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Abstract. A Bayesian approach to a general investment model is proposed
based on knowledge of the probability distributions of possible investment re-
turns (future market events) and of informative dependent variables (future world
events). General conditions on these distributions are given under which the sim-
ple myopic rule is optimal for log, power and exponential utility functions in finite
horizon problems. An example of the model when the myopic rule is not optimal
is examined which shows that risk averters may sometimes wager in the face of
unfavorable odds.

1. Introduction and Summary. The investment model considered here has
two basic components: (1) the sequence of world events Z0,Z1,Z2, . . ., assumed to be
random variables with values in an arbitrary space, and (2) the sequence of market
events Y1,Y2, . . ., assumed to be nonnegative m-dimensional random vectors, Yt =
(Yt1, . . . , Ytm) for t = 1, 2, . . .. The model is interpreted as occurring sequentially in dis-
crete time periods t = 1, 2, . . .. The events Z0 represents the history of the world up to
the beginning of time period 1, and for t > 0 Zt represents represents the history of the
world during time period t. The positive integer m represents the number of investment
opportunities available to the investor, and Ytj ≥ 0 represents the return per unit invested
in the jth investment opportunity during time period t.

At the beginning of time period t, after observing Z0,Y1,Z1, . . . ,Yt−1,Zt−1, the
investor must choose an m-dimensional vector bt = (bt1, . . . , btm) of investments, where
btj represents the amount invested in investment opportunity j during time period t. Let
X0 be a given positive number that represents the investor’s initial fortune, and let Xt

for t = 1, 2, . . . denote the investor’s fortune at the end of time period t. The investment
vectors bt are subject to the constraints

btj ≥ 0, for j = 1, . . . ,m and t = 1, 2, . . . (1)

and
m∑

j=1

btj ≤ Xt−1, for t = 1, 2, . . .. (2)

The return from investment bt during time period t is
∑m

j=1 btjYtj .
Under constraint (1), negative amounts are not allowable investments. Constraint (2)

says the investor cannot invest more than he has.
Contained within the information Zt−1 is Rt−1 > 0, the rate at which money expands

during period t if placed in the bank. Thus, Rt−1 − 1 is the interest rate for period t. The
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rate Rt−1 is known before selecting bt, even though it might not be known before selecting
bt−1. It is assumed that whatever is not invested is placed in the bank. Therefore, the
investor’s fortune at the end of period t, given investment vector bt and fortune Xt−1 at
the beginning of period t, is

Xt = Rt−1(Xt−1 −
m∑

j=1

btj) +
m∑

j=1

btjYtj . (3)

At the end of investment period t, the investor is informed of Yt and Zt, and must
choose an investment vector bt+1 for the next period. The investment vector for period t
is allowed to depend on all the past world and market events as well as on the investor’s
initial fortune, and so may be written as

bt(X0,Z0,Y1,Z1, . . . ,Yt−1,Zt−1), t = 1, 2, . . . . (4)

Note that bt depends implicitly on the investor’s sequence of fortunes to that time,
X1,X2, . . . ,Xt−1. Two basic assumptions are made. It is assumed that the investor
views the world as a Bayesian and thus that the joint distribution of Y1,Z1,Y2,Z2, . . .
given Z0 is known to him. Furthermore, it is assumed that the amount he invests in his
various opportunities in period t has no influence on the course of future market events
Yt,Yt+1, . . . or on future world events Zt,Zt+1, . . .. More precisely, it is assumed that his
distribution of future events is independent of his current and past choices of investments.

We consider the finite horizon problem with horizon n. It is the objective of the
investor to maximize the expected value of the utility of his fortune after n time periods.
Let U(x) denote the utility to the investor of having fortune x ≥ 0. Specifically, the investor
desires to choose a sequence of investments b1,b2, . . . ,bn of the form (4) to maximize

E{U(Xn)|X0,Z0} (5)

for fixed n subject to constraints (1) and (2), where Xn is defined inductively by (3).
One investment policy attractive for its simplicity is the myopic rule, or one-stage

look-ahead rule. This is the rule that for each time period t chooses bt to maximize the
expected value of the utility of the fortune at the end of the period. That is, bt is chosen
to maximize

