we obtain an exact sequence Pic(Y )[p] → Pic(Y )[p] → M/p. So Pic(Y )[p] is finite
if Pic(Y )[p] is finite. That is immediate from the structure of the Picard group of a
smooth projective variety: Pic(Y ) is an extension of a finitely generated abelian group
NS(Y ) by the k-points of an abelian variety [BGI71, Théorème XIII.5.1]. Lemma
2.1 is proved. □

2.2. Bott vanishing. In this subsection, we prove Theorem C. We are generalizing
Fujino’s proof of Bott vanishing for toric varieties, based on the existence of suitable
endomorphisms, beyond the toric setting.

Definition 2.2. Let X be a smooth projective variety over a field. We say that X
satisfies Bott vanishing if we have

H i(X,Ωj
X(A)) = 0

for every i > 0, j ≥ 0, and A an ample Cartier divisor.

For singular varieties, we consider the following strong version of Bott vanishing.
A Weil divisor (with integer coefficients) is called ample if some positive multiple is
an ample Cartier divisor. Likewise for nef.

Definition 2.3. Let X be a normal projective variety over a field. We say that X
satisfies Bott vanishing for ample Weil divisors if we have

H i(X,Ω
[j]
X (A)) = 0

for every i > 0, j ≥ 0, and A an ample Weil divisor.

Remark 2.4. All projective toric varieties satisfy Bott vanishing for ample Weil divi-
sors, by Fujino [Fuj07, Proposition 3.2].

Proof of Theorem C. Since k is perfect, the normal variety X over k is geometrically
normal [SPA23, Tag 038O]. Replacing k with its algebraic closure, we may assume
that k is algebraically closed. For clarity, we first prove the theorem for X smooth.
(That is enough for the applications in this paper.) So let X be a smooth projective
variety over an algebraically closed field k with an endomorphism f and an ample



6 Tatsuro Kawakami and Burt Totaro

Cartier divisor H on X such that f ∗H − H is ample. In particular, f ∗H is ample,
and so f does not contract any curves. Therefore, f : X → X is finite. We assume
that the degree of f is invertible in k.

Let A be any ample Cartier divisor on X. Fix i > 0 and j ≥ 0. We want to show
that

H i(X,Ωj
X(A)) = 0.

We will use Fujita’s vanishing theorem [Fuj83, Theorem 1]:

Theorem 2.5. Let X be a projective scheme over a field, H an ample Cartier divisor
on X, and E a coherent sheaf on X. Then there is a positive integer m such that
H i(X,E⊗OX(mH +D)) = 0 for every i > 0 and every nef Cartier divisor D on X.

Since f is finite and X is smooth over k, there is a trace map τf : f∗Ω
j
X → Ωj

X such
that the composition

Ωj
X

f∗
→ f∗Ω

j
X

τf→ Ωj
X

is multiplication by deg(f), by Garel and Kunz [Gar84], [Kun86, section 16], [SPA23,
Tag 0FLC]. Thus 1

deg(f)
τf gives a splitting of the pullback f

∗ : Ωj
X ↪→ f∗Ω

j
X . Taking the

pushforward by f , we obtain a split injective map f∗Ω
j
X ↪→ (f 2)∗Ω

j
X , and thus a split

injective map Ωj
X ↪→ (f 2)∗Ω

j
X . Repeating this procedure, for every positive integer e,

(f e)∗ : Ωj
X ↪→ (f e)∗Ω

j
X splits. Tensoring with OX(A), we have a split injective map

Ωj
X(A) → (f e)∗(Ω

j
X((f

e)∗A)).

Taking cohomology (and using that f e is finite), we have a split injective map

H i(X,Ωj
X(A)) ↪→ H i(X,Ωj

X((f
e)∗A)).

So it suffices to find an e ≥ 1 such that the right hand side is zero. Let m be a positive
integer associated to the given ample Cartier divisor H (with f ∗H −H ample) and
the coherent sheaf E = Ωi

X , in Fujita vanishing (Theorem 2.5). Then it suffices to
find an e ≥ 1 such that (f e)∗A−mH is nef.
Since f ∗H −H is ample, there is a rational number c > 1 such that f ∗H − cH is

ample. Here f ∗ takes nef divisors to nef divisors. So, for every e ≥ 1, (f e)∗H − ceH
is nef.

Since A is ample, there is a rational number u > 0 such that A − uH is ample.
Using again that f ∗ takes nef divisors to nef divisors, we find that for every e ≥ 1,
(f e)∗A − u(f e)∗H is nef. It follows that (f e)∗A − uceH is nef. There is a positive
integer e such that uce ≥ m. Then (f e)∗A−mH is nef, as we want. Bott vanishing
is proved.

