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Introduction.

Atiyah and Hirzebruch gave the first counterexamples to the Hodge conjecture
with integral coefficients [3]. That conjecture predicted that every integral coho-
mology class of Hodge type (p,p) on a smooth projective variety should be the
class of an algebraic cycle, but Atiyah and Hirzebruch found additional topological
properties which must be satisfied by the integral cohomology class of an algebraic
cycle. Here we provide a more systematic explanation for their results by showing
that the classical cycle map, from algebraic cycles modulo algebraic equivalence to
integral cohomology, factors naturally through a topologically defined ring which
is richer than integral cohomology. The new ring is based on complex cobordism,
a well-developed topological theory which has been used only rarely in algebraic
geometry since Hirzebruch used it to prove the Riemann-Roch theorem [17].

This factorization of the classical cycle map implies the topological restrictions
on algebraic cycles found by Atiyah and Hirzebruch. It goes beyond their work
by giving a topological method to show that the classical cycle map can be non-
injective, as well as non-surjective. The kernel of the classical cycle map is called
the Griffiths group, and the topological proof here that the Griffiths group can
be nonzero is the first proof of this fact which does not use Hodge theory. (The
proof here gives nonzero torsion elements in the Griffiths group, whereas Griffiths’s
Hodge-theoretic proof gives non-torsion elements [13].)

This topological argument also gives examples of algebraic cycles in the kernel of
various related cycle maps, where few or no examples were known before, thus an-
swering some questions posed by Colliot-Théléne and Schoen ([8], p. 14; [37], p. 13).
Colliot-Théléne asked, in particular, whether the map CH?*(X)/n — H*(X,Z/n)
is injective for all smooth complex projective varieties X. Here C H'X is the group
of codimension ¢ algebraic cycles modulo rational equivalence. The first examples
where Colliot-Thélene’s map is not injective were found by Kollar and van Geemen
[4], p. 135; very recently, Bloch and Esnault found examples defined over num-
ber fields [7]. (Over non-algebraically closed fields & there are other examples of
smooth projective varieties Xy with CH?(X})/n — Hj,(Xk, Z/n) not injective, due
to Colliot-Thélene and Sansuc as reinterpreted by Salberger (see [9] and [8], Remark
7.6.1), and Parimala and Suresh [31]. These elements of C H*(X},)/n are not shown
to remain nonzero in CH*(X¢)/n, however.) Here our topological method gives
examples which can be defined over the rational numbers. The varieties we use, as
in Atiyah-Hirzebruch’s examples, are quotients of complete intersections by finite
groups.



Schoen asked whether the map from the torsion subgroup of C H*X to Deligne
cohomology is injective for all smooth complex projective varieties X [37], p. 13.
This was known in many cases: for i < 2 by Merkur’ev-Suslin [23], p. 338, and for
i = dim X by Roitman [36]. But we show that injectivity can fail for i = 3.

Similarly, one can ask whether an algebraic cycle which maps to 0 in Deligne
cohomology must be algebraically equivalent to 0, the point being that Griffiths’s
original examples of cycles which were homologically but not algebraically equivalent
to 0 had nonzero image in Deligne cohomology. The answer is no, as Nori showed
by a subtle application of Hodge theory [28]. Here we show again that the answer
is no, using our topological method. It is interesting that both Nori’s examples and
ours work in codimension at least 3; Nori suggests that the answer to the question
should be yes for codimension 2 cycles.

We now describe our main construction in more detail. If X is a smooth complex
algebraic variety, the classical cycle class map sends the ring of algebraic cycles
modulo algebraic equivalence to the integral cohomology ring of X. We show that
this map factors canonically through the ring MU*X ®p+« Z, where MU*X is the
complex cobordism ring of the topological space X (see section 1 for definitions).
Here MU*X is a module over the graded ring

MU* = MU*(point) = Z[z1,z,...],  2; € MU %,

and we map M U™ to Z by sending all the generators x; to 0. The ring MU* X ® pypy+ Z
is the same as the integral cohomology ring if the integral cohomology is torsion-free,
but in general the map

MU*X @y Z — H* (X, Z)

need not be either injective or surjective, although the kernel and cokernel are
torsion. The construction of the new cycle map, from cycles modulo algebraic
equivalence to MU*X ®pp+ Z, uses Hironaka’s resolution of singularities together
with some fundamental results on complex cobordism proved by Quillen and Wilson.

For topological spaces X with torsion in their cohomology, the map MU* X ® s+
Z — H*(X,Z) is often not surjective, as one can compute from the fact that all
odd-dimensional elements of the Steenrod algebra vanish on the image of MU*X
in H*(X,Z/p), for each prime number p. (Equivalently, the two-sided ideal in the
Steenrod algebra generated by the Bockstein vanishes on the image of MU*X.)

The fact that the usual cycle class map goes into the image of MU*X was es-
sentially observed by Atiyah [2], footnote 1, p. 445; it follows immediately from
Hironaka’s resolution of singularities. As a result, all odd-dimensional elements of
the Steenrod algebra vanish on the image of algebraic cycles in H*(X,Z/p). Atiyah
and Hirzebruch used a weaker form of this statement to produce their counterex-
amples to the Hodge conjecture with integral coefficients [3].

Once we have our more refined cycle class, it is natural to try to use it to give
a new construction of smooth projective varieties with nonzero Griffiths group. We
need to find varieties X such that the map MU*X Quyu- Z — H*(X,Z) is not
injective, and then we have to hope that some of the elements of the kernel can be
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represented by algebraic cycles. Unfortunately, it is much harder to find topological
spaces X with MU*X Quy+ Z — H*(X, Z) not injective than to find non-surjective
examples. As far as I know, the only examples in the literature are those produced
by Conner and Smith [10], [11], and [39], p. 854. Unfortunately, their examples are
defined as cell complexes with explicit attaching maps, and there is no obvious way
to approximate such spaces by smooth algebraic varieties.

Fortunately, there are spaces X with MU*X ®pu+« Z — H*(X,Z) not injective
which are more convenient for our purpose: the classifying spaces of some compact
Lie groups. We will show that that the map MU*BG Qyy+ Z — H*(BG, Z) is not
injective in degree 6 when G is either the Lie group Z/2 x SO(4) or the product of
Z/2 with a finite Heisenberg group H, a central extension

1—2Z/2— H— (Z/2)" — 1.

There is a natural way to approximate the classifying space of a Lie group by smooth
algebraic varieties, and as a result we manage to produce smooth projective varieties
(the quotient of certain complete intersections by the above group Z/2x H) for which
our cycle map implies that the Griffiths group is not zero.

This paper was inspired by questions asked by Jack Morava. Spencer Bloch,
Patrick Brosnan, Bill Fulton, Mark Green, and Janos Kollar had useful suggestions.

1 A quick introduction to complex bordism

A general reference for this section is Stong’s book [40]. We begin by defining a
weakly complex manifold M to be a smooth real manifold together with a complex
vector bundle over M whose underlying real vector bundle is TM @R for some N.
Thus, complex manifolds are weakly complex manifolds, but some odd-dimensional
manifolds (e.g., S, since its tangent bundle is trivial) also admit weakly complex
structures. We identify two complex structures on the vector bundle TM @ RY if
they are homotopic, and we also identify a complex structure on the vector bundle
TM @ R" with the obvious complex structure on TM @ RY $ R? = TM ¢ RN*2.

The complex bordism groups MU; X of a topological space X, 7 > 0, are defined
as the free abelian group on the set of continuous maps M — X where M is a closed
weakly complex manifold of real dimension ¢, modulo the relations

M [ [M — X] = [My — X] + [My — X]
[OW — X]| =0,

where W is a compact weakly complex manifold of dimension ¢ + 1 with boundary
together with a continuous map W — X. (The boundary of W inherits a weakly
complex structure in a natural way.)

The notion of weakly complex manifold is rather artificial, and one might ask
why we don’t try to define similar invariants of a topological space X using, say,
complex manifolds with continuous maps to X. The justification for the above
definition is that the groups MU, X have excellent formal properties: they form a

3



generalized homology theory [1], which means that they satisfy all the usual formal
properties of ordinary homology (Mayer-Vietoris, etc.) except for the dimension
axiom: MU;X can be nonzero for 1 > dim X. In fact, MU; X is always nonzero for
all even ¢ > 0, at least, because M Uj;(point) is nonzero for all even ¢ > 0. The groups
MU, := MU,(point) form a ring, the product corresponding to taking products of
weakly complex manifolds, and this ring was computed by Milnor and Novikov [25],
[29]:
MU* :Z[$1,$2,$3,...], € EMUQi.

It happens that all the generators z; can be represented by complex manifolds. If
we tensor the ring with Q, we can take the generators to be CP!, CP?, and so
on; to get the generators over Z, we have to use certain hypersurfaces, as Milnor
showed.

