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Abstract. Toetjes is a constant-sum game of perfect information in which players
guess in turn the outcome of a random variable X with known distribution. The
contestants, who play in a predetermined order, know the values announced by
their predecessors but must make a different choice. The winner is that participant
whose guess is closest to the value eventually taken by X . Feder (Amer. Math.
Monthly, 1990), who investigated Toetjes as a non-cooperative game when X is
uniformly distributed, observed that it provides a clear advantage to the first
guesser, while the last player is at a disadvantage. It is shown here that this result
extends to more general densities, but that in contrast, Toetjes is most favorable
to the last player when the contestants can form alliances. It is also shown that
the last person who speaks has a strong advantage in a version of Toetjes related
to the American television show The Price is Right, in which the winner is the
contestant whose bid is closest to, but less than, the unknown retail price X of an
important collection of consumer goods.

Résumé. Toetjes est un jeu à somme constante dans lequel des concurrents par-
faitement informés tentent tour à tour de deviner la valeur d’un aléa X de loi
connue. Les participants, qui jouent dans un ordre préétabli, connaissent les ré-
ponses données par leurs prédécesseurs mais doivent faire un choix différent. La
valeur la plus proche de celle éventuellement prise par X détermine le vainqueur.
Feder (Amer. Math. Monthly, 1990), qui a analysé ce jeu dans le cas où X est
équidistribué, a constaté que lorsque les participants à Toetjes ne sont pas autorisés
à coopérer, le jeu avantage nettement le premier concurrent et désavantage le
dernier. On montre ici que cette observation s’étend à d’autres lois de probabilité
mais qu’en revanche, Toetjes favorise le dernier concurrent si les joueurs peuvent
former des alliances. On montre aussi que le dernier répondant jouit d’un avantage
substantiel dans une version de Toetjes apparentée au jeu télévisé américain Le
juste prix, dans lequel le gagnant est celui qui devine le plus exactement possible,
sans toutefois le dépasser, le prix de vente X inconnu d’un important ensemble de
biens de consommation.
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1. Introduction

In Dutch, “toetjes” means “afters,” or dessert. In the work of Feder
(1990), it also refers to a game that is played around many family dinner
tables in the world, at times when a single leftover piece of cake needs to be
allocated to one of the children. In the continuous version of the game consid-
ered by Feder, a parent secretly picks a number X at random in the interval
[0, 1] and one by one, in a predetermined order, the n ≥ 2 children make
their guesses known to all. Child 1 thus selects a number x1 and, knowing
x1, . . . , xi−1, Child i ≥ 2 chooses xi distinct from all previous guesses. Once
everybody has spoken, the parent announces whose guess is closest, and this
child gets the treat. The others get nothing.

The question addressed by Feder (1990) is that of determining the guess
that each child should make in order to maximize his/her probability of win-
ning, knowing that all children do likewise. Feder introduces “tie-breaking”
rules to require a specific action when several possible guesses give a child the
same maximal probability of win. This paper revisits the issue — “toetjes
na” means “after afters” in colloquial Dutch and can be interpreted either
as “extra dessert” or “more (on) Toetjes” — in order to characterize the set
of optimal strategies from a game-theoretic viewpoint and to explore what
happens in situations where the parent’s secret number is drawn from other
continuous distributions than the uniform.

Toetjes with n = 2 players is briefly discussed in Section 2, where it is
seen to be a game of perfect information that is essentially fair to rational
contestants who engage non-cooperatively in it. Somewhat unexpectedly,
however, it turns out that when there are n ≥ 3 players, Toetjes often proves
least beneficial to the person who announces his/her guess last. The case
n = 3 is considered in detail in Section 3, where the set of equilibrium payoff
vectors is characterized when X has a continuous density f that is either
uniform on a bounded interval, strictly decreasing on a possibly unbounded
interval, or unimodal and symmetric on the real line. More generally, it is
seen in Section 4 that when f is strictly decreasing, the probability of winning
is a non-increasing function of player number in the strategy leading to the
unique, perfect equilibrium of the n-player version of the game.

