Homework 1 for Math 214B Algebraic Geometry

Burt Totaro
Spring 2018, UCLA

A variety over a field \(k \) means an integral separated scheme of finite type over \(k \).

Due Monday, Apr. 16.

(1) Let \(k \) be a field. Decompose the scheme \(X = \{(x, y, z) \in A^3_k : x^2 = yz, xz = x\} \) into its irreducible components.

(2) Let \(k \) be a field. Let \(f : A^1_k \to A^1_k \) be an isomorphism of \(k \)-varieties. Prove that \(f \) is given by a polynomial of degree 1.

(3) Let \(k \) be a field. Show that the varieties \(A^1 \) and \(A^1 - \{0\} \) are not isomorphic over \(k \). Likewise for \(A^2 \) and \(A^2 - \{0\} \), which is a bit different.

(4) Let \(X = \{(x, y) \in A^2 : x^2 = y^3\} \) over a field \(k \). Define a bijective morphism from \(A^1 \) to \(X \) over \(k \). Show that this is not an isomorphism. In fact, show that \(A^1 \) and \(X \) are not isomorphic over \(k \).

(5) Let \(k \) be an algebraically closed field of characteristic zero. Find the singular points of the affine curve \(xy + x^3 + y^3 = 0 \) over \(k \).

(6) Show that the conic \(xy = z^2 \) in \(P^2 \) over any field \(k \) is isomorphic to \(P^1 \). Show that every conic (irreducible curve of degree 2 in \(P^2 \)) over an algebraically closed field of characteristic not 2 can be moved to \(xy = z^2 \) by some automorphism of \(P^2 \).

(7) Linear subspaces of \(P^n \). Let \(k \) be a field. A hypersurface in \(P^n \) over \(k \) of degree 1 (that is, defined by a homogeneous polynomial of degree 1) is called a hyperplane. A nonempty intersection of hyperplanes is called a linear subspace of \(P^n \).

(a) If \(Y \) is a linear subspace of dimension \(r \) in \(P^n \), show that \(Y \) is isomorphic to \(P^r \).

(b) Let \(Y, Z \) be linear subspaces of dimension \(r \) and \(s \) in \(P^n \). If \(r + s - n \geq 0 \), then \(Y \cap Z \neq \emptyset \). Moreover, \(Y \cap Z \) is a linear subspace of dimension at least \(r + s - n \) in \(P^n \). (Think of \(A^{n+1}(k) \) as a vector space over \(k \), and work with its subspaces.)

(8) The Veronese embedding. Let \(k \) be a field. For a given \(n, d > 0 \), let \(M_0, \ldots, M_N \) be all the monomials of degree \(d \) in the \(n+1 \) variables \(x_0, \ldots, x_n \), where \(N = \binom{n+d}{d} - 1 \). We define a morphism \(\rho_d : P^n \to P^N \) over \(k \) by sending a
point $P = [a_0, \ldots, a_n]$ to the point $[M_0(a), \ldots, M_N(a)]$ obtained by substituting the numbers a_i in the monomials M_j. This is called the dth Veronese embedding, or the d-uple embedding, of \mathbb{P}^n in \mathbb{P}^N. For example, when $n = 1$ and $d = 2$, this is the embedding of \mathbb{P}^1 in \mathbb{P}^2 as a conic.

(a) Show that the dth Veronese map of \mathbb{P}^1, $\rho_d : [u, v] \mapsto [u^d, u^{d-1}v, \ldots, v^d]$, is a morphism from \mathbb{P}^1 to \mathbb{P}^d. Show that the image is closed in \mathbb{P}^d. Show that ρ_d is an isomorphism from \mathbb{P}^1 to this closed subset, called a rational normal curve in \mathbb{P}^d. (These results hold for the Veronese embeddings of \mathbb{P}^n for any n, but it takes longer to write out the proofs in general.)

(b) Show that the rational normal curve in \mathbb{P}^3 (called the twisted cubic curve) is the projective closure of the affine curve $\{(t, t^2, t^3)\} \subset \mathbb{A}^3$, in some coordinates.