More generally, assume that X is normal (rather than smooth). Since f is a finite

morphism between normal varieties, reflexive differentials Ω
[j]
X = (Ωj

X)
∗∗ pull back

under f . (We can pull differential forms back outside Xsing∪ f(Xsing), and that gives
a pullback map on reflexive differentials since the complement has codimension at

least 2.) That is, we have a pullback map Ω
[j]
X → f∗Ω

[j]
X . Likewise, the trace map

τf : f∗Ω
[j]
X → Ω

[j]
X is defined outside Xsing ∪ f(Xsing), so it extends to all of X since
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the sheaf Ω
[j]
X is reflexive. Given this, the proof above works without change for an

ample Cartier divisor A.
Finally, to prove the full theorem, assume that X is normal and A is an ample Weil

divisor. For this, we need a version of Fujita vanishing for Q-Cartier Weil divisors:

Lemma 2.6. Let X be a normal projective variety over an algebraically closed field k,
H an ample Cartier divisor on X, E a reflexive sheaf on X, and s a positive integer.
Then there is a positive integer m such that H i(X,E(mH +D)) = 0 for every i > 0
and every nef Weil divisor D such that sD is Cartier.

Proof. Since X is a normal projective variety over k, the Picard group Pic(X) is an
extension of a finitely generated abelian group by the k-points of an abelian variety
[BGI71, Théorème XIII.5.1], [Kle05, Theorem 5.4]. Therefore, Pic(X)/s is finite. Let
U be the smooth locus of X, so that the divisor class group Cl(X) is isomorphic to
Pic(U). By Lemma 2.1, H1(U, µs) is finite. By the Kummer sequence H1(U, µs) →
H1(U,Gm)

s−→ H1(U,Gm), the s-torsion subgroup Cl(X)[s] = Pic(U)[s] is also finite.
By tensoring the exact sequence 0 → Pic(X) → Cl(X) → Cl(X)/Pic(X) → 0 over
Z with Z/s, we have an exact sequence Cl(X)[s] → (Cl(X)/Pic(X))[s] → Pic(X)/s.
So (Cl(X)/Pic(X))[s] is finite.
Let D1, . . . , Dr be Weil divisors with sDj Cartier that represent every element of

the group (Cl(X)/Pic(X))[s]. By subtracting a suitable multiple of H from each
Dj, we can assume that −Dj is nef for each j. Then, for every nef Weil divisor D
on X with sD Cartier, there is a 1 ≤ j ≤ r such that D − Dj is Cartier. Apply
Fujita’s theorem (Theorem 2.5) to the coherent sheaf ⊕r

j=1E(Dj). (By definition,
E(Dj) means the reflexive sheaf (E ⊗OX(Dj))

∗∗.) This gives that there is a positive
integer m such that H i(X,E(mH +Dj + N)) = 0 for every i > 0, every 1 ≤ j ≤ r,
and every nef Cartier divisor N . Since −Dj is nef for each j, it follows that for every
nef Weil divisor D with sD Cartier, we have H i(X,E(mH +D)) = 0 for every i > 0.
Lemma 2.6 is proved. □

We now complete the proof of Theorem C for X normal over an algebraically closed
field k and an ample Weil divisor A. This follows by the argument above (where A
is an ample Cartier divisor), using Lemma 2.6 in place of Fujita’s theorem. There
is a positive integer s such that sA is Cartier. Since f is a finite morphism between
normal varieties, (f e)∗A is a Weil divisor (with integer coefficients) for every positive
integer e, and s(f e)∗A is Cartier. This is what we need in order to apply Lemma 2.6.
Theorem C is proved. □

2.3. Bounding the degree of morphisms.

Proposition 2.7. Let X and Y be normal projective varieties of the same dimension
over a field k, and suppose that both have Picard number 1. If there are morphisms
from Y to X with arbitrarily large degree such that the degree is invertible in k, then
X must satisfy Bott vanishing for ample Weil divisors.
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Proof. Let f : Y → X be a morphism whose degree is invertible in k. Let H be an
ample Cartier divisor on X. Then f ∗H has positive degree on some curve, hence is
ample since Y has Picard number 1. It follows that f : Y → X is finite.
Let A be an ample Weil divisor on X, and fix i > 0 and j ≥ 0. We need to prove

that

H i(X,Ω
[j]
X (A)) = 0.

Since deg(f) is invertible in k, we have a split injection

Ω
[j]
X (A) ↪→ f∗(Ω

[j]
Y (f ∗A)),

as in the proof of Theorem C. Taking cohomology (and using that f is finite), we
have a split injection

H i(X,Ω
[j]
X (A)) ↪→ H i(Y,Ωj

Y (f
∗A)).

If there are morphisms f : Y → X with arbitrarily large degree such that the degree
is invertible in k, then f ∗A becomes arbitrarily large in the ample cone of Y (here
just one ray). So Fujita vanishing for Weil divisors (Lemma 2.6) gives that, for f of

sufficiently large degree, H i(Y,Ω
[j]
Y (f ∗A)) = 0. By the previous paragraph, it follows

that H i(X,Ω
[j]
X (A)) = 0. Bott vanishing is proved. □

3. Bott vanishing for specific classes of varieties

3.1. Hypersurfaces. In this subsection, we prove that projective space is the only
smooth hypersurface of dimension at least 3 that satisfies Bott vanishing.

Lemma 3.1. Let X ⊂ Pd+1 be a smooth hypersurface of degree d + n over a field.
Suppose that d > 1 and n > 0. Then Hd−1(X,Ω1

X(n)) ̸= 0, and in particular, X does
not satisfy Bott vanishing.

