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Abstract

A two-person zero-sum game invented by Andrew Gleason in the
early 1950’s has a very simple description and yet turns out to be quite
difficult to solve. This game is a stochastic game with an information
lag for both players. No strategy with a bounded memory of past
moves can be optimal. Yet using the notion of generalized subgames,
we show that there exist optimal strategies of a simple nature based
on functions easily approximable by standard methods of computation
for stochastic games.

1. Description of the game. Two players, Andy and Dave, move a
counter around a three node board. The nodes are arranged in a circle and
are labeled +1, +2, and −3. Initially the counter rests on node +1 and
Andy starts.

+1

+2-3

Thereafter, the players alternate moves. There is a one move delay in
informing the players of the position of the counter, so that, except for the
first move, players make their moves only knowing the node from which the
opponent has just moved. A move consists of instructing a referee to move
the counter either clockwise or counterclockwise to the next node. One is
not allowed to leave the counter where it is. After each move is given to
the referee, the referee announces the node that the counter just left, and
requires Dave to pay Andy the amount on the label of that node. (Thus,
Dave wins +3 from Andy if this node is −3.) The problem is for Andy to
maximize and for Dave to minimize the limiting average payoff1.

It seems that Andy’s first move should be clockwise, from +1 to +2, and
then that Dave’s first move should also be clockwise, to −3, giving so far a

1Since the limiting average payoff may not exist, to be precise we should use the limsup
(or the liminf) of the average payoff.
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total payoff of zero. Now Andy should randomize his choice; if he always goes
to +2 then Dave can always put him back to −3; if he always goes to +1, the
same thing will happen. So Andy will decide to go counterclockwise (cc.)
with a certain probability q and clockwise (cl.) with probability p = 1−q, and
now Dave will have a similar problem and must also randomize his choice.
If Dave goes cc. suspecting that Andy went to +1 when Andy actually went
to +2, Dave will lose a total of three in those two moves. A similar analysis
holds if Dave goes cl. We will see later the continuation of this game using
optimal play.

Let us give a preliminary analysis of Gleason’s game. We call the player
who wins the amounts labeled on the nodes Player I and the one who loses
these amounts Player II. A strategy in the infinite game is a rule that gives
the probability that a player moves cc. as a function of the information
received so far in the game. Results of Scarf and Shapley [5] show that the
minimax theorem holds in this situation, namely, that the game has a value,
V , and that both players have optimal strategies, σI for I, and σII for II.
This means that if I uses σI , the expected liminf of the average payoff is at
least V no matter what II does, and if II uses σII the expected limsup of
the average payoff is at most V no matter what I does.

It turns out that V < 0. The game favors Player II. This was known in
the 1950’s. In fact, there is a simple strategy for II whereby he can keep the
limiting average payoff less than or equal to zero. It is as follows.

If last at +1, go cl.
If last at +2, go cc.
If last at −3, go cc. with probability 1/3 and cl. with probability 2/3.

This strategy is simple in that it uses knowledge of the past only through
the last known state. After some calculation, it is not hard to see that I’s
best reply to this strategy only guarantees that he will break even in the
long run. One can also show that the above is the best strategy for II that
uses only the last known state. It is also fairly easy to see that this rule
cannot be optimal for II. If II uses more past information, he is certain to
be able to do a little better, so the value must be strictly negative. This is
essentially what was known about the game in the 1950’s.

2. Better bounds on the value. We may try to extend the above
method to obtain better approximations to the value. Consider strategies
for Player II that depend on the last two known states. The best among
these seems to be the following:

If last at +1, go cl.
If last at +2, go cc.
If the last two nodes are +1 and −3, go cc. with probability .34.
If the last two nodes are +2 and −3, go cc. with probability .49.
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The best that Player I can do against this strategy gives him a limiting
average return of about −.01316. One might suspect that we are close to
the value of Gleason’s game since adding one more stage of memory to II’s
strategy reduces the limiting average return by only .01316. Unfortunately,
the corresponding upper bound to the value, requiring Player I to use a
strategy that uses only the last known state, turns out to be −.17859. So
we have −.17859 < V < −.01316. There is quite a gap to narrow.