E{U(Xt)|X0,Z0,Y1,Z1, . . . ,Yt−1,Zt−1} (6)

subject to constraints (1) and (2). From (3), the only random part in the expectation in
(6) is Yt, so that the problem is to choose m numbers bt1, . . . , btm subject to linear con-
straints to maximize an m-dimensional integral. The problem is thus an m-dimensional
mathematical programming problem. This is a reasonable problem for machine computa-
tion provided m is not too large. Monte Carlo techniques may be used to approximate the
m-dimensional integrals provided the distribution of Yt given the past is not too bad. The
two-stage look-ahead rule, that for each t chooses bt as the initial investment of a policy
that maximizes the expected utility two stages ahead, is generally better, but besides dou-
bling the the dimensions of the integrals and the decision space, the constraints become
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nonlinear adding to the complexity. The computation involved in obtaining the optimal
policy for the general problem appears intractable.

The objective of this paper is to study conditions on the joint distributions of the world
and market events under which the myopic rule is in fact optimal for certain reasonable
and well-known utility functions. In Section 2, we treat the power and log utility functions,

Uγ(x) =
{

(xγ − 1)/γ for γ �= 0
log(x) for γ = 0. (7)

Since utility functions are determined only up to an additive constant and a positive
multiplicative constant, we have chosen the Uγ(x) so that Uγ(1) = 0 and U ′

γ(1) = 1 for all
γ. In particular, Uγ(x) is jointly continuous in γ and x. For γ ≤ 0, Uγ(0) is defined to be
−∞.

We show that for the utility function U0(x), the myopic rule is optimal without any
further restrictions on the distributions of the world and market events. For the utility
functions Uγ(x), γ �= 0, the myopic rule is optimal under the condition that for each t,
the vectors Y1,Y2, . . . ,Yt,Zt are conditionally independent given Z0,Z1, . . . ,Zt−1. This
condition may be broken down into the two conditions: (i) given the world events, the
market events are independent, and (ii) given past world events, the future world events
are independent of past and present market events. The optimal investment is seen to be
proportional to fortune; that is, the optimal bt is of the form

bt(X0,Z0,Y1, . . . ,Yt−1,Zt−1) = Xt−1 · ct(Z0,Y1, . . . ,Yt−1,Zt−1), (8)

where ct is a vector of proportions independent of fortune.
This model is an outgrowth of the problem treated by Kelly [15] for the log utility

function in which the (Zt−1,Yt) are independent and identically distributed, Rt being
identically 1, and the distribution of Yt given Zt−1 being multinomial of sample size 1.
Bellman and Kalaba, in a series of papers [3-6], extend Kelly’s model to independent
nonidentically distributed (Zt−1,Yt) and also treat the utility functions Uγ . They also
consider exchangeable Zt, allowing treatment of adaptive problems as in Example 2 below.
Additionally, Hakansson [12-14] has examined myopic portfolio policies for these classes
of utility functions in a general entrepreneurial context with random market events. The
main purpose of this paper is to emphasize the generality under which the main result
holds and to point out the difference in the strengths of the assumptions necessary for the
different utility functions. A limitation to the model when the myopic rule is not optimal
is pointed out at the end of Section 2.

A few examples will aid in understanding the generality of the model.

Example 1. Take one investment opportunity, m = 1, Rt = 1 for all t = 0, 1, 2, . . ., and
Z0, Z1, . . . independent identically distributed uniformly on the interval (0,1). Given the
Z = (Z0, Z1, . . .), take Y1, Y2, . . . independent with P(Yt = 2|Z) = Zt−1 and P(Yt = 0|Z) =
1 − Zt−1.

The problem may be stated as follows. Every day you are given the opportunity to
bet on an even money wager, the probability you win being chosen at random in (0,1) and

3



told to you. How much should you bet each day in order to maximize EUγ(Xn)? This
problem satisfies the condition in order that the myopic rule be optimal for all γ.

