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In seeking to understand the Hodge conjecture, it is important to ask how the
integral Hodge conjecture can fail. There are two known ways of producing coun-
terexamples to the integral Hodge conjecture: Atiyah-Hirzebruch’s topological ap-
proach [2, 30], and Kollár’s use of degenerations [18]. Atiyah-Hirzebruch’s method
gives varieties defined over a number field, but has the disadvantage that it only
gives varieties of dimension at least 7. Kollár’s approach disproves the integral
Hodge conjecture for 3-folds, but is inexplicit in that the examples are very general
complex hypersurfaces of certain degrees. Since “very general” excludes countably
many lower-dimensional subsets of the space of hypersurfaces, it was not known
whether the integral Hodge conjecture was true for the countably many 3-folds
which are defined over number fields.

By refining Kollár’s method, Hassett and Tschinkel recently succeeded in dis-
proving the integral Hodge conjecture for 3-folds over number fields [6, Remarque
5.10]. The method is flexible and should apply to other problems where one hopes
to show that “very general” behavior also occurs over number fields. The basic idea
is to specialize cycles from a variety over a number field to a variety over a finite
field.

Hassett-Tschinkel’s method has only been described briefly by Colliot-Thélene
and Voisin. In this paper, we work out their method in detail in sections 2 and 3.
We find that there are versions over Q of all the applications of Kollár’s method
made by Kollár [18], Debarre-Hulek-Spandaw [7], and Colliot-Thélene and Voisin
[6, Proposition 5.8]. This often requires extra work beyond Hassett-Tschinkel’s
method, which we do in sections 4 and 5. The point is that the method works
well if one can construct varieties of a given type over a finite field with geometric
Picard number 1. But this is impossible in many cases. For example, Swinnerton-
Dyer and Shioda observed that, on the assumption of the Tate conjecture, every
smooth projective surface over a finite field with even second Betti number has
geometric Picard number at least 2 [1, p. 544], [27, 5.2]. We avoid that difficulty by
careful choice of the family of varieties to consider.

All known counterexamples to the integral Hodge conjecture on 3-folds, includ-
ing those in this paper, involve non-torsion classes in integral cohomology. The
original counterexamples by Atiyah-Hirzebruch were even-degree torsion cohomol-
ogy classes on varieties of dimension at least 7. Soulé and Voisin exhibited even-
degree torsion cohomology classes which are not algebraic on certain 5-folds [28].

Hassett-Tschinkel’s method also gives the first counterexamples to the integral
Tate conjecture for 1-cycles on a variety over Q, and for 1-cycles on a variety over
the separable closure of Fp(t). These results are essentially optimal, since Schoen
showed that the usual Tate conjecture would imply the integral Tate conjecture

1



for 1-cycles on a variety over the separable closure of a finite field [25, 5]. The
only known counterexamples to the integral Tate conjecture over finite fields are in
dimension at least 7, by Colliot-Thélène and Szamuely [5, Théorème 2.1].

I thank the excellent referees for several corrections and references.

1 Notation

A variety over a field is irreducible by definition. A curve is a variety of dimension
1.

The integral Hodge conjecture for a smooth complex projective variety X asserts
that every element of H2i(X,Z) whose image in H2i(X,C) is of type (i, i) is the class
of an algebraic cycle of codimension i, that is, a Z-linear combination of subvarieties
of X. The integral Tate conjecture for a smooth projective variety X over a finitely
generated field k asserts that for any prime number l invertible in k, every element of
etale cohomology H2i(Xksep ,Zl(i)) fixed by the Galois group Gal(ksep/k) is the class
of an algebraic cycle with Zl coefficients. (As Schoen points out, the integral Tate
conjecture in this form fails already for 0-cycles on the conic curve x2 + y2 + z2 = 0
over Q [25]. As a result, it is more interesting to consider the integral Tate conjecture
over the separable closure of a finitely generated field.) The integral Tate conjecture
for a smooth projective variety X over the separable closure F of a finitely generated
field is the weaker statement that, for k a finitely generated field of definition of X,
every element of H2i(XF ,Zl(i)) fixed by some open subgroup of Gal(F/k) is the
class of an algebraic cycle over F with Zl coefficients. The usual Hodge and Tate
conjectures, which may actually be true, are the analogous statements with Q or
Ql coefficients.