From an analysis of this sort, we can see why the problem seems easy
but is actually hard. When the referee announces the state just vacated,
both players know the history of the game up to that point. Indeed, this
information is common knowledge (both players know the other knows, both
know the other knows he knows, etc.). At first sight, it might be thought that
one need not remember back past that point in choosing a strategy. This
is not so because when the opponent made his last move, he had to choose
it not knowing the actual state, and you should be able to take advantage
of that. And the opponent chose his strategy trying to take advantage of
your lack of knowledge of the previous state, so that should be taken into
account, and so on. As we shall see, no strategy that remembers only a
bounded number of past moves can be optimal.

Still, we might try to find as an approximation to the optimal strategy
the best strategy that takes into account only the last k states. The trouble
is that this requires considering 3 times 2k−1 parameters in [0, 1]. Even for
k = 3, the asymptotic Markov chain analysis required for this is exceedingly
complex. However, the point is moot since there exists an optimal strategy
that uses knowledge only of the last two known states and of one parameter
which summarizes all the past history.

3. Generalized subgames. Without the information lag feature, this
game would be a stochastic game, so that methods that work for stochas-
tic games might be expected to be of use. A stochastic game G is a finite
collection of matrix games, G = {G1, . . . , Gm}, together with a set of transi-
tion probability matrices, P = {P1, . . . , Pm}, jointly controlled by the pure
strategy choices of the players. If game Gi = (gi

rc) is being played, then
simultaneously I chooses a row r and II chooses a column c. Then there is
an immediate payoff of gi

rc from II to I, and the next game played is Gj with
probability Pi(j|r, c). There may be a discount, 0 < β < 1, in which case the
total payoff is the present value of the infinite stream of payoffs,

∑∞
1 βnZn,

where Zn represents the payoff at stage n. In problems without a discount
(β = 1), the limiting average payoff is used, say lim infn→∞(Zn/n). The re-
cent book of Filar and Vrieze [3] contains a thorough and careful exposition
of the area.

Stochastic games were introduced by Shapley [6] who gave a proof of
existence of the value and optimal strategies in the discounted case. He
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also gave a method of approximating the solution by looking at subgames
Gi which represent the game G when the initial game played is Gi. If Vi

represents the value of Gi, then

Vi = Val(gi
rc + β

m∑

j=1

Pi(j|r, c)Vj) for i = 1, . . . , m. (1)

One may choose an arbitrary set of initial values for the Vi and iterate this
set of equations to approximate the solution. This method of approximating
the solution is called Shapley iteration.

Gleason’s game is not a stochastic game because of the information lag.
However, a theory of games with information lag was developed by Scarf
and Shapley [5]. The notion of a generalized subgame, introduced there,
may be used to reduce Gleason’s game to a stochastic game. The cost of
this reduction is that the state space and the strategy spaces become infinite.

Recall that even if I is required to announce his mixed strategy, the value
of the game will still be V . Thus, if we change the game by requiring I to
tell II what mixed strategies he will be using in the future, the resulting
game will have the same value and the same optimal strategy for Player I
as the original game. Suppose that I announces that his first move is cc.
with probability q, and cl. with probability p = 1− q. We refer to this game
as the generalized subgame for Player I starting at +1 with probability q

counterclockwise, and denote it by G(1, q). Similarly, G(2, q) and G(3, q)
represent the generalized subgames with I moving cc. with probability q at
nodes +2 and −3 respectively. The situation for Player II is then:

The Generalized Subgame, G(1,q).

+1

+2-3

q p

There will be an immediate payoff to I of Pβ(1, q) = 1 + β(−3q + 2p)
in the discounted case, and P (1, q) = 1 − 3q + 2p in the limiting average
case. Now II must decide cl. or cc. knowing only that he is at state −3
with probability q and at state +2 with probability 1− q. But he asks I the
probabilities I will use on the next round. Player I will say something like
“If I went to −3, I will next go cc. with probability r; otherwise I will go cc.
with probability s ”. The tree expands to:
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The Expanded Subgame.