For logarithmic utility (γ = 0), the optimal investment is the famous Kelly betting
system [15], namely,

ct =
{

2Zt−1 − 1 if Zt−1 > 1/2
0 if Zt−1 ≤ 1/2. (9)

This betting system has been given a justification independent of the choice of an arbitrary
utility function by Breiman [7], by Bell and Cover [2], and by Finkelstein and Whitley [11].
A justification in portfolio selection problems may be found in Thorpe [17,18]. See also
Ethier and Tavaré [8].

The general formula for γ < 1 of the optimal investment proportion is

ct =

⎧⎨
⎩

Z
1/(1−γ)
t−1 −(1−Zt−1)

1/(1−γ)

Z
1/(1−γ)
t−1 +(1−Zt−1)1/(1−γ)

if Zt−1 > 1/2

0 if Zt−1 ≤ 1/2.
(10)

This illustrates an important rule for risk averters: Never bet on outcomes which have
unfavorable odds, or even fair odds.

Example 2. Again take m = 1 and Rt = 1 for all t. This time take the Zt independent
of the Yt and so irrelevant for decision making purposes. Let p be unobservable, chosen
from a beta distribution with parameters α > 0 and β > 0. Conditionally given p, let
Y1, Y2, . . . , Yn be independent identically distributed with P(Yt = 2|p) = p and P(Yt =
0|p) = 1 − p. This is an adaptive problem in which information as to the value of p
gathered as you proceed can influence the amount you choose to invest. Since with p
unknown the Yt are dependent, this example does not satisfy the condition for optimality
of the myopic rule when γ �= 0.

When γ = 0, the Kelly betting system with Zt−1 replaced by the unbiased estimate
of p given the past, namely (s+α)/(s+f +α+β), where s is the number of successes and
f is the number of failures, is optimal. When γ > 0, an interesting feature appears. The
optimal investment may be positive even though the odds are unfavorable (α < β). This
is discussed at the end of Section 2.

Example 3. For an example of an adaptive investment problem that does satisfy the
conditions of the optimality of the myopic rule for all γ, modify Example 1 as follows. Take
m = 1 and Rt = 1 for all t. Let θ be unobservable with exponential density g(θ) = e−θ

for θ > 0, and given θ let Z0, Z1, Z2, . . . be independent identically distributed with beta
density f(x|θ) = θzθ−1 for 0 < z < 1. Given the Zt, let the Yt be independent with
P(Yt = 2|Z) = Zt−1 and P(Yt = 0|Z) = 1 − Zt−1. This problem is adaptive in the
sense that learning takes place, that gives information on the size of future payoffs. It is
interesting to note though that such learning is irrelevant in the sense that the optimal
investment rule is the same as for Example 1. In particular, if γ = 0, Kelly’s betting
system is optimal.

In Section 3, a different model is treated in which constraint (2) is removed; the
investor is allowed to invest more than he has. Entailed in this generalization is the removal
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of the requirement that his fortune be nonnegative. This is equivalent to supposing that
the investor may borrow unlimited amounts at prevailing interest rates. In this model we
are able to treat the utility functions

Wθ(x) = 1 − e−θx, (11)

defined for all real x, where θ is a given positive number. Under some additional assump-
tions, the myopic rule is optimal for this model with this utility function, and the optimal
investment, bt, far from being proportional to fortune, turns out to be independent of
fortune. This implies that the assumed ability to borrow unlimited amounts, though un-
realistic, is of minor importance to a sufficiently wealthy investor. The utility functions,
Wθ(x), have constant absolute risk aversion. In Ferguson [9] they have been seen to arise
naturally as the limiting case for a very rich man whose only objective is not to go broke.
The constant θ is the logarithm of the rate at which the investor’s fortune goes to infinity
using an optimal investment policy to minimize the probability of ruin.

2. The Utility functions, Uγ . The objective of this section is to describe conditions
under which the myopic rule is optimal for the model (1)-(5), coupled with the utility
functions Uγ defined by (7). These are the utility functions, u, that have constant risk
aversion, where risk aversion is defined by Arrow [1] and Pratt [16] to be −xu′′(x)/u′(x).
They are fairly representative, containing the linear utility (γ = 1) and the logarithmic
utility (γ = 0) as special cases.