There is a natural map MU; X — H;(X,Z), which sends a bordism class [M —
X] to the image under this map of the fundamental homology class of M (since M
has a weakly complex structure, it has a natural orientation). This map clearly has
an enormous kernel, but there is a way to define groups related to MU, X which are
much closer to H,(X,Z). This uses that the groups MU, X form a module over the
ring MU,. Geometrically, the product MU; ®z MU; X — MU;;; X sends a weakly
complex manifold M* and a map M’ — X to the composition M*x M7 — M7 — X,
where the first map is the obvious projection. The point is that as long as 7 > 0,
the resulting element of MU;,;X maps to 0 in H; ;(X,Z). So we have a natural
map

MU, X/(MUsq - MU, X) = H,(X,Z),

or, as | prefer to write it,
MUX ®@uu, Z — H.(X,Z),

where the ring MU, maps to Z by sending all the generators z;, ¢ > 1, to 0.

If X is a compact complex algebraic scheme, possibly singular, our cycle map
will take values in MU, X ®pp, Z. To include schemes which may be noncompact,
we define a variant of the above groups. For any locally compact topological space
X, let MUPMX be the free abelian group on the set of proper maps M — X, where
M is a weakly complex manifold of real dimension ¢ which may be noncompact,
modulo the relations

(M [Mz — X] = [My — X] + [My — X]
[OW — X]| =0,

where W is a weakly complex manifold of real dimension 74 1 with boundary which
may be noncompact, together with a proper map W — X. These groups can be
identified with bordism groups in the more usual sense for all reasonable spaces
X: namely, the groups MUBMX are the reduced bordism groups of the one-point
compactification of X. More generally, if X = X — S is any compactification,
MUBMX is isomorphic to the relative bordism group MU, (X, S), as is defined for



any generalized homology theory. The cycle map we will define for an arbitrary
complex algebraic scheme X takes values in MUPMX ® ., Z.

Also, as for any generalized homology theory, there is a corresponding coho-
mology theory, complex cobordism MU*X, which is a ring for any space X. If
X is an n-dimensional complex manifold, there is a Poincaré duality isomorphism
MU'X =2 MUBM.X. So, for an n-dimensional complex manifold X, we have a
geometric description of the cobordism group MU*X, as bordism classes of “real
codimension 7” weakly complex manifolds M (meaning that dim M = 2n — i) with
proper maps M — X. In a sense this suffices to describe MU*X for arbitrary spaces
X, since at least every finite cell complex is homotopy equivalent to a complex man-
ifold (a regular neighborhood of an embedding in C"). Still, it may be helpful to
mention one other geometric description of cobordism: for any real manifold X,
MU'X is the group of bordism classes of codimension i real manifolds M with a
proper map f: M — X and a complex structure on the “stable normal bundle”
f*IrX —TM [33].

If X is a compact complex manifold, the above Poincaré duality isomorphism
says that MU'X = MU,,_;X. In particular, if X is a point, we have MU* :=
MU*(point) = MU_,. That is, MU* is a polynomial ring Z[z1, z,...] with z; €
MU—Z%,

The natural way to compute MU* X, for any CW complex X, is by the Atiyah-
Hirzebruch spectral sequence E, = H*(X,MU*) = MU*X. This is a fourth
quadrant spectral sequence because the ring M U™ is in dimensions < 0. The Fj,
term is the tensor product of H*(X,Z) on the positive z-axis and MU* on the
negative y-axis. The differentials have the same bidegrees as those in the spectral
sequence of a fibration: ds has bidegree (2,-1), d3 has bidegree (3, —2), and so on.
The natural map MU*X — H*(X,Z) is the “edge map” corresponding to the top
row of the spectral sequence. From the spectral sequence, we can read off several of
the basic properties of the complex cobordism ring, say for a finite cell complex X:

If X has real dimension n, MU*X can be nonzero only for i < n. It is nonzero
for all negative even i, at least.

The differentials are known to be torsion. It follows that MU*X ®z Q is a free
MU* ®z Q-module, generated by any set of elements of MU*X which map to a
basis for H*(X, Q). In particular, the natural map MU*X Quyp+ Z — H*(X,Z)
becomes an isomorphism after tensoring with Q.

If the integral cohomology of X has no torsion, then neither does the Es term
of the spectral sequence. (Here the fact that the ring MU* = Z[z1,xs,...] has
no torsion is crucial.) Since the differentials are always torsion, they must be 0 in
this case. Thus, if H*(X,Z) has no torsion, then MU*X is a free MU*-module,
and the natural map MU*X Qpp+ Z — H*(X,Z) is an isomorphism. Likewise, if
HEM(X,Z) has no torsion, then the natural map MUPMX ®,17, Z — HPM (X, Z)
is an isomorphism, by the homology version of the Atiyah-Hirzebruch spectral se-
quence.

Finally, we need to mention Brown-Peterson cohomology, a simplification of
complex cobordism which is more convenient for calculations. Namely, for each
prime number p there is a cohomology theory called BP*X (it is conventional not
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to indicate p in the notation). Its coefficient ring is the polynomial ring

Z(p)[Ul,’UQ, .. .],

where Z, is the localization of the ring Z at the prime p, and v; € BP 201,
vy € BP2"-1) and so on. Thus the generators of the ring BP* are much more
spread out than those of MU*, which makes calculations easier. But BP*X carries
all the topological information of MU*X, because MU*X ®z Z,) splits as a direct
sum of copies of BP*X in a canonical way [32]. In particular, BP* is a quotient
ring of MU* ®z Z(y) in such a way that BP*X = MU*X ®up+ BP* for all spaces
X, and consequently

MU*X @y~ Z(p) = BP*X ®pp~ Z(p).

We will use this to translate results between complex cobordism and Brown-Peterson
cohomology as convenient.

Finally, in sections 2 and 5 we will use the related cohomology theories BP(n)*X.
The basic properties of these theories are stated in section 2. Two useful references
are [43] and [19].

2  Quillen’s theorem

One of the fundamental facts about complex cobordism is the following classic the-
orem of Quillen’s [33].

Theorem 2.1 Let X be a finite cell complex. Then the groups MU* X Qpp+ Z are
zero in negative dimensions and equal to H*(X,Z) in dimension 0.

Equivalently, MU* X is generated as an M U*-module by elements of nonnegative
degree.

In fact, Quillen’s statement can be improved a little, and we will need part of
the improved statement. Namely:

Theorem 2.2 Let X be a finite cell complex. Then the map
MU*X Quu+Z — H*(X,Z)
15 an 1somorphism in dimensions < 2 and injective in dimensions < 4.

This is best possible. In particular, the map is not surjective in dimension 3 for
X = B(Z/p)? or a suitable finite skeleton thereof, and it is not injective in dimension
5 for a suitable finite skeleton of K(Z,3) x BZ/p, as one can see by imitating the
proof of Corollary 5.3 in this paper (apply it to a finite skeleton of K(Z, 3) in place
of BG). We actually only need injectivity in dimensions < 2 for this paper (in the
proofs of Theorem 3.1 and Lemma 4.3), except in Remark 2, section 8.

Proof of Theorem 2.2. This follows by the arguments Wilson used to prove
Quillen’s theorem [43], as we now explain.
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The surjectivity in dimensions < 2 is trivial. In fact, an element of H*(X,Z) is
represented by a map X — K(Z,1), and for i < 2, the Eilenberg-MacLane space
K(Z, 1) has torsion-free cohomology (for i = 0,1, 2, respectively, K (Z, i) is the space
Z,S', CP>). It follows that MU*K (Z, 1) maps onto the generator of H(K(Z, 1), Z),
by the argument near the end of section 1. Pulling back to X proves the desired
surjectivity.

It suffices to prove injectivity after tensoring with Z ) for each prime number p.
As mentioned in section 1, we have

MU*X Qunu~ Z(p) >~ BP*X Qpgp~ Z(p),

where BP denotes Brown-Peterson cohomology at the prime p. So it suffices to
show that the map
BP*X ®pp+ Lp) = H* (X, Z))

is injective in dimensions < 4. We recall from section 1 that the coefficient ring
BP* is a polynomial ring over Z,) with generators v; € BpP~20'-1) > 1.

Following Wilson [43], we use the cohomology theories BP(n). These are mod-
ules over BP (so BP(n)*X is a module over BP*X), with coefficients BP{n)* =
Zpy[v1,...,v,] as a BP*-module (all the v;’s for ¢ > n act as 0), and with maps of
cohomology theories

BP*X = BP{00)*X — -+ = BP(1)"X — BP(0)"'X = H*(X, Zy)).
There is a long exact sequence
BP(n)¥*2?P" VX — BP(n)*X — BP(n — 1)*X — BP(n)F+>¢" -+l x

where the first map is multiplication by v,, and the second map is part of the sequence
of maps above. Finally, we use Wilson’s main theorem [43], p. 118:

Theorem 2.3 BP*X — BP{(n)*X is surjective for k < 2(p" +p™ L +---+1).