In Section 5, Toetjes is also treated alternatively as a cooperative game
with transferable utility. From the point of view of the Shapley value, the
early players are seen to be at a disadvantage. In particular, the ability of
the last contestant to make threats makes him/her very valuable in forming
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coalitions and confers to him/her a significant edge.
Closely related to Toetjes is a three-player version of “The Showcase

Showdown” that concludes the American television show The Price is Right.
In the latter, participants must guess the retail priceX of a large collection of
consumer durables. The winner is the person whose bid is closest to X with-
out going over, and in the event that all bids (which must be different) exceed
X, the process is repeated. A brief analysis of this game is mentioned in the
last section, along with a few disjointed remarks regarding other possible
extensions of Toetjes. So long as all players have access to the same infor-
mation, The Price is Right turns out to be simpler than Toetjes in that the
equilibrium payoff does not depend on the distribution of X, provided that
it is continuous. In a three-player version of “The Showcase Showdown,” the
third contestant is clearly favored. Other interesting aspects of The Price
is Right are discussed by Even (1966), Coe & Butterworth (1995), Berk,
Hughson & Vandezande (1996), Grosjean (1998) and Biesterfeld (2001).

2. The two-person game

Since it is common knowledge that contestants share the same distribu-
tion for X and do not have access to any private data, Toetjes is a game of
complete information. This is in contrast, e.g., with “second guessing” con-
tests investigated by Steele & Zidek (1980), Pittenger (1980) and Hwang &
Zidek (1982), in which two persons are challenged to guess the weight X of
a given object. In the latter context, the participants have a common prior
for X but also get to see the object, from which they derive private hunches,
say G1, G2, about its weight. Assuming, as these authors do, that Player 1
announces G1 as his/her guess and that Player 2 knows this, the latter can
turn this extra information into a substantial advantage. When the Gi’s are
conditionally independent given X and have the same symmetric distribu-
tion centered at the true weight, for instance, Steele & Zidek (1980) show
that Player 2 can achieve a success probability as large as 3/4 by guessing a
value infinitely close to, and either to the left or to the right of G1, according
as G2 < G1 or G2 > G1.

In the two-player version of Toetjes, neither player is at an advantage,
because they share exactly the same information. When X is uniform on an
interval [A,B], or simply [0, 1] without loss of generality, it is clear that the
optimal choice for Player 1 is x1 = 1/2, since he/she can then guarantee a
payoff of 1/2 for him/herself. Indeed if x1 < 1/2, say, Player 2 could then
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play x1 + ε < 1/2 for some suitably small ε > 0, and Player 1’s probability
of winning would be x1 + ε/2 < 1/2. Of course, the smaller ε, the higher the
payoff for Player 2.

This simple example brings out a difficulty with the game, namely the
fact that there may not always exist an optimal move. To overcome this
problem, Feder (1990) defines “limiting plays” which are such that all players
can obtain payoffs arbitrarily close to optimal by picking numbers sufficiently
close to the limit. To keep things compact, the notations x− and x+ are used
below to refer to a point infinitesimally smaller or greater than x. Expressions
such as (x−)−, (x+)+ and the like may also be defined unambiguously when
needed.

With these conventions, the only optimal moves in the two-player version
of Toetjes with X uniform are x1 = (A+B)/2 and x2 equals x−

1 or x+
1 . Sim-

ilarly if X is assumed to have a continuous distribution F , so that ties occur
with zero probability, Player 1 can guarantee a return of 1/2 by choosing x1

to be a median of F . Player 2 again chooses x2 to be x−
1 or x+

1 . The limiting
payoffs are thus p1 = p2 = 1/2 in all cases, as Hotelling (1929) had already
pointed out a long time ago in an economic context where two competitive
vendors selling the same commodity seek optimal business locations on an
idealized linear town where customers distributed according to F are equally
interested in their product and would always buy it from the closest outlet.