Proof. By adjunction, the dualizing sheaf ωX is isomorphic to OX(n − 2). So Serre
duality gives that Hd(X,OX(−d)) ∼= H0(X,OX(d + n − 2))∗ ̸= 0. By the Euler
sequence

0 → OPd+1 → OPd+1(1)⊕d+2 → TPd+1 → 0

we have H0(Pd+1, TPd+1(−2)) = 0. By the exact sequence

0 → Ω1
Pd+1(−d) → Ω1

Pd+1(n) → Ω1
Pd+1(n)|X → 0,

we have Hd(X,Ω1
Pd+1(n)|X) = 0. Here we used that Hd+1(Pd+1,Ω1

Pd+1(−d)) ∼=
H0(Pd+1, TPd+1(−2))∗ = 0 and Bott vanishing on Pd+1. By the exact sequence

0 → OX(−d) → Ω1
Pd+1(n)|X → Ω1

X(n) → 0,

we have Hd−1(X,Ω1
X(n)) ̸= 0, as desired. □

Proposition 3.2. Let X ⊂ Pd+1 be a smooth hypersurface of dimension at least 2
over an algebraically closed field. If X satisfies Bott vanishing, then X ∼= Pd or X is
the quadric surface P1 × P1.
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Proof. A Fano variety that satisfies Bott vanishing is rigid, since H1(X,TX) =
H1(X,Ωd−1

X (−KX)) = 0, where d = dim(X). That excludes all Fano hypersurfaces
of degree at least 3 [Kod86, equation 5.21]. Bott vanishing also fails for quadrics
of dimension at least 3 [AWZ21, Example 3.2.6]. Finally, Lemma 3.1 shows that
Bott vanishing fails for all non-Fano hypersurfaces of dimension at least 2. (This is
mostly relevant for the Calabi-Yau case. Indeed, Bott vanishing fails for all varieties
of positive dimension d with ample canonical class, since Hd(X,ωX) = k ̸= 0.) □

3.2. Fano threefolds. In this subsection, we prove that projective space is the only
Fano threefold of Picard number 1 that satisfies Bott vanishing, in any characteristic.
Throughout this subsection, we use the following convention.

Convention 3.3. Let k be an algebraically closed field of positive characteristic.
We denote W (k) the ring of Witt vectors and K the field of fractions of W (k). For

a proper scheme X over k, we say that a scheme X̃ over W (k) is a lift of X if

X̃ ⊗W (k) k ∼= X and X̃ is flat and proper over W (k). For a lift X̃ and a Cartier

divisor Ã on X̃, we denote the geometric generic fiber of X̃ → Spec W (k) by X̃K and

the pullback of Ã to X̃K by ÃK .

Definition 3.4. Let X be a smooth Fano variety over an algebraically closed field.
The Fano index r(X) ∈ Z>0 of X is the largest integer n ∈ Z>0 such that −KX ∼ nA
for some Cartier divisor A.

Lemma 3.5. Let X be a smooth Fano variety with d := dim X. Suppose that X
satisfies Kodaira vanishing. If r(X) ≥ d+ 1, then X ∼= Pd.

Proof. The proof of [Meg98, Proposition 4] works in any dimension, since we assume
that X satisfies Kodaira vanishing. □

Proposition 3.6. Let X be a smooth Fano variety over an algebraically closed field k

of positive characteristic. Suppose there exists a lift X̃ over W (k) of X. In addition,
assume that H1(X,OX) = H2(X,OX) = 0. Then the following statements hold.

(1) The specialization map sp : Pic(X̃K) → Pic(X) is an isomorphism of abelian
groups.

(2) r(X) = r(X̃K).
(3) Suppose that the Picard number of X is 1. If X satisfies Bott vanishing, then

so does X̃K.

Remark 3.7. For a smooth Fano threefold X, Shepherd-Barron [SB97, Corollary 1.5]
proved that H1(X,OX) = H2(X,OX) = 0 (see also [Kaw21, Corollary 3.7] for the
case where p = 2 or 3). Also, for a smooth Fano variety X of any dimension that
satisfies Bott vanishing (hence Kodaira vanishing), we have H i(X,OX) = 0 for i > 0.
See [GJ18, Theorem 1.1, Proposition 6.3] for what is known about the Fano index in
families without assuming that H1(X,OX) = H2(X,OX) = 0.

Proof. First, we prove (1). Since smoothness and ampleness are open properties

in a flat proper family, the geometric generic fiber X̃K is a smooth Fano variety
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and Pic(X̃K)
∼= NS(X̃K) is a free Z-module, where NS(X) denotes the Néron-Severi

group. Let sp: Pic(X̃K) → Pic(X) be the specialization map (see the proof of [MP12,
Proposition 3.3] for the construction). Since H1(X,OX) = 0, we have Pic(X) =
NS(X) by [FGI+05, Theorem 9.5.11]. The Picard group of the smooth Fano variety

X̃K in characteristic zero is torsion-free; for a quick proof, see [FS20, Introduction].