Now we can prove Theorem 2.2. Let € BP*X, k < 4, such that £ maps to 0 in
H*(X,Z,)). We will show that z is a finite sum z = Y, viw;, z; € BPF0P D X
this is equivalent to showing that x = 0 € BP*X Qgp~ Z,).

Consider the maps

BP*X — BP{(n)*X — BP(n — 1)*X.

If x is 0 we are done. Otherwise, let n be the positive integer such that x maps to
0 in BP{n — 1)*X but not in BP{n)*X. Such an n exists because we are assuming
that « maps to 0 in BP(0)*X = H*(X, Z,)), while for n large (k being fixed) we
have BP*X = BP(n)kX since X is finite.

We have a commuting diagram, where the first map in each row is multiplication
by v,, and the second row is an exact sequence:

BPE20"-1) X BPFX

| |

BP(n)k+2@e" - X ——~ BP(n)*X — BP(n — 1)kX
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Since the image ' of x in BP{n)*X maps to 0 in BP(n — 1)*X, we find that 2’ is
equal to v, times an element z/ of BP{n)¥*2®?"~1) X  Now since n > 1 and k < 4,
we have

E+20p"—1) <4+20p"—1) <2(p"+p" '+ +1).

This is exactly what we need to apply Wilson’s main theorem, Theorem 2.3 above,
to show that
BPk+2(p”—1)X N BP<n>k+2(p”—1)X

is surjective. Let z, be an element of the first group which maps to zj,. Then
T — v, T, maps to 0 in BP(n)’“X. Now repeat this process using x — v, z,, in place of
z. Since BP*X = BP(N)*X for N sufficiently large as we have said, this process

stops after a finite number of steps. Thus z is a finite sum z =), viz;. QED

3 The new cycle map

For convenience, we write MUPMX ®),y, Z to denote the degree i subgroup of the
graded group MUPMX @0, Z.

Theorem 3.1 Let X be a complex algebraic scheme. We define a homomorphism
from the group Ziang of i-dimensional algebraic cycles on X modulo algebraic equiv-
alence to MUZIfMX ®unu, Z such that the composition

ZMX — MUEMX @y, Z — HEM(X, Z)

is the classical cycle class map ([12], chapter 19). This homomorphism is a natural
transformation on the category of proper algebraic maps.

Proof. The map is defined to send an irreducible i-dimensional subvariety
7 C X to the class of the map [Z — Z C X| in MUBMX @y, Z, where 7 — 7 is
any resolution of singularities of Z, that is, a proper birational map with Z smooth.
Such resolutions exist, by Hironaka [16]. The first step is to show that the various
elements of MUBMX that can arise from different resolutions Z of a fixed variety
Z are all equal in MUBMX @17, Z.

Let Z; and Z, be any two resolutions of Z. By Hironaka [16], it is possible to
blow up Z; repeatedly along smooth subvarieties to get a variety le which maps to
Zy, giving a commutative diagram.

Z~1’—)Z~1
Z~2 — 7

By Quillen’s theorem (Theorem 2.1 above), for any finite complex X, the group
MU’ X @y~ Z is 0 for j < 0 and equals H°(X, Z) for j = 0. By Poincaré duality



for complex cobordism (see section 1), it follows that, for any smooth complex i-
manifold, the group MU X @y, Z is 0 for j > 2i and equals H3, (X, Z) for j = 2i.
In particular, if X — Y is a proper birational morphism of smooth ¢-dimensional
complex varieties, we have

(X = Y] =Y = Y]e MUMY ®@uy. Z,

because this is true in Hy"(Y,Z) = Z. Thus, in the situation of the previous
paragraph, we have

[Z~1/ — Zl] = [Z~1 — Z~1] - MUQEMZH R mu, Z

and
[le — ZQ] = [ZQ — ZQ] € MU2E;MZ~2 Qnmu, Z.
It follows that
(71— X] =2/ = X] = [Z = X]
in MU;MX ®pp, Z. Thus, any two resolutions of a subvariety Z C X define the
same element of MUSMX ®,p, Z, which we are now justified in calling the class
[Z] of Z in MUEMX @y, Z.

Thus we have a natural map Z;X — MUSMX ®,y, Z for any complex algebraic
scheme X, where Z;X is the group of algebraic i-cycles on X, that is, the free
abelian group on the set of closed i-dimensional irreducible subvarieties of X. For
a cycle a, we write [a] for its class in MUPMX ®pp, Z. Our next step will be to
check that this map is a natural transformation on the category of proper algebraic
maps.

We recall the definition of the map f, : Z;X — Z,Y associated to a proper
algebraic map f : X — Y [12]. For a closed subvariety Z C X of dimension i, f(Z)
is a closed subvariety of Y, and we define

_deg (f:Z2— f(2))f(2) if dim f(Z)=1i
f:(2) = {0 if dim f(2) <.

So let X — Y be a proper algebraic map, and Z an i-dimensional subvariety
of X. To show that the map Z;X — MUSMX ®,y, Z is a natural transformation
means to show that the class in MUSMY ®u0. Z of the cycle f,(Z) is equal to the
image of the class [Z] € MUy X ®yy, Z under the natural map

£t MUBMX — MUBMY,

There are two cases, depending on whether the dimension of f(Z) is ¢ or less than
.

_ If f(Z) has dimension i, let Zy be a resolution of singularities of f(Z), and let
Z be a resolution of singularities of Z such that the rational map from Z to Z,
becomes well-defined on Z;.

7, —— 7 —s X

N

Zy — f(Z) — Y
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Clearly the map Z; — Z, has the same degree d as the map f : Z — f(Z). By
Quillen’s theorem, Theorem 2.1 above, we have

[Zl — Z~2] = d[ZQ — ZQ] € MUQE;MZZ ®umu, Z,

since MUBM Z,®@ 0. Z = HEM(Z,y,Z) = Z. Now the image under f, : MUPMX ® 0.
Z — MUPMY @y, Z of the class [Z] is by definition equal to the class of the map
Z, — Y, and since this map factors through Z,, the above equality means that
this class is equal to d times [Z, — Y], that is, to d times [f(Z)]. This proves
functoriality of our map in this case.

The argument is similar if f(Z) has dimension less than i. In this case we use
Quillen’s theorem to prove that a proper holomorphic map X — Y between complex
manifolds with dim X =4 > dim Y has [X — Y] =0 € MUEMY ®y, Z, because
this group is 0. As in the previous case, we apply this result to a resolution Zy of
f(Z) and a resolution Z; of Z which maps to Z,, and we find that f,[Z] = 0 €
MUBMY @y, Z.

Thus we have defined a natural transformation Z,X — MUPMX ®,y, Z on
the category of complex algebraic schemes and proper algebraic maps. To finish
the proof of the theorem, we have to show that this map is well defined on cycles
modulo algebraic equivalence. That is, we have to show that for every smooth
compact connected curve C and every (i 4+ 1)-dimensional subvariety W C X x C
with the second projection f : W — C not constant, we have

[(P1)f"(@)] = [(p1) S (B)] € MU X @nv. Z

for every pair of points a, b € C, where p; : W — X is the first projection. (The
cycles f*(a) and f*(b) in W are defined in [12], chapter 2, as the cycles associated to
the subschemes f~'(a) and f~'(b) of W.) In view of the naturality we have proved,
it suffices to prove that

[f*(a)] = [f*(b)] € MUZMW @v. Z.
Let 7 : W — W be a resolution of singularities of W. The pushforwards of the

cycles (fm)*(a), (fm)*(b) on W to W are the cycles f*(a), f*(b) on W, by Fulton
[12], p. 34, proof of (c). So it suffices to prove that

[(fm)* ()] = [(f7)* (0)] € MUZMW ®nv, Z.

But we know that algebraically equivalent cycles are homologous, so that these two
cycles are equal in HEM(W,Z). And the extension of Quillen’s theorem given in
Theorem 2.2 shows that MU2W @p-Z = H?(W, Z); that is, by Poincaré duality on
the smooth (i+1)-dimensional variety W, we have M UQEMW Quu, Z = HPMNW, Z).
Thus 5

[(fm)*(a)] = [(f7)" (b)] € MU' W ®prv. Z.

This proves that the cycle map is well-defined on algebraic equivalence classes. QED

Remark. The cycle class map is in fact well-defined on a slightly weaker equiv-
alence relation than algebraic equivalence, as explained in Remark 2, section 8.
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4 Products

If X is a smooth complex algebraic variety of dimension n, then cycles modulo
algebraic equivalence, graded by Z;ng = Zzlfz-X , form a ring, as do the groups
MU'X @y« Z = MUSM . X @y, Z.

Theorem 4.1 If X is a smooth variety, then the cycle map Zy, X — MU* X ®yy-
Z is a ring homomorphism.

The proof follows the outline of Fulton’s proof that the usual cycle map Z;, X —
H*(X,Z) is a ring homomorphism [12], chapter 19.