3. Three-person games

When Toetjes is played with n ≥ 3 children, the game’s sets of payoffs
and equilibrium strategies depend strongly on the density f of the parent’s
secret random number X. Three cases are considered in turn, namely those
where f is (i) uniform on a bounded interval; (ii) strictly decreasing on a
possibly unbounded interval; and (iii) both symmetric and unimodal on the
reals.

3.1 Uniform density on a bounded interval

Suppose that X is uniform on a bounded interval [A,B]. It may again
be assumed without loss of generality that A = 0 and B = 1. Since each
contestant’s strategy may depend on previous guesses, the pure strategies for
Players 1, 2 and 3 are most conveniently denoted by x1 = x, x2 = y(x) and
x3 = z(x, y), respectively.
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Of prime interest is the set of perfect equilibrium points, (x, y(·), z(·, ·))
and associated payoffs (p1, p2, p3). For the equilibrium to be perfect, z(x, y)
must be a best response to (x, y(x)), and y(x) must be a best response to x,
knowing Player 3 will use z(x, y). The optimal payoff to Player 3 is symmetric
in x and y, so in finding his/her best guess, attention may be restricted to
x ≤ y, as is done below.

Observe that given values of x and y, Player 3 is indifferent between
all points in [x, y], since his/her payoff is |y − x|/2 no matter which point
he/she picks in that interval. This choice can affect the payoff of the previous
players, however, and hence their strategy. Accordingly, Feder (1990) speaks
of the need for a criterion that all participants would use to choose among
equally desirable moves. Under the “play closest to Player 1” tie-breaking
rule, he shows (this is his Corollary 1) that the optimal limiting plays and
associated payoffs are

(x1, x2, x3) =
(
1

4
,
3

4
,
1

4
+
)

and (p1, p2, p3) =
(
1

4
,
1

2
,
1

4

)
,

while under the “play rightmost” rule, he finds (Corollary 2)

(x1, x2, x3) =
(
1

4
,
3

4
,
3

4
−
)

and (p1, p2, p3) =
(
1

2
,
1

4
,
1

4

)
.

As a complement to Feder’s work, note that the set of equilibrium payoffs
is of the form

(p1, p2, p3) =
(
1 + α

4
,
2− α

4
,
1

4

)
(1)

with α running in the interval [0, 1]. As can be seen, therefore, Player 3 is
always at a disadvantage.

To derive Equation (1), first observe that for given x < y, Player 3 need
consider only three possibilities: z = x−, z = y+, and z at some arbitrary
point t ∈ [x+, y−]. The (limiting) expected returns for these possibilities are,
x, 1− y, and (y− x)/2, respectively. Player 3 will thus choose that response
with the maximum payoff, viz.

z(x, y) =




x− if x > 1− y and 3x > y,

y+ if 1− y > x and 3(1− y) > (1− x),

t if 3x < y and 3(1− y) < (1− x).
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The vector (p1, p2, p3) of payoffs in these three regions is given by




(
y − x

2
, 1− x+ y

2
, x
)

if x > 1− y and 3x > y,

(
1− x+ y

2
,
y − x

2
, y
)

if 1− y > x and 3(1− y) > (1− x),

(
x+ t

2
, 1− y + t

2
,
y − x

2

)
if 3x < y and 3(1− y) < (1− x).

On the boundaries of the regions, either of the strategies, optimal on
either side of the boundary, is a best response. In particular, the point
(x, y) = (1/4, 3/4) is on the boundary of all three regions, so x−, y+ and t
are all best responses.

