7.3 Convex Games. If in Theorem 7.2, we add the assumption that the payoff
function A(x,y) is convex in y for all x or concave in x for all y, then we can say a lot more
about the optimal strategies of the players. Here is a one-sided version that complements
Theorem 7.3.

Theorem 7.4. Let (X,Y, A) be a game with X arbitrary, Y a compact convex subset of
R", and A(z,y) bounded above. If A(x,y) is a convex function of y € Y for all z € X,
then the game has a value and Player II has an optimal pure strategy. Moreover, Player I
has an e-optimal strategy that is a mixture of at most n + 1 pure strategies.

The game is solved by a method similar to solving m by 2 games. The optimal strategy
of Player II has a simple description. Let g(y) = sup, A(z,y) be the upper envelope. Then
g(y) is finite since A is bounded above, and convex since the supremum of any set of convex
functions is convex. Therefore, there exists a point y* at which g(y) takes on its minimum
value, so that

A(z,y*) < rna?,xA(x, y") =g(y") for all x € X.

Any such point is an optimal pure strategy for Player II. Player II can guarantee she
will lose no more than g(y*). Player I's optimal strategy is more complex to describe in
general; it gives weight only to points that play a role in the upper envelope at the point
y*. These are points = such that A(z,y) is tangent (or nearly tangent if only e-optimal
strategies exist) to the surface g(y) at y*. It is best to consider examples.

Example 1. Estimation. Player I chooses a point z € X = [0,1], and Player
IT tries to choose a point y € Y = [0,1] close to z. Player II loses the square of the
distance from z to y: A(z,y) = (r — y)2. This is a convex function of y € [0,1] for all
x € X. Any A(z,y) is bounded above by either A(0,y) or A(1,y) so the upper envelope
is g(y) = max{A(0,9), A(1,y)} = max{y?, (1 — y)?}. This is minimized at y* = 1/2. If
Player II uses y*, she is guaranteed to lose no more than g(y*) = 1/4.

Since x = 0 and = = 1 are the only two pure strategies influencing the upper envelope,
and since y? and (1 —y)? have slopes at y* that are equal in absolute value but opposite in
sign, Player I should mix 0 and 1 with equal probability. This mixed strategy has convex
payoff (1/2)(A(0,y) + A(1,y)) with slope zero at y*. Player I is guaranteed winning at
least 1/4, so v = 1/4 is the value of the game. The pure strategy y* is optimal for Player
IT and the mixed strategy, 0 with probability 1/2 and 1 with probability 1/2, is optimal for
Player I. In this example, n = 1, and Player I's optimal strategy mixes 2 = n + 1 points.
]

Theorem 7.4 may also be stated with the roles of the players reversed. If Y is arbitrary,
and if X is a compact subset of R™ and if A(x,y) is bounded below and concave in ¢ € X
for all y € Y, then Player I has an optimal pure strategy, and Player II has an e-optimal
strategy mixing at most m + 1 pure strategies. It may also happen that A(z,y) is concave
in x for all y, and convex in y for all z. In that case, both players have optimal pure
strategies as in the following example.

Example 2. A Convex-Concave Game. Suppose X =Y = [0,1], and A(z,y) =
—22% 4 42y + y? — 22 — 3y + 1. The payoff is convex in y and concave in z. Both players
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have pure optimal strategies, say xo and yo. If Player II uses yo, then A(z,yp) must
be maximized by zo. To find max,cjo.1] A(z,y0) we take a derivative with respect to z:

%A(w,yo) = —4x + 4y — 2. So

o Jwo—(1/2) ifyo > 1/2
70 if yo < 1/2

Similarly, if Player I uses xg, then A(xo,y) is minimized by yo. Since (%A(a:o, y) = 4xo +
2y — 3, we have

1 if 2o < 1/4
yo = ¢ (1/2)(3 —4xg) if 1/4 <z < 3/4
0 if 2o > 3/4.

These two equations are satisfied only if zo = yo — (1/2) and yo = (1/2)(3 — 4xp). It is
then easily found that g = 1/3 and yo = 5/6. The value is A(zo,y0) = —7/12.

It may be easier here to find the saddle-point of the surface, z = —2z? + 4ay + y? —
2z — 3y + 1, and if the saddle-point is in the unit square, then that is the solution. But
the method used here shows what must be done in general. m

Exercise 5. Find optimal strategies and the value of the following games.
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(a) X =Y =[0,1] and A(z,y) = { (z =) ifz<y (Underestimation is the more

20 —y)? ifx>y.
serious error of Player II.)

(b) X =Y =10,1] and A(z,y) = ze™¥ + (1 — z)y.

Solutions. 5. (a) The upper envelope is max{A(0,y), A(1,y)} = max{y?, 2(1 —y)?}.
This has a minimum when y? = 2(1 — y)2. This reduces to y*> — 4y + 2 = 0 whose solution
in [0,1] is yo = 2 — /2 = .586---. The slope of A(0,y) and that of A(1,y) at y = yo is
proportional to 2y : —4 4 2y which reduces to 2—+/2 : v/2. So Player I's optimal strategy
is mix = 0 and 2 = 1 with probabilities (2 — v/2)/2 and v/2/2, respectively. Numerically
this is (.293---,.707---).

(b) This is a convex-concave game so both player have optimal pure strategies. If yg
is an optimal pure strategy for Player II, then xp must maximize A(z,yp). As a function
of x this is a line of slope e7% — g4. So

0 it e7¥0 < yg
o = { any if e ¥ =gy
1 if e7Y0 > g

We are bound to have a solution to this equation if e7% = y4. So yg = .5671---. But y

must minimize A(zg,y), whose derivative, —zpe~¥ + 1 — zp must be zero at yo. This gives
zo(e~¥ + 1) = 1. Since e~ ¥ =y, we have g = 1/(1 + yo) = .6381 - - -.
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