
4.7 Approximating the Solution: Fictitious Play.

As an alternative to the simplex method, the method of fictitious play may be used to
approximate the value and optimal strategies of a finite game. It is a sequential procedure
that approximates the value of a game as closely as desired, giving upper and lower bounds
that converge to the value and strategies for the players that achieve these bounds.

The advantage of the simplex mehod is that it gives answers that are accurate, gen-
erally to machine accuracy, and for small size problems is extremely fast. The advantage
of the method of fictitious play is its simplicity, both to program and understand, and
the fact that you can stop it at any time and obtain answers who accuracy you know.
The simplex method only gives answers when it is finished. For large size problems, say a
matrix 50 by 50 or greater, the method of fictitious play will generally give a sufficiently
accurate answer in a shorter time than the simplex method.

Let A(i, j) be an m by n payoff matrix. The method starts with an arbitrary initial
pure strategy 1 ≤ i1 ≤ m for Player I. Alternatively from then on, each player chooses his
next pure strategy as a best reply assuming the other player chooses among his previous
choices at random equally likely. For example, if i1, . . . , ik have already been chosen by
Player I for some k ≥ 1, then jk is chosen as that j that minimizes the expectation
(1/k)

∑k
�=1 A(i�, j). Similarly, if j1, . . . , jk have already been chosen, ik+1 is then chosen

as that i that maximizes the expectation (1/k)
∑k

�=1 A(i, j�). To be specific, we define

sk(j) =
k∑

�=1

A(i�, j) and tk(i) =
k∑

�=1

A(i, j�) (1)

and then choose

jk = argmin sk(j) and ik+1 = argmax tk(i) (2)

If the maximum of tk(i) is assumed at several different values of i, then it does not matter
which of these is taken as ik+1. To be specific, we choose ik+1 as the smallest value of i
that maximizes tk(i). Similarly jk is taken as the smallest j that minimizes sk(j). In this
way, the sequences ik and jk are defined deterministically once i1 is given.

Notice that Vk = (1/k)tk(ik+1) is an upper bound to the value of the game since
Player II can use the strategy that chooses j randomly and equally likely from j1, . . . , jk

and keep Player I’s expected return to be at most Vk. Similarly, Vk = (1/k)sk(jk) is a
lower bound to the value of the game. It is rather surprising that these upper and lower
bounds to the value converge to the value of the game as k tends to infinity.

Theorem. If V denotes the value of the game, then Vk → V , Vk → V , and Vk ≤ V ≤ Vk,
for all k.

This approximation method was suggested by George Brown (1951), and the proof
of convergence was provided by Julia Robinson (1951). The convergence of Vk and Vk to
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V is slow. It is thought to be of order at least 1/
√

k. In addition, the convergence is not
monotone. See the example below.

A modification of this method in which i1 and j1 are initially arbitrarily chosen, and
then the selection of future ik and jk is made simultaneously by the players rather than
sequentially, is often used, but it is not as fast.

It should be mentioned that as a practical matter, choosing at each stage a best reply
to an opponent’s imagined strategy of choosing among his previous choices at random is
not a good idea. See Exercise 7. On the other hand, Alfredo Baños (1968) describes a
sequential method for Player I, say, to choose mixed strategies such that liminf of the
average payoff is at least the value of the game no matter what Player II does. This
choice of mixed strategies is based only upon Player I’s past pure strategy choices and
the past observed payoffs, but not otherwise on the payoff matrix or upon the opponent’s
pure strategy choices. It would be nice to devise a practical method of choosing a mixed
strategy depending on all the information contained in the previous plays of the game that
performs well.

EXAMPLE. Take as an example the game with matrix

A =

⎛
⎝ 2 −1 6

0 1 −1
−2 2 1

⎞
⎠

This is the game solved in Section 4.6. It has value .5, and optimal mixed strategies,
(.25, .75, 0) and (.5, .5, 0) for Player I and Player II respectively. It is easy to set up a
program to perform the calculations. In particular, the computations, (1), may be made
recursively in the simpler form

sk(j) = sk−1(j) + A(ik, j) and tk(i) = tk−1(i) + A(i, jk) (3)