Consider first the response by Player 3 that is “fair” in the sense that it
treats the other two players equally. For x < y, this strategy satisfies

z∗(x, y) =




x− if x > 1− y and 3x > y,

y+ if 1− y > x and 3(1− y) > (1− x),

t(x, y) if 3x ≤ y and 3(1− y) ≤ (1− x),

δ if x = 1− y and 1/4 < x ≤ 1/2,

where t(x, y) = (x+ y)/2, and δ is the randomized strategy that chooses x−

and y+ with probability 1/2 each.
If Player 2 knows that Player 3 will proceed in this fashion, his/her best

response to x < 1/2 from Player 1 is

y∗(x) =




x+ 2

3
if x ≤ 1

4
, giving value

(
1 + 5x

6
,
1− x

2
,
1− x

3

)
,

(1− x)+ if
1

4
< x <

1

2
, giving value

(
1

2
− x ,

1

2
, x
)
.

As a function of x, the first component of this value is maximized at
x = 1/4. Therefore, (1/4, y∗(·), z∗(·, ·)) is a perfect equilibrium with value
(3/8, 3/8, 1/4).

6



More generally, the perfect equilibrium payoff (1) obtains by changing
t(x, y) to

t(x, y) = (1− α)x+ αy

for some 0 ≤ α ≤ 1 in the definition of z∗. Feder’s tie-breaking rules corre-
spond to the choices α = 0 (“closest to Player 1”) and α = 1 (“rightmost”),
respectively.

3.2 Strictly decreasing density on a possibly unbounded interval

Suppose that X has an absolutely continuous distribution F with strictly
decreasing density on [A,B), where B can be finite or infinite. Continue to
denote by x and y the guesses of Players 1 and 2, and assume for the sake
of argument that A < x < y. Should Player 3 decide to put x3 = z between
x and y, then it would be best for him/her to choose it as close to x as
possible. Thus the three choices for Player 3 would be z = x−, z = x+ and
z = y+. This argument shows that, of the first two players, he/she who picks
the smaller number is at a disadvantage because if Player 3 plays between
them, he/she is obliged by perfectness to play close to the lower number.

In view of the above, Player 1 will choose x large, say around the third
quartile. Then Player 2 will choose y small, typically around the first quartile,
to make Player 3 indifferent between choosing z = y− and z = y+. The value
of y will thus be chosen so that

F (y) = F
(
x+ y

2

)
− F (y). (2)

It is easy to check that only one number yx ∈ [A, x] meets these conditions
for given x > 0. Consequently, the smallest choice of x that Player 1 can get
away with is such that

F (yx) = 1− F (x). (3)

Because yx is a monotone increasing function of x, the solution to this
equation may also be seen to be unique. There is, therefore, a single Nash
equilibrium point.

Figure 1 illustrates the solution in the case where X is exponentially dis-
tributed with unit mean. In this case, numerical work leads to x = 1.2859
and y = .3235, which correspond to the 72.36th and the 27.64th percentile,
respectively. When expressed in the latter terms, these moves are actually
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optimal whatever the mean of the exponential distribution. The correspond-
ing perfect equilibrium payoff vector is

(p1, p2, p3) = (.4472, .2764, .2764).

Thus, Player 1 enjoys a substantial advantage here, while Players 2 and 3
are ex aequo.

Figure 1. Representation of the unique perfect equilibrium payoff for Toet-
jes with n = 3 players when the density of X is strictly decreasing on a
possibly unbounded interval. The limiting optimal moves for Players 1 and
2, respectively denoted by x and y = yx, are such that the area to the right
of x is equal to the area to the left of yx and to the area between yx and
(x+ yx)/2.

As a second example, consider the case where X follows a Pareto distri-
bution with parameter α ≥ 1, i.e., F (x) = 1− 1/xα for x ∈ [1,∞). A simple
calculation shows that when α = 1, say, the only solution to (2) is

yx =
−x+

√
x2 + 8x

2
,

which is indeed monotone increasing in x on the entire support. Substitution
into (3) then yields x = 2 +

√
2 and yx =

√
2, so that in this case, Players 1
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and 2 would play approximately at the 70.71th and at the 29.29th percentile,
respectively. The perfect equilibrium payoff vector is then

(p1, p2, p3) = (.4142, .2929, .2929).