The myopic rule for this problem is described in Theorems 1 and 2 in terms of the
functions cγ(r, F ) defined as follows. Consider the problem of finding the m-vector c that
maximizes

φγ(c) = EUγ(r +
m∑

i=1

ci(Yi − r)) (12)

subject to the constraints

ci ≥ 0 for i = 1, . . . ,m and
m∑

i=1

ci ≤ 1, (13)

where r > 0 and the distribution of the random vector Y = (Y1, . . . , Ym) ≥ 0 is denoted
by F . Let cγ(r, F ) denote the vector c at which the maximum of (12) subject to (13) is
attained.

If γ ≥ 1, the function φγ is convex on its domain of definition so that it assumes
its maximum at one of the extreme points of the constraint set (13). The solution of the
problem is then trivial: Find a subscript j such that EY γ

j is largest and put cj = 1 unless
EY γ

j < rγ , in which case put all cj = 0. If γ < 1, the function φγ is concave over its domain
(13), so that the problem of maximizing (12) subject to (13) is a concave programming
problem whose solution in principle is straightforward. However, if the number m of
investments is large, the evaluation of the m-dimensional integral (12) becomes impractical
except in special cases, one of which — the horse race, in which one and only one investment
pays off — is discussed in a companion paper [10].
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For the log utility function, U0, no further conditions on the joint distributions of
the world and market events are needed to insure the optimality of the myopic rule as
described in the following theorem.

Theorem 1. The optimal rule for the problem of maximizing E{log(Xn)|X0,Z0} out
of all rules of the form (4) subject to (1) and (2) is the myopic rule. This rule is the
proportional investment rule,

bt = Xt−1c0(Rt−1, Ft) t = 1, . . . , n

where Ft is the conditional distribution of Yt given Z0,Y1,Z1, . . . ,Yt−1,Zt−1.

Proof. We use the method of backward induction. For the nth period, when the myopic
rule is optimal by definition, we seek to choose bn to maximize

E{log(Xn)|X0,Z0, . . . ,Yn−1,Zn−1} =

E{log(Rn−1Xn−1 +
m∑

i=1

bni(Yni − Rn−1))|X0,Z0, . . . ,Yn−1,Zn−1}.

Write bni = Xn−1cni for i = 1, . . . ,m and factor out Xn−1 to obtain

log(Xn−1) + E{log(Rn−1 +
m∑

i=1

cni(Yni − Rn−1))|X0,Z0, . . . ,Yn−1,Zn−1} (14)

The value of cn that maximizes this quantity is clearly c0(Rn−1, Fn), where Fn is the
conditional distribution of Yn given X0,Z0, . . . ,Yn−1,Zn−1, independent of X0. Since we
know we will use this rule at the last stage, the problem at the next to last stage is to
choose bn−1 to maximize the expected value of (14) given X0,Z0, . . . ,Yn−2,Zn−2 subject
to (1) and (2). The second term of (14) is independent of bn−1, so this reduces to choosing
bn−1 to maximize

E{log(Xn−1)|X0,Z0, . . . ,Yn−2,Zn−2}.

Clearly the value of bn−1 that maximizes this is the myopic rule as stated in the theorem,
and this process can be continued down to the first stage.

For γ �= 0, the corresponding theorem is not valid without further restrictions placed
on the distributions. The exact conditions used in the theorem below are the following.

Condition A1. For t = 2, . . . , n, conditionally given Z0,Z1, . . . ,Zt−1, the vectors Yt and
(Y1, . . . ,Yt−1) are independent.

Condition A2. For t = 1, . . . , n − 1, conditionally given Z0,Z1, . . . ,Zt−1, the vectors Zt

and (Y1, . . . ,Yt) are independent.

These two conditions together are equivalent to the single condition that for t =
1, . . . , n, conditionally given Z0,Z1, . . . ,Zt, the vectors Y1, . . . ,Yt,Zt are mutually inde-
pendent, except that for t = n we do not care about Zn.
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Theorem 2. For γ < 1, the myopic rule is optimal for the problem of maximizing
E{Uγ(Xn)|X0,Z0} out of all rules of the form (4) subject to (1) and (2) provided con-
ditions A1 and A2 are satisfied. This rule is the proportional investment rule,

bt = Xt−1cγ(Rt−1, Ft) t = 1, . . . , n

where Ft is the conditional distribution of Yt given Z0,Z1, . . . ,Zt−1.