+1

+2-3

+2 +1 +1 -3

q p

r r s s

The collection of generalized subgames, G(k, q), forms a stochastic game
with state space, {(k, q) : k ∈ {1, 2, 3}, q ∈ [0, 1]}. This game is played
as follows. Suppose we start at game G(k, q). Player I, knowing the state
(k, q), must choose r ∈ [0, 1] and s ∈ [0, 1]. Player II, knowing the state
and I’s strategy choice (r, s), must choose to go cc. or cl. Then there is an
immediate payoff of Pβ(k, q), and transition to a new generalized subgame
occurs according to the following probabilities. If II chose cc., the next game
played is G(k+1, r) with probability q and G(k, s) with probability 1−q. If
II chose cl., the next game played is G(k, r) with probability q and G(k+2, s)
with probability 1− q. (In these expressions, k+1 and k+2 are understood
to be read modulo 3.)

There are certain noteworthy features of these games. First note that
Player I may as well be informed of the state when he makes his choice.
Secondly, we may assume the players move alternately, with Player I going
first, and that the players have full information of past moves. In other
words, this is a stochastic game of perfect information! Thirdly, the im-
mediate payoffs, Pβ(1, q) = 1 + β(−3q + 2p), Pβ(2, q) = 2 + β(q − 3p) and
Pβ(3, q) = −3+β(2q +p), depend only on the state and not on the strategy
choices of the players.

Let Vβ(1, q) (resp. Vβ(2, q) and Vβ(3, q)) denote the value of the β-
discounted subgame starting at node +1 (resp. +2 and −3) when q is an-
nounced. Then, I chooses r and s to maximize his future expected return
and II will similarly minimize, so that

Vβ(k, q) = Pβ(k, q) (2)
+β2 max

r,s
min{qVβ(k + 1, r) + pVβ(k, s), qVβ(k, r) + pVβ(k + 2, s)}

for k = 1, 2, 3. This gives three simultaneous functional equations to be
solved for the three value functions, Vβ(k, q). If β is not too close to one,
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iteration techniques of discounted stochastic games such as Shapley iteration
may be employed.

However, Gleason’s Game as originally stated is a limiting average payoff
game. To obtain the corresponding equations for the limiting average pay-
off case, we may apply a standard approximation used in Markov decision
processes and stochastic games by writing

Vβ(k, q) = V/(1− β) + W (k, q) + o(1− β) for k = 1, 2, 3. (3)

Here, V is the overall limiting average payoff, independent of the initial
state, and W (k, q) represents the amount above or below some standard
that being in state (k, q) confers upon I (on the average). The actual values
of the W (k, q) are only fixed when we fix the standard; otherwise only the
differences W (k, q)−W (k′, q′) are fixed. For example, we may fix W (1, 0) = 0
for the standard, or we may fix

∑
k

∫
W (k, 2q) dq = 0. If we replace Vβ(k, q)

by its approximation and let β → 1, we find

2V + W (k, q) = (4)
P (k, q) +max

r,s
min{qW (k + 1, r) + pW (k, s), qW (k, r)+ pW (k + 2, s)}

for k = 1, 2, 3, where P (k, q) represents Pβ(k, q) for β = 1.
The value of V that satisfies these equations is the value of Gleason’s

game. A stationary strategy for I is a set of six functions, r(k, q) and s(k, q),
for k = 1, 2, 3. The optimal stationary strategy for I can be found as the
values of r and s that achieve the maximum in the above equation. These
are the optimal strategies for I in the original Gleason’s game. However,
this method gives very little information about II’s optimal strategy in the
original game. To find II’s optimal strategy, we must view the generalized
subgames from his point of view and derive and solve the corresponding set
of equations.

4. Numerical Approximations. To approximate the solution of the
generalized subgames, we discretize the strategy space of Player I by restrict-
ing him to use probabilities in some discrete set, say {0, 1

n , 2
n , . . . , n−1

n , 1} for
some large value of n. Restricting I in this way, yields a game whose value
is a lower bound to the value of the original game. For each n, the class of
approximating generalized subgames becomes a stochastic game with finite
state and action spaces and limiting average payoff.

It is known that Shapley iteration does not ordinarily converge for sto-
chastic games with limiting average payoff. However, the method of Hoffman
and Karp [4] can be applied to this problem. (See Algorithm 5.1.1 in [3].)
This is an iterative method that involves alternately solving a finite game
and a Markov decision problem with limiting average payoff. Solving the
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Figure 1: Optimal Strategy Diagrams for Player I

r(1,q)

s(1,q)

.35

.56

.61

r(2,q)

s(2,q)

.46

r(3,q)

s(3,q) .56

.65.36

finite game is easy because it is a game of perfect information; so one does
not have to resort to mixed strategies.