Numerical solutions for other integer values of α are given in Table 1,
where Player 1 is seen to increase his/her advantage as α gets larger. When
expressed in terms of quantiles, of course, the moves given in the table
continue to be optimal for the more general Pareto distribution F (x) =
1− (β/x)α with scale parameter β > 0 and support [β,∞).

Parameter Player 1’s Corresponding Player 1’s
value optimal guess x percentile equilibrium payoff
1 3.4142 70.71 .4142
2 1.8712 71.44 .4288
3 1.5235 71.72 .4344
4 1.3731 71.87 .4374
5 1.2896 71.97 .4393
6 1.2366 72.03 .4407
7 1.1999 72.07 .4415
8 1.1731 72.11 .4424
9 1.1526 72.14 .4429
10 1.1364 72.16 .4432
100 1.0129 72.34 .4449

Table 1: Player 1’s optimal move, x, and corresponding percentile of the
distribution of X when the latter follows a Pareto distribution F (x) = 1 −
1/xα for x ≥ 1 with α = 1, . . . , 10 and α = 100; Player 2’s optimal move is
yx = (1 − 1/xα)−1/α, and his/her probability of win is half the complement
of Player 1’s equilibrium payoff, displayed in the right-most column.

3.3 Symmetric and unimodal density on the real line

Suppose that the density of X may be written as f(x) = f0(x − m) in
terms of a function f0 that is symmetric about 0 and strictly decreasing on
[0,∞). One may as well assume, without loss of generality, that m = 0 is
the mode, so that f(x) = f(−x) > 0 for all possible values of x. In this
case, it is easy to convince oneself that the best option for the first two
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players is to choose points that are symmetric about 0, say x1 = x < 0 and
x2 = y = −x > 0. Then the best response for Player 3 is either at one of the
end points, namely z = x− or z = y+, or, when it is between x and y, it will
be at 0.

Thus, to make Player 3 indifferent between these three choices, Player 1’s
guess must be such that the events X < x and x/2 < X < −x/2 have the
same probability. This leads to the equation,

F (x) = F (−x/2)− F (x/2),

whose solution is unique. Refer to Figure 2 for an illustration.

Figure 2. Representation of the unique perfect equilibrium payoff for Toet-
jes with n = 3 players when the density of X is symmetric and unimodal
on the real line and Player 1 chooses to play at x < 0 while Player 2 picks
yx = −x. These moves are optimal whenever the area to the left of x < 0 is
equal to the area between −x/2 and x/2.

In the special case where F is the Laplace (or double exponential) distri-
bution, for example, one finds

x = 2 log
(√

3− 1
)
= −0.6238,
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which means that Player 1 should guess the 26.79th percentile, approxi-
mately. The perfect equilibrium payoff is then

(p1, p2, p3) = (.36605, .36605, .2679).

Additional illustrations are provided in Table 2 for the normal and the
Student distribution with various degrees of freedom. In all these examples,
Players 1 and 2 have identical expected returns and as in the uniform case,
Player 3 is at a disadvantage.

Degrees of Player 1’s Corresponding Player 1’s
freedom optimal guess x percentile equilibrium payoff

1 −0.8944 26.77 .3661
2 −0.7668 26.17 .3692
3 −0.7274 25.98 .3701
4 −0.7084 25.89 .3705
5 −0.6971 25.84 .3708
10 −0.6753 25.74 .3713
∞ −0.6543 25.64 .3718

Table 2: Player 1’s optimal move x and corresponding percentile of the
distribution of X when the latter follows a Student distribution with d =
1, 2, 3, 4, 5, and 10 degrees of freedom; d = ∞ corresponds to the standard
normal distribution. Player 1 can also play optimally at −x, in which case
Player 2 would choose x; both strategies yield the same equilibrium payoff
for these two players, as displayed in the right-most column.

4. The n-person game with a strictly decreasing density

The search for optimal strategies in a game of Toetjes with n > 3 players
is quite complicated in general. Subject to the same specific “tie-breaking”
rules mentioned in Section 3.1, Feder (1990) gave a solution in the case where
the secret number X is selected uniformly in a bounded interval [A,B].