Griffiths and Harris conjectured that every curve in a very general complex 3-
fold Y of degree d ≥ 6 in P4 has degree a multiple of d [14]. This would in particular
disprove the integral Hodge conjecture for 1-cycles on very general hypersurfaces of
any degree d ≥ 6, since there is an element of H4(Y,Z) ∼= Z of degree 1 (represented
by a line on some hypersurfaces Y ) and all of H4(Y,Z) is of Hodge type (2, 2).
More generally, Nori conjectured that for any smooth complex projective variety
X and a very general sufficiently ample hypersurface Y in X, the restriction map
CH iX → CH iY on Chow groups should be an isomorphism for all i < dim Y [22,
p. 368]. (To be precise, Nori conjectured this for Chow groups tensored with the
rationals, but the integral statement seems plausible in view of Kollár’s examples
[18].)

2 Hypersurfaces in P1 ×P3

This section gives Hassett-Tschinkel’s proof that the integral Hodge conjecture fails
for some hypersurfaces of bidegree (3, 4) in P1 × P3 over Q [6, Remarque 5.10].
Colliot-Thélène and Voisin showed that the integral Hodge conjecture fails for very
general complex hypersurfaces of bidegree (3, 4) in P1 × P3 [6, Proposition 5.8].
We give this example first because the proof is easier than the later proofs for
hypersurfaces in P4. The 3-folds here also have the interest that their Kodaira
dimension is 1. This is probably the smallest possible. Indeed, Voisin has proved
the integral Hodge conjecture for 3-folds which are uniruled or have trivial canonical
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bundle and first Betti number zero [32, Theorem 2]. Grabowski proved the integral
Hodge conjecture for abelian 3-folds [12, section 3.1]. The problem remains open
for more general 3-folds of Kodaira dimension zero.

Theorem 2.1. The integral Hodge conjecture for 1-cycles fails for a Zariski-dense
set of smooth hypersurfaces of bidegree (3, 4) in P1 ×P3 over Q.

For example, the proof shows that the integral Hodge conjecture fails for the
smooth hypersurface

u3x4
0 + tu2x4

1 + t2ux4
2 + t3x4

3 + 2u3x4
3 − 2t3x4

0 + 2u3x4
2 − 2t3x4

1 = 0

in P1 × P3 over Q. In this and the later examples, the proof shows more than
“Zariski-dense”: the integral Hodge conjecture fails for a positive-density subset of
all hypersurfaces over Q of bidegree (3, 4), counted by height. The proof also shows
that the integral Hodge conjecture fails for a set of hypersurfaces over Q which are
dense in the space of all hypersurfaces over R with the classical topology.

Proof. Let X be a smooth hypersurface of bidegree (3, 4) in P1×P3 over Q. Suppose
that X specializes to the singular hypersurface

{([t, u], [x0, x1, x2, x3]) : u3x4
0 + tu2x4

1 + t2ux4
2 + t3x4

3 = 0}

in P1 × P3 over Fp for some prime number p. (Similar equations have been used
in Kollár [16, IV.6.4.3.1] and in [31, proof of Theorem 0.1].) Then we will show
that every curve in X has even degree over P1. This violates the integral Hodge
conjecture for X, since H2(X,Z) maps isomorphically to H2(P1 × P3,Z) by the
Lefschetz hyperplane theorem, and the Hodge structure on H2(X,Z) is trivial.

Using the specialization map CH1(XQ) → CH1(XFp
) [11, Example 20.3.5], it

suffices to show that every curve C in XFp
has even degree over P1. It suffices to

compute the degree of C → P1
Fp

restricted to the generic point of P1
Fp

, or restricted

further to the field Fp((t)) of Laurent series around the point [t, u] = [0, 1]. Thus,
it suffices to show that the hypersurface

{[x0, x1, x2, x3] : x4
0 + tx4

1 + t2x4
2 + t3x4

3 = 0}

in P3 over Fp((t)) has no rational point over any odd-degree extension Fp((s)) of
Fp((t)).

If there is a rational point over an odd-degree extension, then we have Laurent
series t(s) and xi(s) over Fp which satisfy the equation above and such that the
valuation r := ords(t) is odd. But the valuations of the 4 terms in the equation
are congruent to 0, r, 2r, 3r (mod 4). Since r is odd, these lowest degrees are all
different. So the only way the 4 terms can add up to zero is if all are identically
zero. That would imply that xi(s) = 0 for all i, but this does not correspond to
a point in projective space. Thus our hypersurface has no rational point over any
odd-degree extension of Fp((t)).