Next, [MP12, Proposition 3.6] gives that the specialization NS(X̃K) → NS(X) is
injective. Since Pic(XK) = NS(XK) and Pic(X) = NS(X) in our case, it follows

that sp: Pic(X̃K) → Pic(X) is injective. Since H2(X,OX) = 0, the specialization
map sp is also surjective [FGI+05, Corollary 8.5.6]. Thus (1) holds.

Next, we prove (2). By the definition of r(X̃K), we can take an ample Cartier

divisor A on X̃K such that −KX̃K
∼ r(X̃K)A. Then we have

−KX ∼ sp(−KX̃K
) ∼ sp(r(X̃K)A) = r(X̃K)sp(A),

which shows that r(X̃K) ≤ r(X).
By the definition of r(X), we can take an ample Cartier divisor A on X such that

−KX ∼ r(X)A. Let Ã ∈ Pic(X̃) be a lift of A. Then we obtain −KX̃K
∼ r(X)ÃK ,

which shows that r(X) ≤ r(X̃K). Thus, (2) holds.

Finally, we prove (3). Take an ample Cartier divisor A on X̃K and fix i > 0 and
j ≥ 0. We prove

H i(X̃K ,Ω
j

X̃K

(A)) = 0.

Let A := sp(A). Then A ∼ ÃK for a lift Ã of A by the argument in (1). Since A

is ample, we can take m ≫ 0 such that h0(X̃K ,OX̃K
(mÃK)) > 1, and upper semi-

continuity ([Har77, Theorem III.12.8]) shows that h0(X,OX(mA)) > 1. Since the
Picard number of X is 1, it follows that A is ample. By assumption, we have

H i(X,Ωj
X(A)) = 0,

and upper semi-continuity shows the desired vanishing in characteristic zero. Thus,
(3) holds. □

We use Proposition 3.6 to reduce the following Proposition to the case of charac-
teristic zero.

Proposition 3.8. Let X be a smooth Fano threefold of Picard rank 1 over an alge-
braically closed field k such that X satisfies Bott vanishing. Then X is isomorphic to
projective space.

Proof. Step 1 (characteristic zero case). Assume that k has characteristic zero. By
Bott vanishing, we have H i(X,TX) = H i(X,Ω2

X(−KX)) = 0 for all i > 0. By the
Hirzebruch–Riemann–Roch theorem (cf. [AWZ23, Proof of Theorem 7.4]), we have

0 ≤ h0(X,TX) = χ(X,TX) =
1

2
(−KX)

3 − 18 + ρ(X)− h1(X,Ω2
X),
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where ρ(X) is the Picard number of X. Then by [IP99, Tables 12.2], it follows that
X is isomorphic to the quintic del Pezzo threefold V5 (a smooth codimension-3 linear
section of Gr(2, 5) ⊂ P9), the quadric threefold Q, or P3. Since V5 and Q do not
satisfy Bott vanishing by [AWZ23, Lemma 7.10] and [BTLM97, subsection 4.1] (or
Proposition 3.2), it follows that X ∼= P3.

Step 2 (positive characteristic case). Assume that k has positive characteristic.
Since X is Fano and satisfies Bott vanishing, we have

H i(X,TX) = H i(X,OX) = 0

for all i > 0. By [FGI+05, Theorem 9.5.11], we can take a lift X̃ over W (k) of X,

and the geometric generic fiber X̃K is a smooth Fano threefold. By Proposition 3.6

(1) and (3), the Picard number of X̃K is 1 and X̃K satisfies Bott vanishing. Thus, by

Step 1, we have X̃K
∼= P3

K
. By Proposition 3.6(2), we have r(X) = r(X̃K) = 4, and

we conclude that X ∼= P3
k by Lemma 3.5. □

3.3. Images of toric varieties. Let f : Y → X be a morphism from a projective
toric variety Y onto a smooth projective variety X of Picard number 1. In char-
acteristic zero, generalizing Lazarsfeld’s result on images of projective space [Laz84,
Theorem 4.1], Occhetta-Wísniewski [OW02, Theorem 1.1] proved that X is isomor-
phic to projective space.

This result does not extend to characteristic p > 0 in full generality. For example, in
characteristic 2, there is a finite purely inseparable morphism from P3 onto a smooth
quadric threefold [Eke87, Proposition 2.5]. However, Occhetta-Wísniewski’s proof
does work without change for separable morphisms in positive characteristic. That
is:

Theorem 3.9. Let X be a smooth projective variety of Picard number 1 over an
algebraically closed field. Let Y be a proper toric variety. If there is a separable
morphism Y → X, then X is isomorphic to projective space.

For possible future use, let us show how a special case of Theorem 3.9 follows from
our arguments with Bott vanishing. One can also prove a version of Proposition
3.10 using Achinger–Witaszek–Zdanowicz’s results on images of F -liftable varieties
[AWZ21, Theorem 4.4.1]. For example, they showed that a smooth complex surface
that is an image of a proper toric variety must be toric [AWZ21, Theorems 2 and 3].

Proposition 3.10. Let X be a smooth projective threefold of Picard number 1 over
an algebraically closed field k. Let Y be a proper toric variety of the same dimension.
If there is a morphism Y → X of degree invertible in k, then X is isomorphic to
projective space.