We take the initial i1 = 1, and find

k ik sk(1) sk(2) sk(3) Vk jk tk(1) tk(2) tk(3) Vk

1 1 2 −1 6 −1 2 −1 1 2 2
2 3 0 1 7 0 1 1 1 0 0.5
3 1 2 0 13 0 2 0 2 2 0.6667
4 2 2 1 12 0.25 2 −1 3 4 1
5 3 0 3 13 0 1 1 3 2 0.6
6 2 0 4 12 0 1 3 3 0 0.5
7 1 2 3 18 0.2857 1 5 3 −2 0.7143
8 1 4 2 24 0.25 2 4 4 0 0.5
9 1 6 1 30 0.1111 2 3 5 2 0.5556

10 2 6 2 29 0.2 2 2 6 4 0.6
11 2 6 3 28 0.2727 2 1 7 6 0.6364
12 2 6 4 27 0.3333 2 0 8 8 0.6667
13 2 6 5 26 0.3846 2 −1 9 10 0.7692
14 3 4 7 27 0.2857 1 1 9 8 0.6429
15 2 4 8 26 0.2667 1 3 9 6 0.6
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The initial choice of i1 = 1 gives (s1(1), s1(2), s1(3)) as the first row of A, which has a
minimum at s1(2). Therefore, j1 = 2. The second column of A has t1(3) as the maximum,
so i2 = 3. Then the third row of A is added to the s1 to produce the s2 and so on. The
minimums of the sk and the maximums of the tk are indicated in boldface. The largest
of the Vk found so far occurs at k = 13 and has value sk(jk)/k = 5/13 = 0.3846 . . .. This
value can be guaranteed to Player I by using the mixed strategy (5/13,6/13,2/13), since in
the first 13 of the ik there are 5 2’s, 6 2’s and 2 3’s. The smallest of the Vk occurs several
times and has value .5. It can be achieved by Player II using the first and second columns
equally likely. So far we know that .3846 ≤ V ≤ .5, although we know from Section 4.6
that V = .5.

Computing further, we can find that V91 = 44/91 = .4835 . . . and is achieved by
the mixed strategy (25/91, 63/91, 3/91). From row 9 on, the difference between the bold-
face numbers in each row seems to be bounded between 4 and 6. This implies that the
convergence is of order 1/k.

Exercise 4.6. Carry out the fictitious play algorithm on the matrix A =
(

1 −1
0 2

)

through step k = 4. Find the upper and lower bounds on the value of the game that this
gives.

Exercise 4.7. Suppose the game with matrix,
(√

2 0
0 1

)
is played repeatedly. On

the first round the players make any choices.

(a) Thereafter Player I makes a best response to his opponent’s imagined strategy of
choosing among her previous choice at random. If Player II knows this, what should she
do? What are the limiting average frequencies of the choices of the players?

(b) Suppose Player II is required to play a best response to her opponent’s previous
choices. What should Player I do, and what would his limiting average payoff be?
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Solutions.

4.6. We take the initial i1 = 1, and find

k ik sk(1) sk(2) Vk jk tk(1) tk(2) Vk

1 1 1 −1 −1 2 −1 2 2
2 2 1 1 .5 1 0 2 1
3 2 1 3 .3333 1 1 2 0.6667
4 2 1 5 0.25 1 2 2 .5
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The largest of the Vk, namely .5, is equal to the smallest of the Vk. So the value of the
game is 1/2. An optimal strategy for Player I is found at k = 2 to be p = (.5, .5). An
optimal strategy for Player II is q = (.75, .25) found at k = 4. Don’t expect to find the
value of a game by this method again!

4.7. (a) The upper left payoff of
√

2 was chosen so that there would be no ties in
the fictitious play. So Player II knows exactly what Player I will do and will be able to
guarantee a zero payoff at each future stage. If Player II’s relative frequency, qk, of column
1 by stage k goes above 1/(

√
2 + 1), Player I will play row 1, causing Player II to play

column 2, thus causing qk to decrease. Thus qk converges to 1/(
√

2 + 1), which in fact is
Player II’s optimal strategy for the game. Similarly, Player I’s relative frequency, pk, of
row 1 converges to 1/(

√
2 + 1), which is his optimal strategy.

(b) Player I should play the same pure strategy as his opponent at each stage, gaining
either

√
2 or 1 at each stage. The same argument as in (a) shows that Player II’s average

relative frequency of column 2 converges to 1/(
√

2+1), so Player I’s limiting average payoff
is

1√
2 + 1

·
√

2 +
√

2√
2 + 1

= 2(2 −
√

2),

twice the value of the game.
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