7.3 Convex Games. If in Theorem 7.2, we add the assumption that the payoff function A(x, y) is convex in y for all x or concave in x for all y, then we can say a lot more about the optimal strategies of the players. Here is a one-sided version that complements Theorem 7.3.

Theorem 7.4. Let (X, Y, A) be a game with X arbitrary, Y a compact convex subset of \mathbb{R}^n , and A(x, y) bounded above. If A(x, y) is a convex function of $y \in Y$ for all $x \in X$, then the game has a value and Player II has an optimal pure strategy. Moreover, Player I has an ϵ -optimal strategy that is a mixture of at most n + 1 pure strategies.

The game is solved by a method similar to solving m by 2 games. The optimal strategy of Player II has a simple description. Let $g(\boldsymbol{y}) = \sup_{\boldsymbol{x}} A(\boldsymbol{x}, \boldsymbol{y})$ be the upper envelope. Then $g(\boldsymbol{y})$ is finite since A is bounded above, and convex since the supremum of any set of convex functions is convex. Therefore, there exists a point \boldsymbol{y}^* at which $g(\boldsymbol{y})$ takes on its minimum value, so that

$$A(x, \boldsymbol{y}^*) \le \max A(x, \boldsymbol{y}^*) = g(\boldsymbol{y}^*)$$
 for all $x \in X$.

Any such point is an optimal pure strategy for Player II. Player II can guarantee she will lose no more than $g(y^*)$. Player I's optimal strategy is more complex to describe in general; it gives weight only to points that play a role in the upper envelope at the point y^* . These are points x such that A(x, y) is tangent (or nearly tangent if only ϵ -optimal strategies exist) to the surface g(y) at y^* . It is best to consider examples.

Example 1. Estimation. Player I chooses a point $x \in X = [0,1]$, and Player II tries to choose a point $y \in Y = [0,1]$ close to x. Player II loses the square of the distance from x to y: $A(x,y) = (x-y)^2$. This is a convex function of $y \in [0,1]$ for all $x \in X$. Any A(x,y) is bounded above by either A(0,y) or A(1,y) so the upper envelope is $g(y) = \max\{A(0,y), A(1,y)\} = \max\{y^2, (1-y)^2\}$. This is minimized at $y^* = 1/2$. If Player II uses y^* , she is guaranteed to lose no more than $g(y^*) = 1/4$.

Since x = 0 and x = 1 are the only two pure strategies influencing the upper envelope, and since y^2 and $(1-y)^2$ have slopes at y^* that are equal in absolute value but opposite in sign, Player I should mix 0 and 1 with equal probability. This mixed strategy has convex payoff (1/2)(A(0, y) + A(1, y)) with slope zero at y^* . Player I is guaranteed winning at least 1/4, so v = 1/4 is the value of the game. The pure strategy y^* is optimal for Player II and the mixed strategy, 0 with probability 1/2 and 1 with probability 1/2, is optimal for Player I. In this example, n = 1, and Player I's optimal strategy mixes 2 = n + 1 points.

Theorem 7.4 may also be stated with the roles of the players reversed. If Y is arbitrary, and if X is a compact subset of \mathbb{R}^m and if A(x, y) is bounded below and concave in $x \in X$ for all $y \in Y$, then Player I has an optimal pure strategy, and Player II has an ϵ -optimal strategy mixing at most m + 1 pure strategies. It may also happen that A(x, y) is concave in x for all y, and convex in y for all x. In that case, both players have optimal pure strategies as in the following example.

Example 2. A Convex-Concave Game. Suppose X = Y = [0, 1], and $A(x, y) = -2x^2 + 4xy + y^2 - 2x - 3y + 1$. The payoff is convex in y and concave in x. Both players

have pure optimal strategies, say x_0 and y_0 . If Player II uses y_0 , then $A(x, y_0)$ must be maximized by x_0 . To find $\max_{x \in [0,1]} A(x, y_0)$ we take a derivative with respect to x: $\frac{\partial}{\partial x}A(x, y_0) = -4x + 4y_0 - 2$. So

$$x_0 = \begin{cases} y_0 - (1/2) & \text{if } y_0 > 1/2\\ 0 & \text{if } y_0 \le 1/2 \end{cases}$$

Similarly, if Player I uses x_0 , then $A(x_0, y)$ is minimized by y_0 . Since $\frac{\partial}{\partial y}A(x_0, y) = 4x_0 + 2y - 3$, we have

$$y_0 = \begin{cases} 1 & \text{if } x_0 \le 1/4\\ (1/2)(3-4x_0) & \text{if } 1/4 \le x_0 \le 3/4\\ 0 & \text{if } x_0 \ge 3/4. \end{cases}$$

These two equations are satisfied only if $x_0 = y_0 - (1/2)$ and $y_0 = (1/2)(3 - 4x_0)$. It is then easily found that $x_0 = 1/3$ and $y_0 = 5/6$. The value is $A(x_0, y_0) = -7/12$.

It may be easier here to find the saddle-point of the surface, $z = -2x^2 + 4xy + y^2 - 2x - 3y + 1$, and if the saddle-point is in the unit square, then that is the solution. But the method used here shows what must be done in general.

Exercise 5. Find optimal strategies and the value of the following games.

(a) X = Y = [0, 1] and $A(x, y) = \begin{cases} (x - y)^2 & \text{if } x \leq y \\ 2(x - y)^2 & \text{if } x \geq y. \end{cases}$ (Underestimation is the more serious error of Player II.)

(b) X = Y = [0, 1] and $A(x, y) = xe^{-y} + (1 - x)y$.

Solutions. 5. (a) The upper envelope is $\max\{A(0, y), A(1, y)\} = \max\{y^2, 2(1-y)^2\}$. This has a minimum when $y^2 = 2(1-y)^2$. This reduces to $y^2 - 4y + 2 = 0$ whose solution in [0,1] is $y_0 = 2 - \sqrt{2} = .586 \cdots$. The slope of A(0,y) and that of A(1,y) at $y = y_0$ is proportional to $2y_0 : -4+2y_0$ which reduces to $2-\sqrt{2}:\sqrt{2}$. So Player I's optimal strategy is mix x = 0 and x = 1 with probabilities $(2 - \sqrt{2})/2$ and $\sqrt{2}/2$, respectively. Numerically this is $(.293 \cdots, .707 \cdots)$.

(b) This is a convex-concave game so both player have optimal pure strategies. If y_0 is an optimal pure strategy for Player II, then x_0 must maximize $A(x, y_0)$. As a function of x this is a line of slope $e^{-y_0} - y_0$. So

$$x_0 = \begin{cases} 0 & \text{if } e^{-y_0} < y_0 \\ \text{any} & \text{if } e^{-y_0} = y_0 \\ 1 & \text{if } e^{-y_0} > y_0 \end{cases}$$

We are bound to have a solution to this equation if $e^{-y_0} = y_0$. So $y_0 = .5671 \cdots$. But y must minimize $A(x_0, y)$, whose derivative, $-x_0e^{-y} + 1 - x_0$ must be zero at y_0 . This gives $x_0(e^{-y_0} + 1) = 1$. Since $e^{-y_0} = y_0$, we have $x_0 = 1/(1 + y_0) = .6381 \cdots$.