The discussion for three players given in Sections 3.2 and 3.3 provides
indications as to what the general form of the solution are for n > 3 players
when the density of X is strictly decreasing on a possibly unbounded inter-
val, or unimodal and symmetric on the real line. Only the former case is
considered here.
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Assuming that f is strictly decreasing on [A,B) with B possibly infinite,
the first n−1 contestants are expected to choose a pattern of points to make
Player n indifferent as to which region he/she plays in. If he/she plays in
any region other than the left most, he/she will play at the extreme left of
the region to obtain the highest coverage probability.

Suppose for example that n = 4 and that f is the standard exponential
distribution. The particular configuration sought by the first three players is
a set a, b, c with a < b < c, such that

1− e−a = e−x − e−(a+b)/2 = e−b − e−(b+c)/2 = e−c.

These four quantities are the four coverage probabilities if Player 4 chooses
a−, a+, b+ and c+, respectively. The solution of these equations is easily found
to be (a, b, c) = (.2052, .7722, 1.6846), and the common coverage probability
is e−c = .1855. This breaks the positive axis into six regions, viz.

[0, a),

(
a,

a + b

2

)
,

(
a + b

2
, b

)
,

(
b,

b+ c

2

)
,

(
b+ c

2
, c

)
, (c,∞)

whose corresponding probabilities are .1855, .1855, .1433, .1855, .1147 and
.1855.

Player 1 would like to choose x = b to obtain a coverage probability
.1855 + .1433 = .3288. Then Player 2 would like to choose y = c to obtain
a coverage probability .1855 + .1147 = .3002. Then, hopefully, Player 3
would choose z = a, and Player 4 would choose w = a− or w = a+. To
make sure these last two choices are as hoped, Player 1 would have to choose
x = b + ε for some very small ε > 0, and Player 2 would choose y = c,
say. Then Player 3 can achieve a coverage probability slightly higher than
.1855 by choosing z = a + δ for some very small δ > 0, and Player 4 would
choose w = z− or w = z+. This would guarantee something very close to the
equilibrium payoff (.3288, .3002, .1855, .1855).

For the special Pareto distribution F (x) = 1− 1/x for x ≥ 1, the three
corresponding cutoff points are a = 1.249, b = 2.077, and c = 5.015. The
equilibrium payoff is (.3192,.2829,.1994,.1994).

By the method used by Feder (1990), one can show that the same anal-
ysis holds for any number n ≥ 3 of players for all distributions that have
a (strictly) decreasing density on [A,B). Suppose for instance that the dis-
tribution function F is concave on [0,∞) with F (0) = 0. Let the sequence
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0 < a1 < · · · < an−1 < ∞ be defined in such a way that

F (a1) = F
(
a1 + a2

2

)
− F (a1) = · · ·

= F
(
an−2 + an−1

2

)
− F (an−2) = 1− F (an−1).

One can check easily that such a set of n− 1 numbers exists. Let

qk = F (ak+1)− F
(
ak + ak+1

2

)
, k = 1, . . . , n− 2

so that q1 + · · ·+ qn−2 + nF (a1) = 1. Then Player 1 would choose a number
slightly larger than that ak+1 for which qk is largest, then Player 2 would
choose a point close to the next largest, and so on down to Player n− 2, and
then Player n−1 would choose a number slightly bigger than a1. This leaves
Player n, who would choose something very close to the choice of Player
n− 1, either slightly above or below. In this fashion, which is optimal in the
limit, Player 1 receives the largest expected payoff, Player 2 the next largest,
and so on down to Players n− 1 and n who receive the same least amount,
something slightly more than F (a1).

5. Toetjes in coalitional form

This section explores briefly the features of Toetjes when it is played as
a cooperative game, i.e., when there are no restrictions on the agreements
that may be reached between the children to coordinate their actions. For
simplicity, the discussion is limited to the case n = 3.