Proof. For γ = 0, this is a special case of Theorem 1. Assume γ �= 0. For the last period,
we seek to choose bn to maximize

E{Xγ
n/γ|X0,Z0,Y1, . . . ,Yn−1,Zn−1}

= E{[Rn−1Xn−1 +
∑

bni(Yni − Rn−1)]γ/γ|X0,Z0,Y1, . . . ,Yn−1,Zn−1}

= Xγ
n−1E{[Rn−1 +

∑
cni(Yni − Rn−1)]γ/γ|X0,Z0,Y1, . . . ,Yn−1,Zn−1}

(15)

where cni = bni/Xn−1. The value of cn that maximizes this quantity is cγ(Rn−1, Fn)
where Fn is the conditional distribution of Yn given Z0,Y1, . . . ,Yn−1,Zn−1, indepen-
dent of X0. This distribution and the expectation on the right side of (15) are indepen-
dent of Y1, . . . ,Yn−1 from condition A1. Let the maximum value of (15) be denoted by
(Xγ

n−1/γ)φn(Z0,Z1, . . . ,Zn−1), where φn > 0. Therefore, the problem at the next to last
stage is to choose bn−1 to maximize

E{(Xγ
n−1/γ)φn(Z0,Z1, . . . ,Zn−1)|X0,Z0,Y1, . . . ,Yn−1,Zn−1}

= Xγ
n−2E{[(Rn−2 +

∑
cn−1,i(Yn−1,i − Rn−2)γ/γ]φn(Z0,Z1, . . . ,Zn−1)

|X0,Z0,Y1, . . . ,Yn−1,Zn−1}
(16)

The latter expectation factors into the product of two expectations from condition A2, and
each term separately is independent of Y1, . . . ,Yn−2 from conditions A1 and A2, giving
(16) in the form

Xγ
n−2E{[Rn−2 +

∑
cn−1,i(Yn−1,i − Rn−2)]γ/γ|Z0,Z1, . . . ,Zn−2}

· E{φn(Z0,Z1, . . . ,Zn−1)|Z0,Z1, . . . ,Zn−2}.

The value of cn−1 that maximizes this expression is cγ(Rn−2, Fn−1) and the minimum
value may be written in the form

(Xn−2/γ)φn−1(Z0,Z1, . . . ,Zn−2).

Clearly this procedure may be continued back to the first stage.

When conditions A1 and A2 are not both satisfied, the optimal rule is usually difficult
to compute. However, in the case of Example 2 with γ �= 0, the optimal rule is easy to

7



compute, as was shown by Bellman and Kalaba [5], and the result shows an interesting
feature of these models.

Let fn(x|α, β) denote the optimal (maximum if γ > 0, and minimum if γ < 0)
value of E(Xγ

n |X0 = x) in Example 2 when the prior distribution of p is Be(α, β), the
beta distribution with density proportional to pα−1(1 − p)β−1. The expectation of p is
α/(α + β), and the posterior distribution of p given a success is Be(α + 1, β), and given a
failure is Be(α, β + 1). Thus, f0(x|α, β) = xγ , and

f1(x, α, β) = max
0≤b≤x

{
α

α + β
(x + b)γ +

β

α + β
(x − b)γ

}

= max
0≤c≤1

xγ

{
α

α + β
(1 + c)γ +

β

α + β
(1 − c)γ

}

= xγV1(α, β),

say, with max replaced by min if γ < 0. Similarly, we discover fk(x|α, β) = xγVk(α, β),
where Vk is defined recursively by

Vk(α, β) = max
0≤c≤1

{
α

α + β
Vk−1(α + 1, β)(1 + c)γ +

β

α + β
Vk−1(α, β + 1)(1 − c)γ

}
, (17)

with max replaced by min if γ < 0, and with initial condition V0(α, β) = 1 for all α > 0
and β > 0. Let ck(α, β) represent the value of c at which the max (or min) of (17) is
attained. Explicit formulas for ck(α, β) in terms of Vk−1(α + 1, β) and Vk−1(α, β + 1) are
easy to obtain by differentiation:

ck(α, β) =
(

1 − z

1 + z

)+

,

where

z =
(

βVk−1(α, β + 1)
αVk−1(α + 1, β)

)1/(1−γ)

, γ < 1.