Proof. Let Y → Y ′ → X be the Stein factorization. Replacing Y by Y ′, we may
assume that f is finite and Y is a normal toric variety, by [Tan22, Proposition 2.7].
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Let A be an ample Cartier divisor on X, and fix i > 0 and j ≥ 0. By the same proof
as in Proposition 2.7 (pushing forward differential forms), we have a split injection

H i(X,Ωj
X(A)) ↪→ H i(Y,Ω

[j]
Y (f ∗A)),

where Ω
[j]
Y is the sheaf of reflexive differentials, (Ωj

Y )
∗∗. Since f ∗A is ample, Bott

vanishing for toric varieties gives that the group on the right is zero, and so the group
on the left is zero. That is, X satisfies Bott vanishing.

Since f is separable, we have f ∗(−KX) = −KY + R for an effective divisor R,
the ramification divisor [Kol13, equation 2.41.2]. Since −KY is big and the Picard
number of X is 1, it follows that −KX is ample. Therefore, X ∼= P3 by Proposition
3.8. □

3.4. Fano fourfolds of index greater than 1. In this subsection, we prove that
projective space is the only Fano fourfold of Picard number 1 and Fano index greater
than 1 that satisfies Bott vanishing.

Lemma 3.11. Let Y ⊂ PN be a smooth projective variety of dimension at least 2 over
an algebraically closed field k of characteristic zero, and let X be a smooth hyperplane
section. Assume that −KY = OY (b) with b ≥ 2. Then the following hold.

(1) We have

χ(X,TX) = χ(Y, TY )− χ(Y, TY (−1))− h0(Y,O(1)) + 1.

(2) We have

χ(X,TX(−1)) = χ(Y, TY (−1))− χ(Y, TY (−2))− 1.

(3) For 2 ≤ a ≤ b− 1, we have

χ(X,TX(−a)) = χ(Y, TY (−a))− χ(Y, TY (−a− 1)).

Proof. We have exact sequences of coherent sheaves:

0 → TY (−1) → TY → TY |X → 0 and

0 → TX → TY |X → OX(1) → 0.

For any integer a, it follows that

χ(X,TX(−a)) = χ(Y, TY (−a))− χ(Y, TY (−a− 1))− χ(X,OX(1− a)).

Since KY = OY (−b), adjunction gives that KX = (KY +X)|X = OX(1− b), and so
X is Fano. By Kodaira vanishing, we have H>0(X,OX(1− a)) = 0 for all a ≤ b− 1.
Also, since OX(1) is ample, we have H0(X,OX(1 − a)) = 0 for all a ≥ 2, whereas
h0(X,OX(1−a)) = 1 for a = 1. Therefore, χ(X,OX(1−a)) is zero for 2 ≤ a ≤ b−1,
and it is 1 for a = 1, proving statements (2) and (3). For a = 0, the exact sequence
0 → OY → OY (1) → OX(1) → 0 shows that χ(X,OX(1)) = χ(Y,OY (1)) − 1 =
h0(Y,OY (1))− 1, proving (1). □

Proposition 3.12. Let X be a smooth Fano fourfold of Picard number 1 and Fano
index greater than 1 over an algebraically closed field k. If X satisfies Bott vanishing,
then X is isomorphic to projective space.
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Fano index O(1)4 χ(X,TX) Description
2 2 −185 sextic in P5(153)
2 4 −90 quartic in P5

2 6 −55 complete intersection of quadric and cubic in
P6

2 8 −36 complete intersection of three quadrics in P7

2 10 −24 Gr(2, 5) ∩Q ∩ P7 ⊂ P9

2 12 −15 OGr(5, 10)+ ∩ P9 ⊂ P15

2 14 −9 Gr(2, 6) ∩ P10 ⊂ P14

2 16 −3 LGr(3, 6) ∩ P11 ⊂ P13

2 18 1 G2/P ∩ P12 ⊂ P13

3 1 −103 sextic in P5(1423)
3 2 −45 quartic in P5(152)
3 3 −20 cubic in P5

3 4 −4 complete intersection of two quadrics in P6

3 5 8 Gr(2, 5) ∩ P7 ⊂ P9

4 2 15 quadric Q ⊂ P5

5 1 24 P4

Table 1. The Fano 4-folds of Picard number 1 with Fano index ≥ 2

Proof. If k has characteristic p > 0, then (as in the proof of Proposition 3.8) X lifts
to characteristic 0, and the lift also satisfies Bott vanishing. So it suffices to prove
the proposition for k of characteristic zero. (That will imply that the lift has Fano
index 5, so X in characteristic p has Fano index 5 and satisfies Kodaira vanishing; so
it is isomorphic to P4

k.)
So assume that k has characteristic zero. Then the smooth Fano fourfolds of Picard

number 1 and index greater than 1 were classified by Fujita, Mukai, and Wilson
[KP23, Theorem 1.2], [Muk89, Theorem 2], [Wil87]. The classification is listed in
Table 1, where the calculations of χ(X,TX) can be made using Lemma 3.11. Since
we assume that X satisfies Bott vanishing, the tangent bundle TX = Ω3

X(−KX) has
zero cohomology in positive degrees, and so χ(X,TX) ≥ 0. (Here we used that on a
smooth d-dimensional variety X, we have a dual pairing Ω1

X ×Ωd−1
X → Ωd

X = O(KX),
and so TX ∼= Ωd−1(−KX).) By Table 1, X is either P4, the quadric 4-fold Q, a
codimension-2 linear section of the Grassmannian Gr(2, 5) ⊂ P9, or a hyperplane
section of the G2-Grassmannian G2/P ⊂ P13. In each of these cases other than P4,
we will disprove Bott vanishing by a Riemann-Roch calculation.