Clearly, Player 3’s strength in making threats and forming alliances be-
comes important in a cooperative version of Toetjes. One way to illustrate
this is to compute the characteristic function v of the game, which assigns a
worth to every possible coalition, i.e., every subset S of the grand coalition
N = {1, 2, 3}. By definition, one has v(∅) = 0 and v(S) = 1 − v(N \ S) for
any S, because the game has constant sum equal to 1.

As an example, suppose thatX is uniformly distributed on [0, 1]. Player 1,
acting alone, can achieve nothing because Players 2 and 3 can play infinitesi-
mally below and above him/her. Consequently, v({1}) = 0 and v({23}) = 1.

In this context, Player 2, acting alone can achieve at most 1/6, because
Player 1 can choose x1 = 1/2, forcing Player 2 to play at 1/6 or 5/6 in order
to obtain at least 1/6. But if Player 1 does not play at 1/2, Player 2 can
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obtain at least 1/6 by picking an appropriate point on the opposite side of
1/2. Thus, v({2}) = 1/6 and v({13}) = 5/6.

Finally, as shown in Section 3.1, Player 3 acting alone can achieve 1/4,
but no more than 1/4. So v({3}) = 1/4 and v({12}) = 3/4.

It has been suggested by Shapley (1953) that given a characteristic func-
tion v, a measure of the value or power of the ith player in a game can be
obtained by computing

φi =
∑

S⊂N, i∈S

(|S| − 1)! (n − |S|)!
n!

[v(S)− v (S \ {i})] ,

where |S| denotes the cardinality of S and n = |N | = 3 in the present case.
Since Toetjes is a constant-sum game, the Shapley value φ = (φ1, φ2, φ3) is
also the nucleolus, an alternative notion of compromise payoff vector for the
players due to Schmeidler (1969).

When X is uniform, a simple calulation shows that

φ =
(
7

36
,
13

36
,
16

36

)
= (.1944, .3611, .4444).

As one can see, therefore, Player 3 is more than twice as strong as Player 1
at the bargaining table. This remains true when the distribution of X is
either exponential or normal. In the first case, one has

v({1}) = 0, v({2}) = .1464, v({3}) = .2764

and φ = (.1924, .3388, .4688). In the second case,

v({1}) = 0, v({2}) = .1779, v({3}) = .2564

and φ = (.1886, .3664, .4450).
Generally speaking, it is interesting how the strengths of the players are

reversed in going from a non-cooperative to a cooperative version of Toetjes.
As a side remark, observe that in its coalitional form, Toetjes is unstable

in that whatever division ϕ = (ϕ1, ϕ2, ϕ3) of v(N) = 1 might be envisaged
among the players, there would be a tendency for some coalition S ⊂ N
to form and upset the proposed imputation, because such an alliance could
guarantee each of its members more than they would receive from ϕ. In other
words, Toetjes has an empty core, viz.

C =

{
(ϕ1, ϕ2, ϕ3) :

∑
i∈N

ϕi = 1 and
∑
i∈S

ϕi ≥ v(S) for all S ⊂ N

}
= ∅,
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as prevails for all n-person constant-sum essential (i.e., non-trivial) games.

6. Closing remarks

The analysis of Toetjes with a parent’s secret number X other than uni-
form has shown that the last child to announce his/her guess is often at a
disadvantage in the game. A natural question is whether by letting the last
player choose the distribution F from whichX will be drawn, equity could be
reinstated. The answer is yes. In the case n = 3, for example, Player 3 can
achieve his/her maximal payoff of 1/3 by choosing F to be trimodal, with
mass 1/3 within distance 1/3 of each of −1, 0 and 1, and distance at least
1 between the nodes. This way, Player 3 is then guaranteed at least 1/3, by
playing at 0, unless at least one player plays within 2/3 of 0, in which case
he/she can capture all of one of the end modes. The equilibrium payoff for
the game is thus (1/3, 1/3, 1/3).