This completes the proof that the integral Hodge conjecture fails for any smooth
hypersurface of bidegree (3, 4) in P1×P3 over Q which specializes to the given sin-
gular hypersurface over Fp for some prime number p. The set of such hypersurfaces
over Q, for a fixed prime number p, is Zariski dense in the space of all hypersurfaces
of bidegree (3, 4).
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3 Hypersurfaces in projective space over number fields

This section presents Hassett-Tschinkel’s method of producing counterexamples to
the integral Hodge conjecture for hypersurfaces in P4 over number fields [6, Re-
marque 5.10]. We formulate the method as the following generalization of Kollár’s
lemma [18] (which gives very general complex hypersurfaces).

Lemma 3.1. Let Y be an irreducible projective 3-fold over Fp with a very ample line
bundle L such that L3 = d and L ·C ≡ 0 (mod k) for every curve C in Y . Assume
that k is not a multiple of p and that d < p. Then there is a smooth hypersurface X
in P4 over Q (and also a smooth hypersurface over Fp(t)sep) of degree d such that
every curve C in X has

6 deg(C) ≡ 0 (mod k).

In fact, the conclusion holds for a Zariski dense set of hypersurfaces X over Q.

Note that the integral Hodge conjecture (or the integral Tate conjecture) would
imply that every smooth hypersurface in P4 over Q contains a 1-cycle of degree 1.
So the lemma gives many counterexamples to the integral Hodge conjecture. We
first present the easy case of a hypersurface of degree 64 over Q. With more work,
Lemma 4.1 will give an example of lower degree, 48, which is defined over Q. (In
view of Griffiths-Harris’s conjecture, I would expect that for every d at least 6 there
is a smooth hypersurface X of degree d in P4 over Q such that every curve in XQ

has degree a multiple of d.)
The proof of Lemma 3.1 gives something more precise than hypersurfaces over

Q: there is a Zariski dense set of hypersurfaces X satisfying the conclusion over
any number field F that has Fpr as a residue field, for a certain positive integer r
that could be computed. In many cases, one can take r = 1, and then there are
hypersurfaces over Q that satisfy the conclusion.

Corollary 3.2. There is a smooth hypersurface X of degree 64 in P4 over Q such
that every curve on X has even degree. In particular, the integral Hodge conjecture
fails for X.

Proof. Apply Lemma 3.1 to the 3-fold (Y, L) = (P3, O(4)) over Fp, for any prime
number p > 64.

Proof. (Lemma 3.1) We begin with the following lemma on general projections,
which is well known in characteristic zero. It is important for some later applications
that we put no restriction on the singularities.

Lemma 3.3. Let Y ⊂ PN be a nondegenerate, absolutely irreducible variety of
dimension n over an infinite field F . If F has characteristic p > 0, assume that Y
has degree less than p. Then a general linear projection of Y to Pn+1 over F is a
morphism that is (set-theoretically over F ) at most 2-to-1 in codimension 1 and at
most 3-to-1 in codimension 2.

Proof. Repeatedly reducing from Y to a general hyperplane section, we can assume
that Y has dimension 2. That is, we have to show that for a nondegenerate surface
X in PN , with deg(X) < p if F has characteristic p, a general projection of Y to
P3 is (set-theoretically) 2-to-1 at most on a 1-dimensional subset, 3-to-1 at most on
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a 0-dimensional subset, and nowhere 4-to-1 or worse. For surfaces in characteristic
zero, this is proved in Griffiths-Harris [13, pp. 611–613] using the general position
lemma: for a nondegenerate curve in projective space, a general hyperplane section
of the curve consists of points in linear general position. The general position lemma
fails in general in characteristic p, but it holds for curves in PN (possibly singular)
of degree less than p, by Rathmann [24, Cor. 1.8, Cor. 2.2]. Then Griffiths-Harris’s
argument applies.

To prove Lemma 3.1, let ϕ : Y → PN be the embedding given by L over Fp. Let
π : Y → Y ⊂ P4 be a general projection. By Lemma 3.3, every curve C in Y is the
image of a curve D in Y by a morphism that is set-theoretically 1-to-1, 2-to-1, or
3-to-1. It follows that the degree of the morphism D → C is apr for some 1 ≤ a ≤ 3
and some r ≥ 0. Since L · D ≡ 0 (mod k), we have 6pr deg(C) = 6prL · C ≡ 0
(mod k). Since p does not divide k, we have 6 deg(C) ≡ 0 (mod k).