Of course, it might be expected that ck(α, β) = 0 whenever α < β. After all, the
investor then does not believe the investment to be favorable and he has convex utility.
According to Arrow [1], a risk averter is one who is unwilling to make fair or subfair
bets. In addition, ck(α, β) does equal zero when ever α ≤ β for γ = 0 since the optimal
investment policy is then the Kelly betting system. However, for γ > 0, α ≤ β does not
imply that ck(α, β) = 0 as Table 1 constructed for the value γ = 1/2 illustrates.

For example, if n = 14 and the prior is uniform (α = β = 1), the optimal investment
is c14(1, 1) = 97.3 percent of the investor’s fortune; furthermore, if the investor should lose
that investment and then believe the odds are two to one against him, he should still invest
c13(1, 2) = 11.7 percent of his remaining fortune!

This brings out clearly one aspect of this model that occurs when the myopic rule is
not optimal. In various other multistage decision problems such as statistical sequential
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Table 1. Optimal values of cn(α, β), γ = 1/2.

n c(1, 1) c(1, 2) c(2, 1) c(1, 3) c(2, 2) c(3, 1)
1 0.000 0.000 0.600 0.000 0.000 0.800
2 0.053 0.000 0.667 0.000 0.020 0.843
3 0.143 0.000 0.734 0.000 0.057 0.897
4 0.257 0.000 0.795 0.000 0.107 0.908
5 0.385 0.000 0.847 0.000 0.170 0.930
6 0.516 0.000 0.888 0.000 0.245 0.947
7 0.636 0.000 0.919 0.000 0.331 0.959
8 0.738 0.000 0.941 0.000 0.423 0.969
9 0.817 0.000 0.957 0.000 0.518 0.975

10 0.875 0.000 0.968 0.000 0.608 0.980
11 0.915 0.000 0.975 0.000 0.691 0.984
12 0.943 0.000 0.981 0.000 0.762 0.986
13 0.961 0.117 0.985 0.000 0.819 0.988
14 0.973 0.278 0.987 0.000 0.864 0.990
15 0.980 0.434 0.989 0.000 0.898 0.991
16 0.985 0.573 0.991 0.000 0.923 0.992
17 0.989 0.688 0.992 0.000 0.941 0.993
18 0.991 0.777 0.993 0.000 0.954 0.994
19 0.992 0.842 0.994 0.000 0.963 0.995
20 0.993 0.889 0.995 0.000 0.969 0.995
21 0.994 0.921 0.995 0.000 0.974 0.996
22 0.995 0.944 0.996 0.065 0.978 0.996
23 0.995 0.959 0.996 0.241 0.980 0.996
24 0.996 0.969 0.996 0.409 0.983 0.997
25 0.996 0.976 0.997 0.555 0.984 0.997

analysis or Markovian decision problems, one solves the problem for a large finite horizon
letting the horizon go to infinity in order to get an idea of what a good decision rule is
for the immediate next stage. However, in this example, it has been shown by Chia-Jon
Hong that cn(α, β) → 1 as n → ∞. No matter how unfavorable the initial prior, for a
sufficiently large horizon one would invest an arbitrarily high percentage of one’s fortune
at the first stage.

In some related problems, a similar phenomenon occurs because by investing we gain
information that is useful in future investments. This is not occuring here since we get the
information about investments whether or not we invest. Here, the explanation is that if
the true p is close to 1, we want to be in a good position to take advantage of that fact,
because then the return will be exponentially large in n, and if 0 < γ < 1 the utility of the
return will also be exponentially large in n.