We know that Bott vanishing fails for the quadric fourfold, as mentioned in Propo-
sition 3.2. It remains to disprove Bott vanishing for the other two fourfolds above.
First, let Y be G2/P ⊂ P13; then Y has dimension 5 and −KY = OY (3). Using the
Borel-Weil-Bott theorem, Konno showed (in characteristic zero, as here) that TY (−a)
has zero cohomology in all degrees for 1 ≤ a ≤ 2 [Kon89, Theorem 3.4.1]. By Lemma
3.11, the Fano fourfold X = G2/P ∩P12 ⊂ P13 has χ(X,TX(−1)) = 0− 1 = −1 < 0.
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By adjunction, we have −KX = O(2), so χ(X,Ω3(1)) = χ(X,TX(−1)) = −1 < 0,
and so X does not satisfy Bott vanishing.

Finally, let Y be Gr(2, 5) ⊂ P9, which has dimension 6 and Fano index 5. By
applying Lemma 3.11 twice, a codimension-2 linear section X has

χ(X,TX(−1)) = χ(Y, TY (−1))− 2χ(Y, TY (−2)) + χ(Y, TY (−3))− 2.

Snow showed (in characteristic zero, as here) that if Z is a Grassmannian Gr(s, t)
other than projective space or Gr(2, 4), then −KZ = OZ(t) and TZ(−a) has zero
cohomology in all degrees for 1 ≤ a ≤ t − 1 [Sno86, Theorem 3.4(3)]. In particular,
Y = Gr(2, 5) has χ(Y, TY (−a)) = 0 for 1 ≤ a ≤ 4. By the formula above, the
Fano fourfold X = Gr(2, 5) ∩ P7 ⊂ P9 has χ(X,TX(−1)) = −2 < 0. By adjunction,
−KX = OX(3), So χ(X,Ω3(2)) = χ(X,TX(−1)) = −2 < 0, and so X does not
satisfy Bott vanishing. This completes the proof that if a smooth Fano fourfold of
Picard number 1 and Fano index greater than 1 satisfies Bott vanishing, then it is
isomorphic to projective space. □

4. Proof of Theorem A and Theorem B

Proof of Theorems A and B. In the situation of Theorem A (resp. B), X satisfies
Bott vanishing by Theorem C (resp. Proposition 2.7), and the assertion follows from
Propositions 3.2, 3.8, and 3.12. □

5. Failure of Bott vanishing for separable polarized endomorphisms

We now show that Bott vanishing can fail if we only assume that an int-amplified
endomorphism is separable (rather than of degree invertible in k). This resolves a
question in the first version of this paper. (Bott vanishing obviously fails for insepara-
ble endomorphisms, since every projective variety over a finite field has the Frobenius
endomorphism, which is int-amplified.)

Proposition 5.1. For any prime power q at least 4, there is a smooth projective 3-fold
X over Fq such that X has a separable polarized (hence int-amplified) endomorphism,
but Bott vanishing fails on X.

Proof. Let q be a prime power at least 4, and let X be the blow-up of P3 over Fq

at some set of Fq-points on the plane {w = 0}. Then X has a separable polarized
endomorphism (inspired by a 2-dimensional example by Nakayama [Nak10, Example
4.5]). Namely, consider the endomorphism of P3 given by

g([x, y, z, w]) = [xq − xwq−1, yq − ywq−1, zq − zwq−1, wq].

Then g is separable, but it restricts to the Frobenius morphism on the plane {w = 0}.
In particular, g fixes the given set of Fq-points in the plane {w = 0}. A direct
calculation shows that g lifts to an endomorphism f of the blow-up X. (It suffices to
check this over the point [1, 0, 0, 0] in P3, in view of the symmetry group GL(3,Fq)
(acting on x, y, z) of the endomorphism g.) Clearly f is separable, since g is.
We now specialize to the case where X is the blow-up of P3 over Fq at 5 Fq-

points in the plane {w = 0} with no 3 collinear. (This is possible for q ≥ 4, as we
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assumed.) These points are contained in a unique smooth conic C. After a change
of coordinates in GL(3,Fq), we can assume that C is the conic {w = 0, xy = z2}.
Write H for the pullback to X of the line bundle OP3(1) on P3, and E1, . . . , E5 for
the exceptional divisors. Then f ∗H = qH and f ∗Ej = qEj for j = 1, . . . , 5. Since
Pic(X) = Z{H,E1, . . . , E5}, f is polarized, hence int-amplified.