Proof. It is equivalent to check that the map from cycles modulo rational equiv-
alence to MU* X ®pp+ Z is a ring homomorphism. (We do things this way because
most of Fulton’s book is written in terms of cycles modulo rational equivalence; the
same arguments would apply to cycles modulo algebraic equivalence.)

We recall the construction of the intersection product on cycles modulo rational
equivalence given by Fulton and MacPherson [12]. Given cycles « and /3 on a smooth
variety X, there is a product cycle a x 8 on X x X, and the product o € CH,X is
defined as the pullback of a x 3 to the diagonal by a map CH;(X x X) —» CH;_, X.
This pullback map is defined, more generally, for any regular embedding: if X is any
local complete intersection subscheme of codimension d in a scheme Y, then there
is a pullback map CH;Y — CH;_4X. For the fundamental example of a regular
embedding, the inclusion of the zero-section of a vector bundle into the total space
of the vector bundle, X — F, the pullback map CH;E — CH; 4X (d =rank E) is
defined to be the inverse of the natural map C'H; ;X — C'H;F, sending a subvariety
Z C X to E|z C E, which one proves to be an isomorphism. For an arbitrary regular
embedding X — Y of codimension d, the pullback map sends a subvariety V C Y
to the pullback under the zero-section inclusion X — Nx/y of the normal cone C
to V' N X in V. Here the normal cone C (defined as Spec (P,>0Z"/Z""), where T
is the ideal sheaf defining V' N X in V) is a subscheme of the normal bundle Nx,y
of the same dimension, 4, as V, so C gives an i-dimensional cycle in Nx,y, which
pulls back to an element of CH; ;X by the map we have already defined.

The product on MUBMX, for a complex n-manifold X, can be defined sim-
ilarly. There is an external product MUPMX ®pp- MUBMX — MUBM(X x
X), and the internal product is defined by composing that with a pullback map
MUPM(X x X) — MUY X. The pullback map is defined more generally: for any
codimension-d complex submanifold X of a complex manifold Y, there is a pullback
map MUPMY — MUPY, X. Tt can be defined as cap product with an “orientation
class” uxy € MU*(Y,Y — X). To define uxy, identify MU?(Y,Y — X) with
MU?*(Nx,y,Nx;y — X) by excision (where X is included in the normal bundle
Nx/y as the zero-section); then uxy is the Thom class of the complex vector bundle
Nx/y. (This pullback map is easier to define than the one on Chow groups, because
a tubular neighborhood of X C Y is diffeomorphic to the normal bundle Ny,
whereas in algebraic geometry there is typically no neighborhood of X C Y which
is algebraically or even analytically isomorphic to the normal bundle of X.)
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Comparing these constructions, we see that the theorem would follow from the
commutativity of the diagram of pullback maps,

CH,Y CH; X

| l

MUMY @uu, Z — MUQB(%(})X Qumu, Z,

for any codimension-d smooth algebraic subvariety X of a smooth algebraic variety
Y. It seems natural to prove this in somewhat greater generality. Namely, for any
codimension-d regular embedding (that is, local complete intersection) X — Y of
complex algebraic schemes, Baum, Fulton, and MacPherson define an orientation
class uxy € MU?4(Y,Y — X) which agrees with that defined above when X and YV
are smooth [5], p. 137. (In fact, they define such a class in any complex-oriented
cohomology theory, that is, any generalized cohomology theory with Thom classes
for complex vector bundles. Complex cobordism is complex-oriented; in fact, it is
the universal such theory, so that the Baum-Fulton-MacPherson orientation class
in complex cobordism maps to the corresponding orientation class in any other
complex-oriented cohomology theory.) The construction uses that the normal cone
of a regularly embedded subscheme X — Y is a vector bundle over X, called the
normal bundle Nx,y. Briefly, they extend the normal bundle Nx/,y to a topological
complex vector bundle ) on a tubular neighborhood N of X, and they construct a
continuous section of ) which vanishes on X “as a scheme”; then this section gives
amap (N,N — X) — (Q,Q — N), and uxy is the pullback of the Thom class in
MU?(Q,Q — N) to MU*(N,N — X) = MU?*(Y,Y — X). Cap product with this
class uxy defines a pullback map MUPMY — MUPY, X of MU,-modules.
The theorem follows from the following statement about that pullback map.

Lemma 4.2 For any codimension-d reqular embedding X — Y of complez algebraic
schemes, the following diagram of pullback maps commutes.

CH;Y CH;_4X

| |

MU£MY Rnmu. 7 — MUQBg\Ed)X S mu. Z

Proof. This is easy to check for the fundamental example of regular embeddings,
the inclusion X — FE of the zero-section of a vector bundle over a scheme X. In
this case, the pullback maps CH;E — CH,;_4X and MUPME — MUPY, X are both
isomorphisms, so it suffices to prove that the inverse maps commute:

CH;_4X CH,E

l |

MU X ®my, Z— MUPME ® 0, Z.
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The map on the top row sends a subvariety Z C X to the subvariety E|; C E,
and the map on the bottom row sends a proper map Z— X, fora weakly complex
manifold Z, to the obvious proper map E|; — E. The cycle map sends Z C X to
the map Z — X for any resolution Z of X; since E|; is a resolution of E|z, the
diagram commutes.

Also, we need to check the lemma for regular embeddings of codimension one,
at least in the following situation.

Lemma 4.3 Let X be an n-dimensional variety, T a smooth curve, f : X — T a
non-constant map, t € T. Then the inclusion of the subscheme f~'(t) C X is a
codimension-one reqular embedding. Moreover, the class in MUEM,(f~1(t)) v, Z
of the cycle associated to the scheme f~1(t) is equal to the Baum-Fulton-MacPherson

pullback of the class of X from X to the subscheme f~1(t).

Proof. This is similar to the proof that the cycle map is well-defined on algebraic
equivalence (Theorem 3.1). To begin, observe that the Baum-Fulton-MacPherson
orientation class in MU?(X,X — f~!(¢)) for the subscheme f=1(f) C X is the
pullback f*u,7 of the orientation class u,7 € MU*(T,T —t). So it suffices to show
that

Frune N [X] = [ (1)] € MUy, (f7'(t) ®mw. 2,

where [f~!(t)] denotes the class of the cycle associated to the scheme f~*(2).
To prove this equality, let 7 : X — X be a resolution. By Fulton [12], p. 34,
proof of (c), we have

m((fm) (1) =1 (t)
as cycles on the scheme f~'(¢). Also, in MUZM,(f(t)) ®umu. Z, we have

T ((f) urr 0 [X]) = mo (7" fuee N [X])
= f*ut,T n W*[X]
= f*utyT N [X]

As a result, it suffices to show that
(fm) e N [X] = [(f7)7 ()] € MU 5 ((f7) (1)) @mv. Z.
In other words, replacing f by fm, it suffices to prove that
Frugr N [X] = [f71(t)] € MU 5 (f 7 (1) @uw. Z

for X smooth of dimension n.

For X smooth, we can identify MUEM,(f1(t)) ®MU* Z with MU?*(X, X —
fYt)) ®my~ Z. This is isomorphic to H*(X,X — f~!(t),Z) by the extension of
Quillen’s theorem given in Theorem 2.2. (The theorem is stated in terms of the
cohomology of a space, rather than a pair of spaces, but for any generalized coho-
mology theory h* we can identify h*(X, X — S) with reduced h® of a pointed space
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(the mapping cylinder modulo X — S), and the theorem clearly applies to the re-
duced cohomology of a pointed space.) So it suffices to prove the above equality in
H?*(X,X — f7(t),Z) = H3M,(f~'(t),Z), as is done in [12], p. 373. QED

Now we can prove Lemma 4.2 for a general regular embedding X — Y of complex
algebraic schemes. As mentioned at the beginning of the proof of Theorem 4.1,
the pullback map CH;Y — CH; 4X sends a subvariety V' C Y to the pullback
of CynxV C Nxjy to X. Since we have checked the lemma for the inclusion of
the scheme X into the vector bundle Nx/y, the lemma in general reduces to the
statement that the pullback of [V] € MUBMY @1, Z to X is equal to the pullback
of the class of the normal cone [CynxV] € MUSMNx/y Qumu, Z to X.

To prove this, we use that every embedding of one scheme in another has a
natural “deformation to the normal cone” [12], chapter 5. That is, for a closed
subscheme X C Y, there is a scheme MxY and a P!-family of embeddings of X,
X x P! € MyY, with a commutative diagram

X X].:)1 _>MXy

Sk

P!
such that for t € P! — {occ} = A!, p7!(t) 2 Y and the embedding X C p~'(¢) is the
given embedding X C Y, and over oo, the embedding is the embedding of X in the
normal cone CxY of X in Y. The map MxY — P! is flat, and so the inverse image
of each point of P! is a regularly embedded subscheme of codimension 1. Explicitly,
MY is the blow-up of Y x P! along X X oo, with the proper transform of ¥ x oo
omitted.