The corresponding phenomenon for γ < 0 is similar. Here one does avert risk in that
cn(α, β) = 0 if α ≤ β. However, it seems from Table 2, constructed for γ = −1, that
cn(α, β) → 0 as n → ∞ for all a and β. No matter how favorable the initial odds, for a
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Table 2. Optimal values of cn(α, β), for γ = −1.

n c(2, 1) c(3, 1) c(3, 2) c(4, 1) c(4, 2) c(5, 1)
1 0.172 0.268 0.101 0.333 0.172 0.382
2 0.155 0.246 0.094 0.309 0.161 0.358
3 0.139 0.226 0.087 0.287 0.151 0.335
4 0.124 0.208 0.080 0.268 0.142 0.314
5 0.111 0.192 0.074 0.250 0.134 0.295
6 0.098 0.177 0.067 0.233 0.126 0.278
7 0.087 0.164 0.062 0.218 0.119 0.262
8 0.077 0.152 0.056 0.205 0.112 0.247
9 0.068 0.141 0.051 0.193 0.106 0.234

10 0.060 0.131 0.047 0.182 0.100 0.222
11 0.052 0.122 0.042 0.171 0.095 0.210
12 0.045 0.114 0.038 0.162 0.090 0.200
13 0.039 0.107 0.034 0.153 0.085 0.191
14 0.033 0.100 0.031 0.146 0.081 0.182
15 0.028 0.094 0.027 0.138 0.077 0.174
16 0.023 0.088 0.024 0.132 0.073 0.167
17 0.018 0.082 0.021 0.126 0.069 0.160
18 0.014 0.077 0.018 0.120 0.066 0.153
19 0.010 0.073 0.015 0.115 0.063 0.147
20 0.060 0.068 0.013 0.110 0.059 0.142
21 0.003 0.064 0.010 0.105 0.057 0.136
22 0.000 0.060 0.008 0.101 0.054 0.132
23 0.000 0.057 0.006 0.096 0.051 0.127
24 0.000 0.053 0.003 0.093 0.049 0.123
25 0.000 0.050 0.001 0.089 0.046 0.119

sufficiently large horizon one would invest an arbitrarily small percentage of one’s fortune
at the first stage. Again, this model is not designed for problems for deciding what to do
now based on what is good for sufficiently large horizons. We conjecture that for all α, β
and γ < 0, the optimal betting proportion cn(α, β) is equal to zero for sufficiently large n.

3. The Utility Functions, Wθ. In this section, the basic model is altered to allow
arbitrary real values for fortunes, −∞ < x < ∞, and to allow the investor to borrow
unlimited amounts of money at prevailing rates. We assume the investor has a utility
function Wθ(x) of the form (11) for a given positive constant θ > 0. The utility Wθ(x),
defined for all real values of x, is concave and bounded above. This is the class of utility
functions with constant absolute risk aversion, where absolute risk aversion is defined by
Arrow and Pratt to be −u′(x)/u′′(x).

Under two assumptions in addition to A1 and A2, the myopic rule is optimal for the
problem of maximizing E{Wθ(Xn)|X0,Z0}. The first of these assumptions is that the
sequence of growth factors, R0, R1, . . . . , Rn be identically one.
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Condition A3. R0 = R1 = · · · = Rn−1 = 1 a.s.

The second of these additional assumptions is more technical. Since we are allowing
unlimited borrowing we need a condition to avoid the degenerate case of desiring to borrow
an infinite amount. If there is an investment policy that provides a return greater than
one with probability one, then the investor could make his wealth large without bound by
investing a sufficiently large amount in this policy. Condition A4 rules out this possibility.

Condition A4. For every t = 1, . . . , n and every m-vector b ≥ 0 with b �= 0,

P{
m∑
1

bi(Yti − 1) < 0|Z0} > 0.

Consider the problem of finding an m-vector b that maximizes EWθ(x+
∑m

1 bi(Yi−1))
subject to the constraints bi ≥ 0 for i = 1, . . . ,m. It is assumed that x, the investor’s
fortune, is a known constant and only the vector Y = (Y1, . . . , Ym) is random. This
problem is equivalent to the one of finding b to minimize

φ(b) = E exp{−θ
m∑
1

bi(Yi − 1)}, (18)

subject to the constraints bi ≥ 0 for i = 1, . . . ,m. The optimal b is thus seen to be
independent of x. If, as we assume, P(

∑m
1 bi(Yi − 1) < 0) > 0 for all b ≥ 0, b �= 0, then

the minimum of (18) over b ≥ 0 is attained at some finite b. Let F denote the distribution
function of Y, and let bθ(F ) denote any vector b that attains the minimum of (18) subject
to b ≥ 0. Define b∗(F ) to be b1(F ); then we may write bθ(F ) = b∗(F )/θ.