There is a smooth hypersurface X of degree d in P4 over Q (or over Fp(t)sep) that
specializes to the singular hypersurface Y ⊂ P4 over Fp. For any such hypersurface,
the specialization map CH1(X) → CH1(Y ) [11, Example 20.3.5] shows that every
curve C in X has 6 deg(C) ≡ 0 (mod k). The set of hypersurfaces X over Q that
specialize to any given hypersurface Y over Fp is Zariski dense in the space of all
hypersurfaces, as we want.

4 Degree 48

The complex 3-fold hypersurfaces of lowest degree for which the integral Hodge
conjecture is known to fail have degree 48, by Kollár [18]. (Note the typo in the
first example in [18]: these hypersurfaces have degree 3k2 for k ≥ 4, not k2.) In this
section, we find that the integral Hodge conjecture also fails for some hypersurfaces
of degree 48 over Q.

Kollár’s example relies on the Noether-Lefschetz theorem that a very general
quartic surface in P3 over C has Picard number 1. We want to apply Lemma
3.1, but there is an extra complication: if we believe the Tate conjecture, then
every smooth surface of even degree in P3 over Fp has Picard number at least 2, by
Swinnerton-Dyer and Shioda [1, p. 544], [27, 5.2]. (In fact, we know unconditionally
that smooth quartic surfaces over Fp have Picard number at least 2 if p ≥ 3, since
the Tate conjecture has been proved for K3 surfaces in characteristic p ≥ 3 by
Nygaard-Ogus, Maulik, Charles, and Madapusi Pera [23, 19, 4, 20].) We get around
the problem by finding a quartic surface with a node in P3 over Fp which has
geometric Picard number 1. The method was suggested by de Jong and Katz’s
construction of smooth surfaces of any odd degree at least 5 in P3 over Fp with
Picard number 1 [10, Theorem 6.11].

Lemma 4.1. There is a smooth hypersurface X of degree 48 in P4 over Q such that
every curve in XQ has even degree. In particular, the integral Hodge conjecture fails
for X. The set of hypersurfaces X over Q with these properties is Zariski dense in
the space of all hypersurfaces of degree 48.

Proof. In order to get examples over Q rather than just Q, it seems that we need to
use the idea of Lemma 3.1 rather than just quoting the lemma. Let S → B be the
universal family of quartic surfaces in P3 with exactly one node, which we consider
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over Z[1/2]; then B is an integral scheme over Z[1/2]. Let SQ(B) be the generic fiber
of S → B, which is a nodal quartic over the function field Q(B). Let X = S ×P1

with the line bundle L = π∗1O(1) ⊗ π∗2O(4). Thus X → B is a family of 3-folds
equipped with a very ample line bundle L having degree L3 equal to 3 ·42 = 48. Let
XQ(B) = SQ(B) ×P1 be the generic fiber of X → B, embedded in some projective
space PN using L. By Lemma 3.3, a general projection of XQ(B) ⊂ PN to P4 is
a morphism that is (set-theoretically) at most 2-to-1 in dimension 2 and at most
3-to-1 in dimension 1. We can view this morphism as a rational map X 99K P4

B

over B. After replacing B by some nonempty open subset, we have a morphism
X → P4

B over B which is 2-to-1 at most in dimension 2 and so on, over every point
of B.

The arithmetic fundamental group π1B (with a base point in B(Q)) has a
monodromy representation on H2(SQ,Z2(1)) ∼= (Z2)21, where SQ is a quartic
surface with a node over Q. This representation preserves the intersection form
(which is nondegenerate ⊗Q2) and the vanishing subspace ker(H2(SQ,Z2(1)) →
H4(P3,Z2(2))), giving a homomorphism π1B → O(20,Z2) to an orthogonal group.

By Deligne’s arguments using Picard-Lefschetz theory, the image of the geo-
metric fundamental group π1BQ ⊂ π1B is Zariski dense in O(20,Q2) [9, Theorem
4.4.2]. (Deligne’s arguments using a Lefschetz pencil show that the monodromy of
π1BC is either Zariski dense in O(20,Q) or finite and irreducible. The finite case
can be ruled out as follows, working over C. Since the monodromy representation
on the vanishing cohomology Q20 of SC is irreducible, there is a unique invariant
symmetric bilinear form on Q20 up to scalars, which must be positive or negative
definite if the representation has finite image. But the Hodge-Riemann bilinear
relations give that the intersection form has sign (−1)p on Hp,q

prim(S) [13, p. 123].
Since H2,0

prim(S) 6= 0, the monodromy must be Zariski dense in O(20,Q), rather than
finite.)