To prove the lemma, let X — Y be a regular embedding and let V C Y be a
subvariety. Then M' = My~xV is a subvariety of the scheme M = MxY . Here M’
is a variety (irreducible and reduced), not just a scheme, because V is a variety: the
blow-up of a variety (here V x P!) along a subscheme is always a variety.

VX C {oc} X Nx/y {oo}
T T
(VNnX)xP M P! C XxP'——M P!
| ] ]
VNnXx v {0} X Y {0}

The variety V' and the normal cone C = Cy~xV are the fibers over 0 and
0o, respectively, of the map M’ — P!, so Lemma 4.3 gives that the fundamental
class in MUBMV @y, Z of the subvariety V C Y is the Baum-Fulton-MacPherson
pullback of the fundamental class of M’, by the codimension-one regular embedding
V C M'. (To apply Lemma 4.3, we use that M’ is a variety, not just a scheme.)
It follows that that the class [V] € MUZMY @y, Z is the pullback of the class
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M'] € MUzB(li\f[H)M ®umu. Z by the codimension-one regular embedding Y C M.
Likewise, the class in MUZM Ny y ®uu, Z of the normal cone C' = CynxV, viewed
as a scheme and thus as a cycle with multiplicities, is the pullback of the class of
[M'] on M by the codimension-one regular embedding Nx,y C M.

As a result, the pullback of the class [V] on Y to MU' ) X ®uu, Z is the
pullback of [M'] on M first by the codimension-one regular embedding ¥ C M,
then by the codimension-d regular embedding X x 0 C Y. Likewise, the pullback
of the class [C] on Nx/y to X is the pullback of the same class [M’] first by the
codimension-one regular embedding Nx/y C M, then by the codimension-d regular
embedding X C Nx,y. By the above commutative diagrams, using the naturality of
Baum-Fulton-MacPherson’s pullback maps on bordism groups, we find that these
two elements of MUy;" ) X ®uu. Z are the pullbacks of the same class [M'] on
M by the codimension-d regular embedding F' : X x P! — M, followed by the
pullback to X x 0 or X x oo respectively. Since these last two pullbacks are equal

on MUPM(X x P?), the two elements of MU ) X ®uy, Z are equal. QED

5 Non-injectivity of the map MU*X®y«Z — H*(X,Z)

In this section we construct some topological spaces X for which the map MU* X ® y;y+
Z — H*(X,Z) is not injective, and such that there is a natural way to approximate
the homotopy type of X by smooth algebraic varieties. Namely, X will be the clas-
sifying space BG of a compact Lie group G (we will explain the relation to algebraic
geometry in section 7).

We need to take several precautions when talking about the complex cobordism
of an infinite CW complex such as BG. The point is that MU*(point) is nonzero in
all even dimensions < 0, so that MU*X is affected by all the cells in X of dimension
> 1. One phenomenon here is described by Milnor’s exact sequence, which holds for
all generalized cohomology theories h* and all infinite CW complexes X [26]:

0 — lim,h' 1 (X,) = h'X — lim ,h*(X,) — 0.

Here X, denotes the n-skeleton of X. The Atiyah-Hirzebruch spectral sequence
H*(X, h*) = h*(X) actually converges to limh*(X,), not to h*X.

Fortunately, the only infinite complexes we will need to consider are classifying
spaces of compact Lie groups BG, in which case the lim ! term for MU-theory and
the other cohomology theories we consider is 0, by Landweber [22]. For such spaces,
Landweber also proves a strong Mittag-Leffler statement about the inverse limit in
MU*X = @MU*XR: namely, for each n there is an m > n such that (in all
dimensions at once) we have im (MU*X — MU*X,,) =im (MU*X,, - MU*X,,).
To give a little context for these statements: for the space X = K(Z,3), which
is outside the class we consider, the lim® group is nonzero, and the Mittag-Leffler
statement fails, because im (MU*K(Z,3),, — H*(K(Z,3),,Z) = Z) is a subgroup
of finite index which decreases to 0 as n goes to infinity. See [35] for some clarification
of this phenomenon.
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Since each group MU’BG is an inverse limit, we have to view it as a topological
abelian group. In particular, tensor products involving MU* BG will always mean
completed tensor products. For example,

MU*BG Quu+ Z = @1 [((im MU*BG — MU*(BG),) Quu+ Z].
Likewise, following Kono and Yagita [20], we define
MU*BG@unuy~MU*BH = l(in (im MU*BG — MU*(BG),)®uu+(im MU*BH — MU*(BH),).
Now we can state the main result of this section.

Theorem 5.1 Let G be either SO(4) or the central extension 1 — Z/2 — G —
(Z/2)* = 1 contained in SO(4). Then the maps

MU*BG ®yu- Z/2 — H*(BG,Z/2)
and
MU®(BG x BZ/2) @y~ Z — H%(BG x BZ/2,Z)
are not injective.

We begin by explaining why product groups are convenient for this question.
In the simplest examples, MU*BG ®yu+ Z — H*(BG,Z) tends to be injective
but not surjective. It happens, however, that even if this map is injective for two
groups GG1 and G, it need not be injective for G; x G5. Specifically, if the map
MU*BG @uyu+~ Z — H*(BG,Z) is injective but not split injective, as a map of
abelian groups, then the map MU*(BG x BZ/p) @uu+ Z — H*(BG x BZ/p,Z)
is not injective for some prime p. The following lemma expresses this idea more
precisely.

Lemma 5.2 Let G be a compact Lie group. If the map MU*BG ®pu+ Z/p —
H*(BG,Z/p) is not injective, then MU**2(BG x BZ/p) Qv+ Z — H*?(BG x
BZ/p,Z) is not injective.

Proof. By Landweber [21], Theorem 2', MU*BZ/p is flat in the sense that we
have an isomorphism of topological abelian groups

MU*(X x BZ/p) = MU*X ®yy- MU*BZ/p

for all finite complexes X. (Kono and Yagita [20] conjecture the same statement for
all compact Lie groups in place of Z/p.) As a consequence, we have an isomorphism
of topological abelian groups

MU*(BG x BZ/p) = MU*BG ®yy» MU*BZ/p

for all compact Lie groups G. The right side is a completed tensor product, as
explained above.

16



It follows that

where the right side is again a completed tensor product. Here MU*BZ/p Q iy~ Z
maps isomorphically to H*(BZ/p,Z) = Z[[c1]]/(pc1), where ¢; is in dimension 2. So

MU*(BG x BZ/p) @yuv- Z = MU*BG @y Z® | [ ¢, MU*BG @uu- Z/p,

i>1

and by our assumption in this lemma, the group c¢; - MU*BG ®pp+ Z/p maps
non-injectively to the corresponding group in

H*(BG,Z)® |[ ¢ - H*(BG,Z/p)
i>1
= H*(BG,Z) ®z H*(BZ/p,Z)
C H*(BG x BZ/p,Z).

Thus MU*2(BG x BZ/p) @y~ Z — H*"?(BG x BZ/p,Z) is not injective. QED

Corollary 5.3 Let G be a compact Lie group. If the image of the map MU* BG —
H¥(BG,Z) contains p times an element x € H*(BG, Z), for some prime number p,
but does not contain z itself or x plus any element killed by p in H*(BG,Z), then

MU*BG ®y+ Z/p — H*(BG, Z/p)
and

MU*"?(BG x BZ/p) @y~ Z — H***(BG x BZ/p,Z)
are not injective.

Proof. The hypothesis implies that an element of MU*BG which maps to
pr € H¥(BG,Z) is nonzero in MU*(BG) @+ Z/p, and it clearly maps to 0 in
H*(BG,Z/p). Thus Lemma 5.2 applies. QED

Thus, to prove Theorem 5.1, it suffices to prove that the image of MU*BG —
H*(BG,Z) contains 2 times some element x € H*(BG,Z) but not z plus any 2-
torsion element, when G is SO(4) or the group of order 32 mentioned in the theorem.
For G = SO(4), Kono and Yagita [20] computed MU*BSO(4), and we can read
this off from their calculation. For clarity, here is a direct proof. The point is that
there is a class x € H*(BSO(4),Z), the Euler class, such that 2y is in the image of
MU*BSO(4) but y is not. See Milnor-Stasheff [27] for the cohomology of BSO(n)
and in particular the definition of the Euler class. In fact, in H*(BSO(4), Z) = Z&Z,
we can compute that

2x = oA — 2B,
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where B : SO(4) — GL(4, C) is the obvious representation and A is the represen-
tation given by thinking of SO(4) as a double cover of SO(3) x SO(3), and then
projecting to the first SO(3):

A:SO(4) = SO(3) x SO(3) — SO(3) — GL(3, C).