Next, we show that the line bundle A := 3H −
∑5

j=1Ej is ample on X. Indeed,

xw, yw, zw,w2, and xy − z2 are sections of L := 2H −
∑

Ej, and so the base locus
of L is only the strict transform of the conic C in P3. Also, L has positive degree
on every curve in E1, . . . , E5. The base locus of A = L +H is at most the conic C,
but the linear system |A| also contains the sum of a plane through p1 and p2, a plane
through p1 and p3, and a plane through p4 and p5; so A is basepoint-free on X. Since
A = L+H has A ·C = 1, A has positive degree on every curve on X. Together with
basepoint-freeness, this implies that A is ample.
To disprove Bott vanishing on X, we will show that H1(X,Ω1

X(A)) is not zero.
Consider the exact sequence 0 → OX(−

∑
j Ej) → OX → ⊕jOEj

→ 0. Tensoring

with Ω1
X(3H) and taking cohomology gives an exact sequence:

H0(X,Ω1
X(3H)) → ⊕5

j=1H
0(Ej,Ω

1
X(3H)) → H1(X,Ω1

X(A)).

So it suffices to show that the restriction map on H0 is not surjective. Since the line
bundle 3H is pulled back from P3, the first space is isomorphic to H0(P3,Ω1

P3(3)).
Next, each Ej is isomorphic to P2, and we have an exact sequence on E := Ej:
0 → OX(−E)|E → Ω1

X |E → Ω1
E → 0, where OX(−E)|E = OE(1) on E = P2. Here

H0(E,Ω1
E) = 0, and so h0(E,Ω1

X |E) = h0(E,OE(1)) = 3. The line bundle H on X
is trivial on each Ej, and so h0(Ej,Ω

1
X(3H)) = 3 for j = 1, . . . , 5. More canonically,

H0(Ej,Ω
1
X(3H)) ∼= H0(pj,Ω

1
P3(3H)). So, to disprove Bott vanishing on X, it suffices

to show that the restriction map H0(P3,Ω1
P3(3H)) → ⊕5

j=1H
0(pj,Ω

1
P3(3H)) has rank

less than 5 · 3 = 15.
The point is that this restriction map factors through H0(C,Ω1

P3(3H)), since
p1, . . . , p5 lie on the conic C. To analyze that group, note that the vector bundle
Ω1

Pn(2H) is globally generated for any n [Laz04, equation 7.13]. As a result, Ω1
P3(3H)

is ample, so its restriction to C ∼= P1 is ample, and hence H1(C,Ω1
P3(3H)) = 0. By

Riemann-Roch, it follows that

h0(C,Ω1
P3(3H)) = χ(C,Ω1

P3(3H))

= degC(Ω
1
P3(3H)) + rank(Ω1

P3(3H))(1− g(C))

= 10 + 3 = 13.

So the restriction map H0(P3,Ω1
P3(3H)) → ⊕5

j=1H
0(pj,Ω

1
P3(3H)) has rank at most

13, thus less than 15. By the previous paragraph, this completes the proof that Bott
vanishing fails for X, even though X has a separable polarized endomorphism. □

6. Global F-regularity of Fano varieties with an endomorphism

Let X be a Fano variety in characteristic p > 0 that is strongly F -regular (for
example, smooth). If X admits an int-amplified endomorphism of degree prime to p,
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we will show that X is globally F -regular (Theorem D). (It was known to the experts
that a smooth Fano variety satisfying Bott vanishing must be globally F -split, by the
argument sketched in [BK05, Exercise 1.6.4]. Therefore, when X is smooth, Theorem
D is an immediate consequence of Theorem C.) Intuitively, “strongly F -regular” is a
strong version of “klt type” in characteristic p, and “globally F -regular” is a strong
version of “Fano type”.

Definition 6.1. Let X be a normal variety over a perfect field k of characteristic
p > 0, and let B be an effective Q-divisor on X.

(1) The pair (X,B) is globally F -regular if for every effective Weil divisor D on
X, there is a positive integer e such that the composite map

OX → F e
∗OX ↪→ F e

∗OX(⌈(pe − 1)B⌉+D)

splits as an OX-module homomorphism [SS10, Definition 3.1]. (Note that
F e
∗OX(Z) means F e

∗ (OX(Z)), for a divisor Z.)
(2) The pair (X,B) is globally sharply F -split if there is a positive integer e such

that the composite map

OX → F e
∗OX ↪→ F e

∗OX(⌈(pe − 1)B⌉)
splits as an OX-module homomorphism. (For B = 0, we omit the word
“sharply”.)

(3) The pair (X,B) is strongly F -regular, resp. sharply F -pure, if X is covered by
open sets on which the corresponding global property holds. (For B = 0, we
simply say F -pure to mean “sharply F -pure.”)

To avoid confusion, note that whether the map OX → F e
∗OX(Z) splits depends on

the effective divisor Z, not just on its linear equivalence class.
Let X be a smooth variety over a perfect field k of characteristic p > 0. The

Frobenius pushforward of the de Rham complex,

F∗Ω
•
X : F∗OX

F∗d→ F∗ΩX
F∗d→ · · · ,

is a complex of OX-module homomorphisms. Define locally free OX-modules as
follows.

Bi
X := im(F∗d : F∗Ω

i−1
X → F∗Ω

i
X),

Zi
X := ker(F∗d : F∗Ω

i
X → F∗Ω

i+1
X ).