We return to the scheme B over Z[1/2]. Since the geometric fundamental group
π1BQ is a subgroup of π1B, the image of π1B is also Zariski dense in O(20,Q2).
By the Serre-Chebotarev density theorem, the conjugacy classes of the Frobenius
elements Frobx associated to closed points x in B are equidistributed in π1B [26,
Theorem 7]. Moreover, the closed points with residue field of prime order have
density 1 among all closed points. (Closed points are counted with respect to the
order of their residue field, and in this sense those of order pr with r ≥ 2 are rare.)
Therefore, the images of the Frobenius elements Frobx associated to closed points
x of B with residue field of prime order are Zariski dense in O(20,Q2).

By the Weil conjectures (Deligne’s theorem), the characteristic polynomial of
any Frobenius element Frobx on H2((Sx)Fp

,Q2(1)) has rational coefficients [8]. So
all eigenvalues are algebraic numbers of degree at most 20 over Q. The set S of roots
of unity of degree at most 20 over Q is finite. So the locus in SO(20,Q2) of elements
with an eigenvalue in S is Zariski closed and not the whole group. Therefore, the
previous paragraph’s Zariski density statement gives that there is a closed point
x ∈ B such that the residue field has prime order p and no eigenvalues of ρ(Frobx)
on the vanishing cohomology in H2(SFp

,Q2(1)) are roots of unity. It follows that
the fiber over x is a quartic surface SFp over Fp with one node which has geometric
Picard number 1.

By the Lefschetz hyperplane theorem, coker(H2(P3
Fp

,Z2(1)) → H2(SFp
,Z2(1)))
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is torsion-free [21, Theorem 7.1]. The first group is generated by O(1). We know
that the image of Pic(SFp

) in etale cohomology is contained in the Q-line spanned
by O(1), and this torsion-freeness implies that the image of Pic(SFp

) in etale co-
homology is the Z-line spanned by O(1). Therefore, every curve in SFp

has degree
a multiple of 4. So the 3-fold XFp = SFp × P1 with the very ample line bundle
L = π∗1O(1) ⊗ π∗2O(4) has the property that every curve C on XFp

has L · C ≡ 0
(mod 4). We have arranged that the 3-fold XFp ⊂ PN has a projection to P4,
defined over Fp, which is a morphism that is (set-theoretically) 2-to-1 at most in di-
mension 2, 3-to-1 at most in dimension 1, and 4-to-1 or worse at most in dimension
0. Therefore, the image of this projection is a singular hypersurface Y of degree 48
in P4 over Fp such that every curve in YFp

has even degree.
It follows that any smooth hypersurface of degree 48 in P4 over Q that specializes

to Y over Fp has every curve of even degree. Since Y is defined over Fp, this applies
to a Zariski dense set of smooth hypersurfaces over Q.

5 Abelian 3-folds

As discussed in section 1, Griffiths and Harris conjectured that every curve in a very
general complex 3-fold of degree d ≥ 6 in P4 has degree a multiple of d. The best
result towards Griffiths-Harris’s conjecture for hypersurfaces of high degree is due
to Debarre, Hulek, and Spandaw [7]. Namely, for every odd k at least 9, if X is a
very general complex hypersurface of degree 6k, then every curve on X has degree
divisible by k. We produce hypersurfaces over the rational numbers with similar
properties:

Theorem 5.1. For any integer k prime to 6 and at least 38, there is a smooth
hypersurface X of degree 6k in P4 over Q such that every curve in XQ has degree
divisible by k. The set of such hypersurfaces over Q is Zariski dense in the space of
all hypersurfaces of degree 6k.

Debarre-Hulek-Spandaw’s method combines Kollár’s lemma with the fact that
a very general (1, 1, k)-polarized complex abelian 3-fold has Picard number 1. In
order to apply Lemma 3.1, we would like to find a (1, 1, k)-polarized abelian 3-fold
over Fp with Picard number 1, but in fact every abelian variety of dimension g over
Fp has Picard number at least g, as a consequence of Tate’s theorem that every
abelian variety over Fp is of CM type [29]. We can get around the problem at the
cost of the slightly weakened statement in Theorem 5.1.

