
7.3 Convex Games. If in Theorem 7.2, we add the assumption that the payoff
function A(x, y) is convex in y for all x or concave in x for all y, then we can say a lot more
about the optimal strategies of the players. Here is a one-sided version that complements
Theorem 7.3.

Theorem 7.4. Let (X,Y,A) be a game with X arbitrary, Y a compact convex subset of
Rn, and A(x,y) bounded above. If A(x,y) is a convex function of y ∈ Y for all x ∈ X,
then the game has a value and Player II has an optimal pure strategy. Moreover, Player I
has an ε-optimal strategy that is a mixture of at most n + 1 pure strategies.

The game is solved by a method similar to solving m by 2 games. The optimal strategy
of Player II has a simple description. Let g(y) = supx A(x,y) be the upper envelope. Then
g(y) is finite since A is bounded above, and convex since the supremum of any set of convex
functions is convex. Therefore, there exists a point y∗ at which g(y) takes on its minimum
value, so that

A(x,y∗) ≤ max
x

A(x,y∗) = g(y∗) for all x ∈ X.

Any such point is an optimal pure strategy for Player II. Player II can guarantee she
will lose no more than g(y∗). Player I’s optimal strategy is more complex to describe in
general; it gives weight only to points that play a role in the upper envelope at the point
y∗. These are points x such that A(x,y) is tangent (or nearly tangent if only ε-optimal
strategies exist) to the surface g(y) at y∗. It is best to consider examples.

Example 1. Estimation. Player I chooses a point x ∈ X = [0, 1], and Player
II tries to choose a point y ∈ Y = [0, 1] close to x. Player II loses the square of the
distance from x to y: A(x, y) = (x − y)2. This is a convex function of y ∈ [0, 1] for all
x ∈ X. Any A(x, y) is bounded above by either A(0, y) or A(1, y) so the upper envelope
is g(y) = max{A(0, y), A(1, y)} = max{y2, (1 − y)2}. This is minimized at y∗ = 1/2. If
Player II uses y∗, she is guaranteed to lose no more than g(y∗) = 1/4.

Since x = 0 and x = 1 are the only two pure strategies influencing the upper envelope,
and since y2 and (1−y)2 have slopes at y∗ that are equal in absolute value but opposite in
sign, Player I should mix 0 and 1 with equal probability. This mixed strategy has convex
payoff (1/2)(A(0, y) + A(1, y)) with slope zero at y∗. Player I is guaranteed winning at
least 1/4, so v = 1/4 is the value of the game. The pure strategy y∗ is optimal for Player
II and the mixed strategy, 0 with probability 1/2 and 1 with probability 1/2, is optimal for
Player I. In this example, n = 1, and Player I’s optimal strategy mixes 2 = n + 1 points.

Theorem 7.4 may also be stated with the roles of the players reversed. If Y is arbitrary,
and if X is a compact subset of Rm and if A(x, y) is bounded below and concave in x ∈ X
for all y ∈ Y , then Player I has an optimal pure strategy, and Player II has an ε-optimal
strategy mixing at most m+1 pure strategies. It may also happen that A(x, y) is concave
in x for all y, and convex in y for all x. In that case, both players have optimal pure
strategies as in the following example.

Example 2. A Convex-Concave Game. Suppose X = Y = [0, 1], and A(x, y) =
−2x2 + 4xy + y2 − 2x − 3y + 1. The payoff is convex in y and concave in x. Both players
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have pure optimal strategies, say x0 and y0. If Player II uses y0, then A(x, y0) must
be maximized by x0. To find maxx∈[0.1] A(x, y0) we take a derivative with respect to x:
∂
∂xA(x, y0) = −4x + 4y0 − 2. So

x0 =
{

y0 − (1/2) if y0 > 1/2
0 if y0 ≤ 1/2

Similarly, if Player I uses x0, then A(x0 , y) is minimized by y0. Since ∂
∂y A(x0, y) = 4x0 +

2y − 3, we have

y0 =

⎧⎨
⎩

1 if x0 ≤ 1/4
(1/2)(3 − 4x0) if 1/4 ≤ x0 ≤ 3/4
0 if x0 ≥ 3/4.

These two equations are satisfied only if x0 = y0 − (1/2) and y0 = (1/2)(3 − 4x0). It is
then easily found that x0 = 1/3 and y0 = 5/6. The value is A(x0, y0) = −7/12.

It may be easier here to find the saddle-point of the surface, z = −2x2 + 4xy + y2 −
2x − 3y + 1, and if the saddle-point is in the unit square, then that is the solution. But
the method used here shows what must be done in general.

Exercise 5. Find optimal strategies and the value of the following games.

(a) X = Y = [0, 1] and A(x, y) =
{

(x − y)2 if x ≤ y
2(x − y)2 if x ≥ y.

(Underestimation is the more

serious error of Player II.)

(b) X = Y = [0, 1] and A(x, y) = xe−y + (1 − x)y.

Solutions. 5. (a) The upper envelope is max{A(0, y), A(1, y)} = max{y2, 2(1− y)2}.
This has a minimum when y2 = 2(1− y)2. This reduces to y2 − 4y + 2 = 0 whose solution
in [0, 1] is y0 = 2 −

√
2 = .586 · · ·. The slope of A(0, y) and that of A(1, y) at y = y0 is

proportional to 2y0 : −4+2y0 which reduces to 2−
√

2 :
√

2. So Player I’s optimal strategy
is mix x = 0 and x = 1 with probabilities (2−

√
2)/2 and

√
2/2, respectively. Numerically

this is (.293 · · · , .707 · · ·).

(b) This is a convex-concave game so both player have optimal pure strategies. If y0

is an optimal pure strategy for Player II, then x0 must maximize A(x, y0). As a function
of x this is a line of slope e−y0 − y0. So

x0 =

⎧⎨
⎩

0 if e−y0 < y0

any if e−y0 = y0

1 if e−y0 > y0

We are bound to have a solution to this equation if e−y0 = y0. So y0 = .5671 · · ·. But y
must minimize A(x0 , y), whose derivative, −x0e

−y + 1− x0 must be zero at y0. This gives
x0(e−y0 + 1) = 1. Since e−y0 = y0, we have x0 = 1/(1 + y0) = .6381 · · ·.
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