At the opposite, the best distribution for Player 1 seems to be one close
to a uniform distribution but whose density has a small positive (say) slope.
It would be good to formalize this observation which, in the case n = 3,
implies that the optimal equilibrium payoff from Player 1’s point of view is
(1/2, 1/4, 1/4).

Another question of interest suggested by Feder (1990) is that of iden-
tifying optimal strategies for a multivariate version of Toetjes in which X
is drawn from a p-variate distribution F . Taking n = 2 for simplicity and
denoting by x and y the moves of Players 1 and 2, their respective chances of
winning correspond to the probabilities under F of the two half-planes H and
H̄ = IRp \ H determined by the (p − 1)-dimensional plane passing through
the point (x + y)/2 and perpendicular to the segment joining x and y. In
order to optimize his/her payoff, Player 2 will obviously choose y ≈ x in such
a way that the half-space H that this determines as his/her winning set has
the largest probability possible under F . Consequently, an optimal strategy
for Player 1 consists of choosing a value x for which, under F , the infimum
of min{P(H),P(H̄)} over all possible pairs of half-spaces going through x is
as close to 1/2 as possible.

The above argument shows that x should be a point of maximal depth in
the sense of Tukey (1975). Alternatively, x should be a half-space median of
F . As in the univariate version of Toetjes, the solution to this problem is not
necessarily unique, but Small (1987) identifies various technical conditions
under which it is. It would be worth exploring further connections of this
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sort between multivariate notions of location and solutions to multi-player
versions of Toetjes in several dimensions.

Finally, consider a three-player version of the final auction in the popu-
lar American television show The Price is Right, hosted by Bob Barker. In
the so-called “Showcase Showdown,” contestants are challenged to guess the
total retail price X of a large collection of consumer goods. All bids must
be different, and the participant whose answer is closest to, but less than,
X becomes the winner. This process is repeated as many times as necessary
when all players overbid. In practice, participants in this game would typi-
cally be asymmetrically informed and have different guessing abilities, much
as in the framework considered by Steele & Zidek (1980). Thus they would
rarely hold consensual views on X. In the spirit of Toetjes, however, assume
that it is common knowledge that contestants are identically informed, so
that they share the same continuous distribution for X. It may then be
assumed without loss of generality that this distribution is uniform on the
interval [0, 1], because in this version of Toetjes, the probability of win does
not actually depend on the distance metric used.

If the players play in order, x1, x2, x3, then with probability minxi the
game is played again. If the same strategy is repeated indefinitely, the payoff
to the players will be the conditional probability of winning given that X >
minxi. For example, if the first two players play at a and b in some order,
with a < b, then it is clear that the third player will play only at 0, or just
above a or just above b. Under the assumption thatX is uniform on [0, 1], the
payoff to Player 3 for these three cases is a, (b−a)/(1−a), and (1−b)/(1−a),
respectively, the last two being conditional probabilities given that the game
ends. It is clear from this that the game is strongly in Player 3’s favor, since
one of the last two numbers is at least 1/2.

By a method similar to that of Section 3, one finds that the equilibrium
payoff is (z,

√
z − z, 1−√

z) ≈ (.1850, .2451, .5699), where z is the real root
of z3 + 2z2 + 5z − 1 = 0. This payoff is obtained as closely as desired if
Player 1 takes x1 to be slightly above 1 − z ≈ .8150, Player 2 chooses x2

slightly above 1−
√
1− x1, and Player 3 picks x3 at 0. This result should be

compared with Proposition 3 of Berk, Hughson & Vandezande (1996), where
the solution to the four-player version of this game of perfect information
is given. As shown by these authors, the unique Nash equilibrium solution
obtains when contestants choose in order, 7/9, 5/9, 3/9, and 0, yielding a
payoff vector of (2/9, 2/9, 2/9, 1/3). It is interesting to note that when asked
to participate in this game, Player 1 would prefer to have three opponents
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rather than just two!
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tom@math.ucla.edu genest@mat.ulaval.ca

18