Theorem 3. Under conditions A1, A2, A3 and A4, the myopic rule

bt = b∗(Ft)/θ, for t = 1, 2, . . . , n

is optimal for maximizing E{Wθ(Xn)|X0,Z0} out of all rules of the form (4) subject to
(1), where Ft is the conditional distribution of Yt given Z0,Z1, . . . ,Zt−1.

The proof is similar to the proof of Theorem 2 and is omitted.
The optimal rule can be found just as easily if A3 is replaced by the condition that

the growth factors are deterministic, that is the Rt are positive constants known at time
zero. The myopic rule is not optimal in this case but a closely related rule is. This is the
rule that at each stage t minimizes

E{exp{−θ(
n−1∏
j=t

Rj)
m∑

i=1

bi(Yti − Rt−1)}|Z0,Z1, . . . ,Zt−1}.

In terms of the function b∗, this rule is

bt = b∗(Ft)/(θ
n−1∏
j=t

Rj), for t = 1, 2, . . . , n, (19)
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Table 3. Optimal values of bn(α, β) for θ = 1.

n b(2, 1) b(3, 1) b(3, 2) b(4, 1) b(4, 2) b(5, 1)
1 0.347 0.549 0.203 0.693 0.347 0.805
2 0.275 0.448 0.173 0.576 0.307 0.677
3 0.219 0.374 0.148 0.489 0.265 0.582
4 0.175 0.318 0.126 0.423 0.235 0.509
5 0.139 0.275 0.107 0.372 0.211 0.452
6 0.110 0.239 0.090 0.331 0.189 0.405
7 0.086 0.211 0.076 0.297 0.171 0.368
8 0.066 0.187 0.063 0.269 0.155 0.336
9 0.048 0.166 0.051 0.246 0.141 0.309

10 0.033 0.148 0.041 0.225 0.129 0.286
11 0.020 0.133 0.031 0.208 0.118 0.266
12 0.008 0.119 0.023 0.192 0.108 0.249
13 0.000 0.107 0.015 0.178 0.099 0.233
14 0.000 0.097 0.008 0.166 0.090 0.219
15 0.000 0.087 0.001 0.155 0.083 0.207
16 0.000 0.078 0.000 0.145 0.076 0.195
17 0.000 0.070 0.000 0.135 0.069 0.185
18 0.000 0.062 0.000 0.127 0.063 0.176
19 0.000 0.055 0.000 0.119 0.057 0.167
20 0.000 0.049 0.000 0.112 0.052 0.159
21 0.000 0.043 0.000 0.105 0.047 0.151
22 0.000 0.037 0.000 0.099 0.042 0.144
23 0.000 0.032 0.000 0.093 0.038 0.138
24 0.000 0.027 0.000 0.088 0.034 0.132
25 0.000 0.022 0.000 0.083 0.030 0.126

where this time Ft represents the distribution function of Yt/Rt−1 given Z0Z1, . . . ,Zt−1.
We see that, like the problems of Section 2 in which the myopic rule was not optimal, one
cannot use the initial rule of an optimal policy for a large horizon as a sensible initial rule
for an infinite horizon. In particular, if

∏n
0 Rt → ∞ as n → ∞, then we expect b1 → 0.

When the myopic rule is not optimal for reasons such as those found in Example 2,
remarks similar to those of Section 2 apply. If in Example 2, bn(α, β) denotes the amount
of the optimal investment when the prior distribution is Be(α, β) and there are n stages to
go, then bn(α, β) = 0 for a ≤ β. Table 3 contains results for Example 2 in the case θ = 1
and indicates that bn(α, β) = 0 for sufficiently large n.
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