By definition, we have an exact sequence

0 → Zi
X → F∗Ω

i
X

F∗d→ Bi+1
X → 0.(6.1.1)

We also have the exact sequence arising from the Cartier isomorphism (see [BK05,
Theorem 1.3.4], for example),

0 → Bi
X → Zi

X
Ci

→ Ωi
X → 0.(6.1.2)

Theorem 6.2. Let X be a Fano variety over a perfect field of characteristic p > 0.
Suppose that X admits an int-amplified endomorphism of degree prime to p.

(1) If X is strongly F -regular (for example, smooth), then it is globally F -regular.
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(2) If X is F -pure, then it is globally F -split.

Remark 6.3. Theorem 6.2 is sharp in some ways. Consider the projective coneX ⊂ P3

over a smooth cubic curve C ⊂ P2 over an algebraically closed field k of characteristic
p > 0. Then X is a log canonical Fano surface, and it admits an int-amplified
endomorphism of degree prime to p, coming from a multiplication endomorphism of
the elliptic curve C. But X is not strongly F -regular, hence not globally F -regular.
And if C is supersingular, then X is not F -pure, hence not globally F -split. One
might ask: is a klt Fano variety with an int-amplified endomorphism of degree prime
to p always globally F -regular?

Proof. (Theorem 6.2) We first prove that global F -regularity of a Fano variety is
equivalent to global F -splitting plus strong F -regularity, using the results of Schwede
and Smith. As a result, statement (2) will imply statement (1).

Lemma 6.4. Let X be a normal quasi-projective variety over a perfect field k, and
let B be an effective Q-divisor on X. If the pair (X,B) is globally sharply F -split,
then there is an effective Q-divisor ∆ such that (X,B+∆) is globally sharply F -split,
B +∆ has Z(p) coefficients, and KX +B +∆ is Z(p)-linearly equivalent to zero.

This is [SS10, Theorem 4.3]. They do not mention that KX +B+∆ is Z(p)-linearly
equivalent to zero, but that is what their proof gives (p. 878).

Let X be a strongly F -regular Fano variety that is globally F -split. Then Lemma
6.4 gives an effective Z(p)-divisor ∆ such that (X,∆) is globally F -split and KX +∆
is Z(p)-linearly equivalent to zero. By the definition of global F -splitting, there is
a positive integer e such that (pe − 1)∆ has integer coefficients and the inclusion
OX → F e

∗OX((p
e − 1)∆) is split. Here ∆ is Z(p)-linearly equivalent to −KX , which is

ample. So X − Supp(∆) is affine and strongly F -regular, hence globally F -regular.
By [SS10, Theorem 3.9], it follows that X is globally F -regular.

It remains to prove statement (2). That is, if X is an F -pure Fano variety that
admits an int-amplified endomorphism of degree prime to p, we will show that X is
globally F -split. Since X is F -pure, the exact sequence

0 → OX → F∗OX → F∗OX/OX → 0

is locally split on X. In particular, the sheaf F∗OX/OX is reflexive, since F∗OX is.
On the smooth locus U of X, we have 0 → OU → F∗OU → B1

U → 0. So F∗OX/OX

is the double dual B
[1]
X of B1

X .
Since the sequence

0 → OX → F∗OX → B
[1]
X → 0

is locally split, it corresponds to an element of H1(X,Hom(B
[1]
X ,OX)). We want to

show that X is globally F -split, meaning that this element is zero. We have a perfect
pairing B1

U × Bd
U → ωU on the smooth locus U of X [MS87, proof of Lemma 1.1].

As a result, the sheaf Hom(B
[1]
X ,OX) is the reflexive sheaf B

[d]
X (−KX). So it suffices

to show that H1(X,B
[d]
X (−KX)) = 0. That follows from Lemma 6.5, below. So X is

globally F -split, proving statement (2). Theorem 6.2 is proved. □
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Lemma 6.5. Let X be a normal projective variety over a perfect field of characteristic
p > 0. Suppose that X admits an int-amplified endomorphism of degree prime to p.
Then

H i(X,B
[j]
X (A)) = 0

and

H i(X,Z
[j]
X (A)) = 0

for every i > 0, j ≥ 0, and A an ample Weil divisor.

Proof. The proof of Theorem C works without change for the reflexive sheaves B
[j]
X

and Z
[j]
X in place of Ω

[j]
X . In more detail, consider the pullback map Ω

[j]
X → f∗Ω

[j]
X and

the trace map τf : f∗Ω
[j]
X → Ω

[j]
X . Because f commutes with the Frobenius morphism F

on X, we also have a pullback map F∗Ω
[j]
X → f∗F∗Ω

[j]
X and a trace map τf : f∗F∗Ω

[j]
X →

F∗Ω
[j]
X . We claim that these two maps preserve the subsheaves B

[j]
X and Z

[j]
X of F∗Ω

[j]
X ;

then the proof of Theorem C applies.

Since B
[j]
X and Z

[j]
X are reflexive sheaves, it suffices to check this claim outsideXsing∪

f(Xsing). Then the claim follows from the fact that the pullback and pushforward of
differential forms commute with the exterior derivative d [SPA23, Tag 0FLC]. □
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