(To check that 2x = ¢y A—c2 B, use that SO(4) is doubly covered by SU(2) x SU(2),
and H*(BSO(4),Z) injects into H*(BSU(2) x BSU(2),Z) = Z & Z, where the
equality is easy to check.) A complex vector bundle has Chern classes in complex
cobordism which map to the usual Chern classes in ordinary cohomology [1], so this
equality means that 2y is in the image of MU*BSO(4). For convenience, let C' be
the element cp A — ¢ B in MU*BSO(4), so that C maps to 2x in H*(BSO(4), Z).
To prove that x itself is not in the image of MU*BSO(4), we show that a certain
odd-dimensional Steenrod operation, S¢3, is nonzero on the image of x in

H*(BSO(4),Z/2) = Z/2[wa, w3, wy)-
We use Wu’s formula for the Steenrod operations in H*(BSO(n), Z/2) [27], p. 94:
S¢*x = SqgPwy = wawy # 0.

Thus x € H*(BSO(4), Z) is not in the image of MU*BSO(4). Since H*(BSO(4),Z) =
Z & Z has no torsion, Corollary 5.3 applies, proving Theorem 5.1 for the case of
SO(4). (By the way, the same thing happens for SO(2n) for all n > 2: 2" 1y €
H?"(BSO(2n),Z) is a polynomial in Chern classes of representations of SO(2n),
so it is in the image of MU?"BSO(2n), but y itself is not in the image. It is
plausible that 2"~'y should be the smallest multiple of x which is in the image of
MU*BSO(2n), as the above calculation shows for SO(4) and as Inoue [18] showed
for SO(6).)

Now we turn to the construction of a similar example among finite groups. The
idea is to use a finite subgroup G C SO(4) and the restriction of the Euler class x
to H*(BG,Z). Then it is automatic that 2y is in the image of MU*BG, and we
just have to choose G so that x + (2-torsion in H*(BG,Z)) does not intersect the
image of MU*BG. (Throughout this paper, a 2-torsion element of an abelian group
will mean an element x with 2x = 0, not just an element killed by some power of
2.) Since the phenomenon we are considering is 2-local, it is natural to take G to
be a reasonably big 2-subgroup of SO(4). In general, SO(n) contains a fairly big
abelian 2-subgroup, the group (Z/2)"' of diagonal matrices with entries +1, but
it turns out that abelian subgroups of SO(4) do not have the property we want.
Fortunately, we get a more interesting subgroup of SO(4) by defining G to be the
inverse image of the subgroup (Z/2)? x (Z/2)* C SO(3) x SO(3) under the double
cover SO(4) — SO(3) x SO(3). Thus G is an extra-special group of order 32, that
is, a central extension

12 Z/2—G— (Z2/2)* > 1

with center exactly Z/2. In different terminology, G is a Heisenberg group and the
embedding G C SO(4), the unique irreducible representation of G' of dimension
greater than one, is the Schrodinger representation of G.
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In what is probably the most beautiful calculation in the cohomology of groups,
Quillen [34] computed the Z/2-cohomology of the extra-special 2-groups. For the
above group G, which Quillen calls “the real case,” where the central extension is
classified by the quadratic form z;x9 + x3z4 over Z/2, Corollary 5.12 in Quillen’s
paper says that the embedding G C SO(4) makes H*(BG,Z/2) a free module over
H*(BSO(4),Z/2) = Z/2[wy, w3, wy]. It follows that

S¢*x = S¢*w, = wywy # 0 € H*(BG,Z/2),

since the same is true in H*(BSO(4),Z/2). We need to show a little more than this,
namely that if y € H*(BG, Z) is killed by 2, then Sq¢®(x—+v) # 0. To see this, we have
to use a second description of H*(BG,Z/2) from Quillen’s paper: H*(BG,Z/2) is
the tensor product of a quotient ring of H*(B(Z/2)*, Z/2) with the polynomial ring
Z/2[w,]. (The homomorphism H*(B(Z/2)*,Z/2) — H*(BG,Z/2) comes from the
abelianization map G — (Z/2)*.) Now if y is an element of H*(BG, Z) killed by 2,
then y is the Bockstein of an element of H3(BG,Z/2), and by Quillen’s second de-
scription of H*(BG,Z/2), all of H*(BG,Z/2) is in the image of H*(B(Z/2)*,Z/2).
It follows that Sq3y is also in the image of H*(B(Z/2)*,Z/2). Since S¢*x = wzw, is
not in that subring, we have that S¢3(x +y) # 0 for all y € H*(BG, Z) killed by 2.
This is what we need for Corollary 5.3 to apply. Thus the proof of Theorem 5.1 is
complete. In particular, the map MU®(BG x BZ/2) @ yy+ Z — H®(BG x BZ/2,7Z)
is not injective. QED

For the next section, we need the following strengthening of the first part of
Theorem 5.1. Let BP(1) be the cohomology theory mentioned in section 2, for the
prime 2: thus BP(1) has coefficient ring Z)[v1], v1 € BP(1)~2. In other words,
BP(1) is the localization of connective K-theory at the prime 2, which gives the
ring structure on BP(1)*X in a natural way.

Lemma 5.4 Let G be either SO(4) or the central extension 1 — Z/2 — G —
(Z/2)* — 1 contained in SO(4). Then the map

BP(1)*BG Qgpy Z/2 — H*(BG,Z/2)
18 not injective.
Proof. There are maps of cohomology theories
MU*X — BP*X — BP(1)"X — BP(0)'X = H*(X,Z(3)) — H*(X,Z/2)

(see section 2). So it suffices to show that the element C € MU*BG ®p- Z/2
remains nonzero in BP(1)*BG Qpp) Z/2. The same proof works, because the
Steenrod operation Sq¢® on the Z/2-cohomology of any space vanishes on the image
of BP(1), not just on the image of MU. (Equivalently, Milnor’s operation
vanishes on the image of BP(1); see the proof of Lemma 6.3 for a more general
statement.) QED
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6 Finite complexes with MU*X ®+Z — H*(X,Z)
not injective

In section 5, we gave examples of compact Lie groups G such that the maps
MU*BG @uu+ Z/2 — H*(BG,Z/2) or MU*BG Qunuy+ Z — H*(BG,Z) are not
injective. In this section, we show that the elements we construct in the kernel re-
main nonzero when restricted from BG to its n-skeleton, for some finite dimension
n. This is not hard to prove if we don’t need to know exactly what dimension is
necessary, but we prefer to prove this for the smallest possible dimension, although
this seems to require a long calculation. The result will be used in section 7 to
construct our examples in algebraic geometry.
Let G be the central extension

1-2Z/2—G—(Z/2)"—1

considered in section 5. We defined an element C' € MU*BG which is nonzero in
MU*BG ®up+ Z/2 but which maps to 0 in H*(BG,Z/2).

Proposition 6.1 The element C € MU* BGRy+Z/2 remains nonzero in MU* X7 ®yp-
Z/2, where X; denotes the 7-skeleton of (any cell decomposition of) BG. In fact, C
remains nonzero in BP(1)*X; @ppy+ Z/2, where BP(1) is the cohomology theory
discussed in section 2.

Proof. In view of the map of cohomology theories MU — BP(1), it suffices to
prove that C' is nonzero in BP{1)*X, ®ppa)y- Z/2. We proved in Lemma 5.4 that
C € BP(1)*BG@ is nonzero in BP(1)*BG ®@ppgy- Z/2 by computing that C' maps to
2x € H*(BG,Z), where Sq¢3(x + (any 2-torsion element in H*(BG, Z))) is nonzero
in H'(BG,Z/2). The same calculations apply to the 7-skeleton of BG. QED

We now consider the element C ® ¢; € MU®(BG x BZ/2) @y~ Z, for G the
central extension mentioned above, which maps to 0 in H%(BG x BZ /2, Z) by section
D.

Proposition 6.2 The element C®c; € MU®(BG x BZ /2) Q@+ Z remains nonzero
n

MUS(BG x BZ/2)15 @uuv+ Z, where (BG x BZ/2),5 denotes the 15-skeleton of
BG x BZ)2.

The proof occupies the rest of this section.

Proof. Slightly more precisely, we will show that C'®c; is nonzero in MU® (X, x
Ys) @uu+ Z, where X7 is the 7-skeleton of BG and Yj is the 8-skeleton of BZ/2.
Let BP* denote the Brown-Peterson cohomology theory associated to the prime
number 2 (see the end of section 1). As explained at the end of section 1, we have

MU*X ®MU* Z(Q) = BP*X K BpP* Z(Q)
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for any space X, so it suffices to prove that C ® ¢; is nonzero in BP®(X; x Y3) @ gp-
Z 2)-

( )The proof is suggested by looking at the proof that BP*X®pp-Z9) — H*(X, Z2))
is injective for any finite complex X in degrees < 4 (Theorem 2.2), and seeing how
it can fail in degree 6. Namely, if one tries to use that proof to show that an element
y in BP®X which maps to 0 in H%(X, Z)) must be 0 in BP*X ®pp+ Z(2), the first
step works: by the exact sequence

BP(1)®*X@ > v; >> BP(1)°XQ@ >>> H%(X, Z)),

we can write y = vy for some z € BP(1)X. But the next step in that proof will
fail: x need not in general lift to BP(2)3X, since the degree of the class x is too
large for Wilson’s theorem, Theorem 2.3, to apply.