Proof. We use a special case of Kollár’s refinement of Angehrn-Siu’s effective basepoint-
freeness theorem. Let X be a smooth complex projective 3-fold with an ample line
bundle L. Suppose that L · C ≥ 38 for every curve C on X, L2 · S ≥ 76 for every
surface S on X, and L3 ≥ 218. Then the line bundle KX ⊗ L is basepoint-free
and the associated morphism X → PN is injective [17, Theorem 5.9]. The results
available today would require stronger assumptions in order to make the derivative
of this morphism injective, but we will not need that.

By definition, an ample line bundle L on an abelian 3-fold X gives a (1, 1, k)-
polarization if the associated homomorphism X → X̂ = Pic0(X), x 7→ t∗xL ⊗ L−1,
has kernel isomorphic to (Z/k)2 [3, section 3.1]. Such a line bundle has L3 = 6k. It
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follows that for all k ≥ 38, if (X, L) is a (1, 1, k)-polarized complex abelian 3-fold
such that every curve C on X has L · C ≡ 0 (mod k) and every surface S on X
has L2 · S ≡ 0 (mod 2k), then L is basepoint-free and the associated morphism
X → PN is injective. A very general (1, 1, k)-polarized abelian 3-fold satisfies these
and even stronger properties; for example, L ·C ≡ 0 (mod 3k) for every curve C on
X [18]. For our application to abelian 3-folds over finite fields, however, we have to
consider a special class of abelian 3-folds.

Let E1, E2, E3 be elliptic curves, and let εj be a point of order k on Ej for
j = 1, 2, 3. Let X = (E1 × E2 × E3)/(Z/k)2 be the quotient by the subgroup
generated by εj − εk for 1 ≤ i < j ≤ 3. By Debarre-Hulek-Spandaw, there is
an ample line bundle L of type (1, 1, k) on X whose pullback to E1 × E2 × E3 is
π∗1O(k[0])⊗ π∗2O(k[0])⊗ π∗3O(k[0]) [7, proof of Proposition 2].

For very general complex elliptic curves Ei, A := E1 × E2 × E3 has Picard
number 3, with Néron-Severi group generated by the divisors 0 × E2 × E3, E1 ×
0×E3, and E1 ×E2 × 0. It follows that the subgroup of Hodge classes in H2(E1 ×
E2 × E3,Z) also has rank 3, spanned by the curves E1 × 0 × 0, 0 × E2 × 0, and
0×0×E3. It also follows that X has Picard number 3, and we can compute the group
N1(X) ∼= Z3 of Hodge classes in H2(X,Z). For a suitable basis x1, y1, x2, y2, x3, y3

for H1(A,Z) coming from the product decomposition A = E1×E2×E3, the isogeny
π : A → X makes π∗ : H1(X,Z) → H1(A,Z) injective with image spanned over Z
by x1, ky1, x2, ky2, x3, y1 + y2 + y3. Since Hj(A,Z) = ΛjH1(A,Z) and likewise for
X, we can compute Hj(X,Z) as a subgroup of Hj(A,Z) for each j. In particular,
the Néron-Severi group N1(A) is spanned by x1∧y1, x2∧y2, x3∧y3, and we read off
that N1(X) is spanned by k(x1∧y1), k(x2∧y2), k(x3∧y3). In particular, L ∈ N1(X)
pulls back to k(x1 ∧ y1) + k(x2 ∧ y2) + k(x3 ∧ y3).

The pushforward map π∗ : H2(A,Z) → H2(X,Z) is dual to π∗ : H2(X,Z) →
H2(A,Z), and so it can also be computed explicitly. In particular, we find that π∗
gives an isomorphism from the Hodge classes in H2(A,Z) to the Hodge classes in
H2(X,Z). It follows that every curve C on X has L · C ≡ 0 (mod k). Likewise,
using that

L2 = 2k2(x1 ∧ y1 ∧ x2 ∧ y2 + x1 ∧ y1 ∧ x3 ∧ y3 + x2 ∧ y2 ∧ x3 ∧ y3),

together with the calculation that N1(X) = Z{k(x1∧y1), k(x2∧y2), k(x3∧y3)} and
the fact that A → X has degree k2, we have L2 · S ≡ 0 (mod 2k) for every surface
S on X.