This method was applied to solve the discrete version of equation (4)
using n = 1600. (I’s strategy set consists of about 6 × 1600 = 9600 vari-
ables, each capable of taking values in a set of size 1600. Thus, I has about
16009600 pure strategies!) Approximate computations have been performed
which show that the value of Gleason’s game is approximately V = −.0933
(actually, −.09336 < V < −.09323).

Of great interest, of course, are the optimal strategies of Player I in
this version since they are the same as for the original game. Thus, we are
ultimately interested in the values of r and s that achieve the maximum in
the above equations. We denote these by r(k, q) and s(k, q). Knowledge
of these functions tell Player I how to play Gleason’s game optimally. The
numerical approximation to these functions is displayed in Figure 1.

We see in these diagrams a strange behavior of s(1, q) for q near 1 and
r(2, q) for q near 0. This occurs for two reasons. First, these values play
only a very small role in the value of the game. In fact, s(1, 1) and r(2, 0)
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Figure 2: Optimal Strategy Diagrams for Player II

r(1,q)

s(1,q)

.37

.27
r(2,q)

s(2,q)

.70

s(3,q)

r(3,q) .50

.81.69.39

play no role at all; they may be set arbitrarily. Second, the use of discrete
probabilities in the approximation plays a role in creating artificial small
oscillations in the functions. Based on mesh size 1/1600, it is difficult to
guess how the true function behaves in the corresponding regions, though
we suspect it is still monotone there.

The use of these diagrams may be explained as follows. Suppose that on
his last move I announced that he was going cc. from +1 with probability q.
Then if I has actually gone cc. to −3, he would next go cc. with probability
r(1, q), while if I had actually gone cl. to +2, he would next go cc. with
probability s(1, q).

We may find II’s optimal strategy by viewing the generalized subgames
from II’s point of view and deriving a similar set of equations. When this
is done, we find corresponding optimal strategy diagrams for Player II as
displayed in Figure 2.

5. Final Remarks. As an illustration of the use of these figures, let us
continue the game between Andy and Dave. Since Andy’s first move was
cl. from +1 to +2 with probability one (q=0), on his next move he should
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go cc. with probability s(1, 0) = .562 from Fig. 1. Dave doesn’t know if the
counter is on +1 or +2, but since on his first move he went cl. from +2 with
probability one (q = 0), he should now go cc. with probability s(2, 0) = .369
from Fig. 2.

Let us continue this game for two more steps. Suppose the outcome of
Andy’s random move from −3 was cl. to +1. Then his next move should be
cc. with probability s(3, .562) = .648 using Fig. 1. (If he had moved cc. from
−3 to +2, his next move would have been cc. with probability r(3, .562) =
.510.) Suppose in addition that the outcome of Dave’s randommove from +1
was cc. to−3. Then his next move should be cc. with probability r(1, .369) =
.129 using Fig. 2, and so forth.

Using an analysis of this sort, one can see that no strategy that remem-
bers only a bounded number of past moves can be optimal. This may be
done by exhibiting a sequence of positions with positive probability for each
n under an optimal strategy for one of the players such that all positions
differ. This is perhaps most easily done for Player II, starting at (2, .0) and
alternating between (cl., cl.) and (cc., cc.) by the players. This leads to a
sequence of positions (2, .0), (1, .369), (2, .129), (1, .421), (2, .173), (1, .442),
(2, .188), (1, .449), (2, .193), (1.452), . . ., alternating between the functions
s(2, q) and r(1, q) of Fig. 2.

In closing, we would like to mention a slightly simpler form of Gleason’s
game that arises by modifying the numbers on the nodes, and hence the
payoffs, to read +1, +1, and −2. By changing location and scale of the
payoffs, we may define an equivalent game with nodes numbered 0, 0 and
+1. This version is simpler than the original Gleason’s game because it is
symmetric in simultaneously interchanging the 0 nodes and interchanging
cc. and cl. From this symmetry we may conclude that the optimal strategies
are also symmetric in the sense that r(1, q) = 1 − s(2, 1 − q), r(2, q) =
1−s(2, 1−q), and r(3, q) = 1−s(3, 1−q), where 3 represents the node with
payoff +1. The value of this game has been evaluated by the above methods
to be .35575± .000014.
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