This suggests the method we will use to show that C ® ¢; € BP%(X; x Y3) is
nonzero in BP%(X X Y3) ®gp+ Z(2): we will prove the following statement.

Lemma 6.3 If z is an element of BP(1)8(X; x Yg) such that
C R cp =112 € BP<1>6(X7 X Y;;),
then x is not in the image of BP(2)8(X7 X Yg).

To see that this implies Proposition 6.2, suppose that the Proposition is false,
that is, that C ® ¢; is 0 in BP%(X; x Y3) Qpp- Z (5. This means that we can write

C®c =) via; € BPY (X7 x Yg)

i>1

for some elements z; € BPSt22'~1)(X; x Y;). We can then apply the map of
cohomology theories

BP = BP(c0) — --- — BP(2) - BP(1),
which sends multiples of v; to 0 for ¢ > 2, to get an equality
C ®cy =v121

in BP(1)%(X7 x Y3). Here z; lifts to BP and hence to BP(2), so this cannot happen
by Lemma 6.3.

The benefit of this proof of Proposition 6.2 is that instead of trying to compute
Brown-Peterson cohomology, with its big coefficient ring BP* = Z)[vy, vy, .. .],
we can spend most of our time computing in the much simpler cohomology theory
BP(1), with coefficient ring Z)[vi]. The theory BP(1) can be described as the
localization of connective K-theory at the prime 2.

Proof of Lemma 6.3. We are given an equation C®c; = viz € BP({1)%(X7 x
Ys) for an element z € BP(1)¥(X7 x Y3). To show that z is not in the image of
BP(2), we can use the long exact sequence mentioned in section 2:

BP(2)}(X; x Ys) — BP(1)8(X; x Y3) — BP(2)3(X; x Y).
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Thus, we want to show that x has nonzero image in BP(2)'5(X; x Y3); so we need
to understand the map from BP({1)*X to BP(2)"*"X, for any space X, which gives
the obstruction to lifting an element of BP(1)'X to BP(2).

It turns out to be enough to know that this map corresponds to Milnor’s oper-
ation @)y on Z/2-cohomology, in the sense that there is a commutative diagram,

BP(1)iX BP(2)+7X

| |

H(X,2/2) —5= H'(X, Z/2).

More generally, the obstruction to lifting an element of BP(k — 1) to BP(k) cor-
responds in the same way to the operation @y on Z/2-cohomology ([43], proof of
Proposition 1.7). Here Milnor’s operations

Qw: H(X,Z/2) — H*""Y(X,Z/2)
are defined in terms of Steenrod squares by

Qo = Sq', Qr+1 =50 Qr+ QrSq

[24]. Notice that the operations @)y are all odd-dimensional, so the results of this
paragraph refine the statement that all odd-dimensional Steenrod operations vanish
on the image of BP*X (or, equivalently, the image of MU*X) in H*(X,Z/2).
Namely, the map from BP*X to Z/2-cohomology factors,

ok+1 ok+1

BP*X = BP(x0)*X — --- — BP(1)*X — BP(0)*X = H*(X, Z) — H*(X,Z/2),

and the results of this paragraph imply that Z/2-cohomology classes in the image
of BP(k)*X are killed by the odd-dimensional operations Q, ... , Q-

Recall that we are given an element x € BP(1)8(X7 x Yg) such that C®c; = vz,
and we want to show that x does not lift to BP(2). By the above remarks, it suffices
to show that the image of z in H8(X; x Yz, Z/2) has Qyx # 0. Now let us use a
convenient property of Milnor’s operations ()x: they are primitive elements in the
Steenrod algebra, which means that

Qk(zy) = Qr(z)y + 2Qi(y)

for Z/2-cohomology classes z, y on any space [24]. As a result, remembering that
(2, raises dimension by 7, we see for dimensional reasons that (s is 0 on all the
Kiinneth components H*(X7,Z/2) ® H¥ #(Yg, Z/2) of H8(X; x Y3, Z/2) except one,
the subgroup H'(X7,Z/2) ® H'(Ys,Z/2). And Q, sends that subgroup injectively
into

HY(X; x Y3,2/2) = H (X7,Z/2) ® H®(Ys,Z/2),

because the map
Qy:Z/2=H'(Y3,Z/2) — H*(Y3,Z/2)
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is injective. (Remember that Y3 is the 8-skeleton of BZ/2 = RP, which has
Z /2-cohomology ring Z/2[u], u € H'. So

Qou = Sq*Sq¢*Sq'u
= ((u*)?)?

= US.

This is the only place where it matters that we have taken at least the 8-skeleton
of BZ/2.) Putting all this together, if we can show that the image of z in H®(X; x
Y3, Z/2) has nonzero Kiinneth component in H'(X;,Z/2) ® H'(Ys,Z/2), then
does not lift to BP(2), and Lemma 6.3 will be proved.

Thus we want to show that if z € BP(1)8(X; x Y3) satisfies C ® ¢; = vz, then
the image of x in H®(X; x Yg3,Z/2) has nonzero Kiinneth component in H” @ H'.
By restricting such an element z to the smaller space X; x Y5, where Y, = RP?
is the 2-skeleton of BZ/2, we see that it is enough to prove the following lemma.
(Calculations will be easier on this smaller space.)

Lemma 6.4 Ifx is an element of BP{1)®(X; x Y3) such that C®c; = vz, then the
image of x in H8(X7;xYs,Z/2) has nonzero Kiinneth component in H'(X7)QH(Ys).

Proof of Lemma 6.4. We need to analyze BP(1)*(X; x Y5) as a module over
BP(1)* = Z)[v1]. There are various spectral sequences for computing these groups.
In particular, for a fibration /' — E — B and any generalized cohomology theory
h*, there is a spectral sequence

H*(B,h'F) = h*(E).

For h* = ordinary cohomology, this is the usual spectral sequence of a fibration,
and for F' = point, this is the Atiyah-Hirzebruch spectral sequence. The spec-
tral sequence that seems to compute most directly what we want to know about
BP(1)*(X7 x Y,) is the spectral sequence of the above type,

H*(Yy, BP(1)*X7) = BP(1)*(Ys x X7).

Notice that BP{1)* X7 is only nonzero in degrees < 7. So this spectral sequence
converging to BP(1)*(Y2 x X7) looks like:

HO(Y,, BP(1)X7) H(Y,, BP{1)X7) H2(Y,, BP(1)7X7)

\

HO(Y,, BP(1)8X7) H'(Ys, BP(1)8X7) H2(Y,, BP(1)8X7)

\>

HO(Y,, BP(1)°X7) H'(Y,, BP(1)>X7) H?(Y,, BP(1)°X7)

\

HC(Y,, BP(1)*X5) H(Y,, BP(1)*X,) H?(Y,, BP(1)*X,)
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Here the only possible differential is dy, shown above, and in fact this is 0 because
the restriction map BP(1)*(Y; x X7;) — BP(1)*(X7) (corresponding to the left
column in the spectral sequence) is surjective. So each group BP(1)*(Y2 x X7) is
filtered into pieces which are exactly the groups in the above diagram.

The hypothesis of Lemma 6.4 is the equality ¢; ® C = vz in BP(1)%(Y; X
X7). Here ¢; ® C belongs to the bottom piece of the filtration of this group, the
subgroup H?(Y,, BP{1)4(X7)). I claim that z does not belong to the bottom piece
of BP(1)8(Y, x X7), that is, to H?(Y,, BP{1)®(X;)). Suppose that it does. Since
Y, = RP? we have H%(Y;, A) & A/2 for all abelian groups A; so the identity
c1®C = vz would say, under our assumption, that the element C in BP(1)*(X7)/2
is equal to v; times an element of BP(1)%(X7)/2. But that is false since we know
that

C 75 0e BP<1)4X7 QBP(1)* Z/2

(Proposition 6.1). So this paragraph’s claim is proved: the element z € BP(1)8(Y2 %
X7) must have nonzero image in the top piece of the filtration of this group, that
is, in H'(Y,, BP(1)"(X7)).

(From the Atiyah-Hirzebruch spectral sequence for BP(1)-cohomology, it is im-
mediate that the top-degree group BP(1)7(X7) maps isomorphically to H' (X7, Z2)).
Also, since Y3 = RP?, the group H'(Y3, A) is equal to the subgroup of elements
killed by 2 in A, for any abelian group A. So the group H'(Yz, BP(1)"(X7)) is
isomorphic to the 2-torsion subgroup of H' (X7, Z)).

Now at last we need some specific information about the space X7, not just that
it has dimension 7: we need to know that there is no 4-torsion in H' (X7, Z)).
Indeed, X7 is the 7-skeleton of BG, where G is the Heisenberg group

1= 2Z/2—G—(Z/2)" — 1.

So
H'(X7,Zs)) = H'(BG, Z(z)) @ (free abelian group),

and Harada and Kono showed that the integral cohomology of G or any other extra-
special 2-group is a Z/2-vector space in degrees # 0 (mod 4) [14].