By the basepoint-freeness results mentioned earlier, these congruences imply
that for k ≥ 38 and very general complex elliptic curves E1, E2, E3, the (1, 1, k)-
polarized abelian 3-fold (X, L) with X = (E1 × E2 × E3)/(Z/k)2 has L basepoint-
free, and the resulting morphism to projective space is injective. The conclusion is
a Zariski open condition, and so the same conclusion holds for general (rather than
very general) complex elliptic curves E1, E2, E3.

Let Y1(k) be the moduli scheme over Z[1/k] of elliptic curves with a point of order
k, and let E → Y1(k) be the corresponding universal family [15, Corollary 2.7.3,
Theorem 3.7.1, Corollary 4.7.1]. Let B be the fiber product Y1(k)3 over Z. Then
we have a family A → B of abelian 3-folds with fibers of the form E1 × E2 × E3.
Using the given points of order k on E1, E2, E3, we also have a family X → B
of abelian 3-folds with (1, 1, k)-polarization L, where the fibers are of the form
(E1 × E2 × E3)/(Z/k)2.
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Let XQ(B) be the generic fiber of X → B, which is an abelian 3-fold over the
function field Q(B). By our work over C, for k ≥ 38, L is basepoint-free on XQ(B), of
degree L3 = 6k, and the associated morphism XQ(B) → PN is injective. By Lemma
3.3, applying a general projection to P4 gives a morphism XQ(B) → P4 that is (set-
theoretically over Q(B)) 2-to-1 at most in dimension 2, 3-to-1 at most in dimension
1, and 4-to-1 or worse at most in dimension 0. We can view this morphism as a
rational map X 99K P4

B over B. After replacing B by some nonempty open subset,
we have a morphism X → P4

B over B which is 2-to-1 at most in dimension 2 and
so on, over every point of B.

Let l be a prime number. The arithmetic fundamental group π1B (with a base
point in B(Q)) acts on H1(AQ,Zl) ∼= Z6

l . Here H1(AQ,Ql) = H1(E1 × E2 ×
E3,Ql) = V1 ⊕ V2 ⊕ V3, where Vi is the standard representation of the ith copy
of GL(2,Ql). As a representation of π1B, all three representations Vi have the
same determinant Ql(−1), by Poincaré duality. Because the geometric fundamental
group π1BQ is Zariski dense in SL(2,Ql)3, the arithmetic fundamental group π1B

is Zariski dense in the algebraic group G = Gm ·SL(2)3 over Ql. Next, consider the
representation

H2(AQ,Ql(1)) ∼= (Λ2H1(AQ,Ql))(1)
∼= (Ql)

3 ⊕ (V1 ⊗ V2)(1)⊕ (V1 ⊗ V3)(1)⊕ (V2 ⊗ V3)(1).

Most elements of G(Ql) have no eigenvalues which are roots of unity on (Vi⊗Vj)(1),
for i 6= j in {1, 2, 3}. Using the Serre-Chebotarev equidistribution theorem as in
the proof of Theorem 4.1, it follows that there is a closed point x of B with residue
field of prime order such that the corresponding abelian 3-fold AFp = E1×E2×E3

has geometric Picard number 3. Thus there are elliptic curves E1, E2, E3 over Fp

such that the abelian 3-fold X = (E1 ×E2 ×E3)/(Z/k)2 has Picard number 3 over
Fp, while (by our shrinking of the base space B) a sub-linear system of the (1, 1, k)-
polarization |L| gives a morphism X → P4 over Fp which is (set-theoretically over
Fp) 2-to-1 at most in dimension 2, 3-to-1 at most in dimension 1, and 4-to-1 or
worse at most in dimension 0.

We have L3 = 6k. By the description of the pullback map H∗(X,Zl) →
H∗(A,Zl) given earlier in the case of complex abelian 3-folds, which we apply for
the prime factors l of k, it follows from Picard number 3 that every curve C on
XFp

has L ·C ≡ 0 (mod k). Let Y be the singular hypersurface of degree 6k in P4

over Fp which is the image of X. Then every curve C in YFp
satisfies 6 deg(C) ≡ 0

(mod k). Therefore, every smooth hypersurface X of degree 6k in P4 over Q that
specializes to YFp

has the property that every curve C in X satisfies 6 deg(C) ≡ 0
(mod k). Since Y is defined over Fp, this applies to a Zariski dense set of hypersur-
faces of degree 6k over Q. In the special case where k is prime to 6, the statement
that 6 deg(C) ≡ 0 (mod k) implies that deg(C) ≡ 0 (mod k).
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