It follows that the 2-torsion subgroup of H'(X7,Z(y)) injects into H' (X7, Z/2).
Equivalently, the map

H' Yz, BP(1)"(X7)) — H'(Yz, H' (X7, Z/2))

is injective. Since our element z € BP{1)%(Y, x X;) has nonzero image in the first
group, it has nonzero image in the second group. Equivalently, the image of x in
H?3(Yy X X7,Z/2) has nonzero Kiinneth component in

H'(Y2,2/2) ® H'(X7,Z/2).

Thus Lemma 6.4 is proved. QED
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7 Non-injectivity of the classical cycle maps in
algebraic geometry

Theorem 7.1 There is a smooth complex projective variety X of dimension 7 such
that the map CH?X/2 — H*(X,Z/2) is not injective. The variety X and the
element of CH?X/2 in the kernel which we construct can be defined over Q.

Proof. Let G be the Heisenberg group
1—Z/2—G— (Z/2)* =1,

as in section 5. Let X = Y/G be the quotient of a complete intersection Y C P(V)
by a free action of G, where GG acts linearly on the vector space V. Such varieties
exist for any finite group G, over any infinite field, and for X of any dimension
r > 1, by Godeaux and Serre; see [38], section 20. Since X is the quotient of Y by
a free G-action, there is a natural homotopy class of maps X — B(G, and since the
G-action on Y is “linearized” we get a natural homotopy class of maps X — CP*°
(or equivalently, a natural element of H?(X,Z)). By Atiyah and Hirzebruch [3],
p. 42, the product map X — BG x CP* is r-connected, where r is the complex
dimension of X. In particular, X contains the r-skeleton of BG' up to homotopy.

In section 5, we defined two complex representations A and B of SO(4), of
dimensions 3 and 4. We restrict these to G C SO(4), and we define C' = cpA—cyB €
MU*BG. We proved that C maps to 0 in H*(BG,Z/2), but C remains nonzero in
MU*X; @ pp+ Z/2, where X7 denotes the 7-skeleton of BG, by Proposition 6.1. Let
X = Y/G be a Godeaux-Serre variety for this group with complex dimension at least
7. Since X contains the 7-skeleton of BG up to homotopy, the class C € MU*BG
pulls back to a nonzero element of MU*X ® - Z/2, and it clearly maps to 0 in
H4(X,Z/2).

Moreover, the complex representations A and B of GG give algebraic vector bun-
dles over X = Y/(@, and we can consider the algebraic cycle C := ;A — B €
CH?X. It maps to the above class C € MU*X ®p- Z/2, which implies that C is
nonzero in CH2X /2 but maps to 0 in H*(X,Z/2).

The variety X can be defined over Q (or any infinite field) by Serre’s construction,
and the cycle C € CH?X can be defined over Q because the representations A and
B of the group G can be defined over Q. QED

Theorem 7.2 There is a smooth complex projective variety X of dimension 15 and
an element oo € CH3X with the following properties:

20 =0€ CH3X;

o maps to 0 in H%(X,Z) and also in the intermediate Jacobian H>(X, C)/(F*H®(X, C)+
H*(X,Z));

a 1s not algebraically equivalent to 0.

Proof. Let G be the Heisenberg group
1-Z/2—G—(Z/2)*—1
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as above, and let X be a Godeaux-Serre variety X = Y/(G x Z/2) of dimension at
least 15. Let o be the class Cc; € CH3>X. Here C = ¢y A — ¢, B, where A and B are
the 3- and 4-dimensional representations of G considered above, and ¢; denotes the
first Chern class of the nontrivial character of Z/2. Clearly 2« = 0, since 2¢; = 0.

The image of o in MUSX ®,y+ Z is the pullback to X of the element C ® ¢; €
MU®(BG x BZ/2) ®uu+ Z considered in Proposition 6.2. Since X contains the
15-skeleton of BG x BZ/2 up to homotopy, that lemma implies that « is nonzero
in MUSX ®p+ Z but maps to 0 in H%(X, Z).

Since « is nonzero in MU®X @+ Z, it is not algebraically equivalent to 0. The
intermediate Jacobian for codimension-3 cycles on X, H(X,C)/(F3*H*(X,C) +
H5(X,Z)), is actually 0, since H3(X,C) C H5(Y,C) and Y is a complete inter-
section of dimension > 15. Thus « is 0 in the intermediate Jacobian as well as in
ordinary cohomology. QED

8 Further comments

Remark 1. Our main example is a codimension-3 cycle on a smooth projective
variety of rather large dimension, 15. It is worth mentioning that in a sense this large
dimension should be inessential. Namely, if X is a smooth complex projective variety
and Y is a smooth ample hypersurface in X, then the restriction map CH'X —
CH'Y is conjectured to be an isomorphism for 7 < dim Y/2, which would be a
version of the Lefschetz hyperplane theorem for Chow groups [15], [30], p. 643.
Moreover if Y is a very general smooth hypersurface whose class in CH'X is a
sufficiently high multiple of an ample class, then Nori conjectured that much more
should be true: CH'X — CH'Y should be an isomorphism for all i < dim Y
(28], p. 368, [30], p. 644. Actually Nori and Paranjape only state these conjectures
after tensoring with Q, but they seem plausible integrally in view of Kollar and
van Geemen’s Trento examples [4], p. 135. (Nori also conjectured that for ¥V a
very general high-degree complete intersection in a smooth projective variety X,
CH'X®Q — CH'Y ® Q should be injective for s = dim Y. Here we cannot expect
to have the corresponding integral statement: if o € CH®X is the cycle in Theorem
7.2, then o restricts to 0 in CH?®Y for every complete intersection 3-fold Y C X, by
Roitman’s theorem.)

These conjectures would imply the corresponding isomorphisms for cycles mod-
ulo algebraic equivalence in place of Chow groups. In particular, the integral version
of Nori’s conjecture would imply that our nonzero element of the Griffiths group
ker (Z3,X — H®(X,Z)), for dim X = 15, remains nonzero on a very general high-
degree complete intersection Y C X of dimension as small as 4.

But we could not expect to prove that our cycle remains nonzero in Z,j’ng for
such a small-dimensional variety Y just using the cycle class defined in this paper. In
fact, on a variety Y of such small dimension, our cycle would be 0 in MU®Y ® - Z
as well as in H%(Y,Z), because for any finite cell complex X of real dimension at
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most 14 = 2(22 + 2 + 1), the map MU*X Q- Z — H*(X, Z) is injective. (Proof:
By Johnson and Wilson [19], Proposition 4.1 and Theorem 1.1, dim X < 14 implies
that hom dimy;p« MU*X < 2, and by Conner and Smith [10], that implies that
MU*X Quyu+« Z — H*(X, Z) is injective.)

Remark 2. Bloch defined an interesting filtration of the group of algebraic
cycles homologically equivalent to 0, with the smallest subgroup being the cycles
algebraically equivalent to 0 [6], p. 380. Namely, one says that a k-dimensional cycle
« on a variety X is r-equivalent to 0 if « is contained in some (k + r)-dimensional
algebraic subset S C X such that [a] =0 € HEM(S,Z). Then l-equivalence is the
same thing as algebraic equivalence by Bloch [6], Lemma 1.1 (stated ®Q, but the
proof works integrally), and r-equivalence is the same as homological equivalence
for r > dim X — dim a. The cycle map Z28X — MUBMX @y, Z is well-defined
on l-equivalence by Theorem 3.1, and it is not well-defined on 3-equivalence by
Theorem 7.2, since that result gives a codimension-3 cycle which is homologically
equivalent to 0 but nonzero in MUBMX ®,,1;, Z. It seems possible that the cycle
map is well-defined on 2-equivalence, but I can only prove a weaker statement, as
follows.

Define a k-dimensional cycle o on a variety X to be strongly r-equivalent to
0 if « is the pushforward, as a cycle, of a cycle o/ on some smooth scheme S’ of
dimension < k + r with a proper map S’ — X, such that [o/] = 0 € HJM(S", Z).
Then strong 1-equivalence is the same as 1-equivalence, i.e., algebraic equivalence,
by the proof of Lemma 1.1 in [6]; for r > 2 r-equivalence is in general different
from strong r-equivalence, although they are the same ®Q under the assumption
of the Hodge conjecture (and 2-equivalence ®Q is the same as strong 2-equivalence
®Q without any conjecture). Anyway, the point of this definition is that we can
prove that the cycle map is well-defined on strong 2-equivalence, as follows. If « is
the pushforward of a cycle o which is homologically equivalent to 0 on a smooth
(k + 2)-dimensional scheme S’, then [o/] = 0 in MUZMS @y, Z by the extension
of Quillen’s theorem given in Theorem 2.2, where we use injectivity in degree 4. It
follows that [a] = 0 € MUZMX Qpp, Z. That is, the cycle map is well-defined on
strong 2-equivalence.
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