
Minimax Estimation of a Variance

Thomas S. Ferguson
Mathematics Department
U. C. L. A.
Los Angeles, CA 90024

Lynn Kuo
Statistics Department
University of Connecticut
Storrs, CT 06269

Abstract: The nonparametric problem of estimating a variance based on a sample of
size n from a univariate distribution which has a known bounded range but is otherwise
arbitrary is treated. For squared error loss, a certain linear function of the sample variance
is seen to be minimax for each n from 2 through 13, except n = 4. For squared error loss
weighted by the reciprocal of the variance, a constant multiple of the sample variance is
minimax for each n from 2 through 11. The least favorable distribution for these cases
gives probability one to the Bernoulli distributions.
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1. Introduction and Summary.

We study the problem of finding nonparametric minimax estimates of the variance of
an unknown distribution F on the real line, based on a sample from F , similar to the
treatment of Hodges and Lehmann (1950) for the problem of estimating the mean of F .

We first review the problem of estimating the mean nonparametrically. Let X1, . . . ,Xn

be a sample from a distribution F with finite mean, µ , and consider the problem of
estimating µ with squared error loss, L(F, µ̂) = (µ − µ̂)2 . To rule out the possibility
that every estimator of µ have infinite maximum risk, Hodges and Lehmann consider two
possible restrictions on F : (i) bounded variance, say Var(Xi) ≤ 1 ; (ii) bounded range,
say 0 ≤ Xi ≤ 1. Under (i) the sample mean Xn is minimax, and the normal distributions
with variance 1 form a least favorable class. Under (ii), the Bernoulli distributions on
{0, 1} are least favorable, and the estimate

d(Xn) =
√
n

1 +
√
n
Xn +

1
1 +

√
n

1
2

is minimax. Meeden, Ghosh, and Vardeman (1985) show that Xn is admissible in case (i).
Applying their examples 1 and 2 (with M =

√
n and µ∗ = 1/2), one can show that Xn

and d(Xn) are admissible in case (ii).

A third case arises when the loss is taken to be the scale invariant loss function,
Ls(F, µ̂) = (µ− µ̂)2/σ2 . In this case, we need only restrict the parameter space to those F
with finite positive variance. Then Xn is again minimax, since it is an equalizer rule and
an extended Bayes rule with respect to the priors concentrated on normal distributions,
F = N(µ, 1), where µ is N(0, τ 2) with τ 2 known and large. Xn is also admissible for
Ls(F, µ̂) since it is admissible for L(F, µ̂).

Consider now the corresponding problems of estimating a variance. Throughout this
paper we use θ instead of σ2 to represent the variance of the unknown distribution, F . We
consider three loss functions: squared error loss, L1(F, θ̂) = (θ − θ̂)2 , a weighted squared
error loss, L2(F, θ̂) = (θ − θ̂)2/θ , and the scale invariant loss, L3(F, θ̂) = (θ − θ̂)2/θ2 . We
denote the risk function for the loss Li by Ri , that is, Ri(F, δ) = EFLi(F, δ(X)), where
X = (X1, . . . ,Xn).

In some cases, the minimax estimate turns out to be degenerate. For the scale invariant
loss, L3 , where we restrict the parameter space to be distributions with finite positive
fourth moment, the degenerate estimate θ̂0 ≡ 0 is minimax for any sample size. This may
be seen as follows. Clearly, R3(F, θ̂0) ≡ 1, so it suffices to show that supF R3(F, d) ≥ 1
for any decision rule (estimate), d . In fact, supF∈G R3(F, d) ≥ 1 for all d , where G is
the set of all distributions Gp for 0 < p ≤ 1/2, where Gp gives mass p to +1 and −1,
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and mass 1 − 2p to 0. This holds since the probability that all observations are zero is
P (X = 0) = (1 − 2p)n , so that

R3(Gp, d) ≥ (1 − 2p)n
(
1− d(0)

2p

)2

,

and as p→ 0, this quantity tends to ∞ if d(0) �= 0, and to 1 if d(0) = 0.

A similar analysis shows that in case (i) above with squared error loss and with
variance at most 1, the degenerate rule, θ̂1 ≡ 1/2 is minimax for any sample size. Here,
we have R1(F, θ̂1) = (θ − 1/2)2 ≤ 1/4 for all distributions with 0 ≤ θ ≤ 1. Yet for the
class, G∞ , consisting of the distribution G∞ , degenerate at zero, and of the distributions,
Ga for a ≥ 1, where Ga gives mass 1/(2a2) to both +a and −a , and mass 1− (1/a2) to
0, we have for any decision rule, d ,

R1(Ga, d) ≥ (1−
1
a2
)n(1 − d(0))2

so that
sup

G∈G∞

R1(G, d) ≥ max(d(0)2, sup
a
(1− 1

a2
)n(1− d(0))2) ≥ 1

4
.

For the weighted squared error loss, L2(F, θ), and with variance at most one, a similar
argument gives 1 as the minimax risk achieved at the degenerate rule, θ̂0 ≡ 0.

A perhaps more direct analogy with the case (i) problem of estimating a mean would
be to restrict the distributions to have bounded fourth central moment, say µ4 ≤ 1. The
analysis of the above paragraph does not work because the distribution Ga has fourth
central moment tending to infinity as a → ∞ . We do not know the minimax estimate of
the variance for this problem.

For case (ii) above, the minimax estimate turns out to be nontrivial and we are
successful in finding it only for certain values of n for squared error loss, L1 , and weighted
squared error loss, L2 . We restrict F to be in the class, F[0,1] , of distributions with support
in [0, 1] , and for the L2 loss function we assume that the variance of F is positive. Let
θ̃n denote the unbiased estimate of θ ,

(1.1) θ̃n =
n∑

i=1

(Xi −Xn)2/(n− 1).

The method of attack will proceed along these lines. First, we make a conjecture,
eventually shown to be correct for some values of n , that the least favorable distribution
gives weight only to the class, F{0,1} , of Bernoulli distributions Bp for p ∈ [0, 1] , where
Bp gives mass p to 1 and mass 1− p to 0. Under this conjecture, the problem reduces to
finding minimax rules for estimating the variance, θ = p(1−p), of the Bernoulli distribution
Bp . We therefore search for equalizer rules for both loss functions, L1 and L2 . In Section
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2 we find linear functions of θ̃n that are equalizer rules for estimating θ = p(1 − p).
Therefore in the following, it suffices to restrict attention to linear estimators.

Second, we show that the supremum of the risk of linear estimators over F[0,1] is
attained at the Bernoulli distributions. This is done in Section 3.

Thus it is sufficient to show these equalizer rules are minimax for the estimation of
the variance of the Bernoulli distribution. This we attempt in Section 4. In Section 4.1
we show that the equalizer rules are minimax within the class of linear functions of θ̃n . In
Section 4.2, we show that the equalizer estimators are admissible and minimax among all
estimators under L1 for values of n = 3, 5, 6, 7, . . . , 13, and under L2 for n = 2, 3, 4, . . . , 11.
For the loss L1 and n = 4, we find the minimax estimator by numerical methods; whether
this estimator is also minimax for the nonparametric problem is still unknown.

We are led to believe that the minimax property is a very delicate one. The equalizer
rules seem to be very good in any case (for n = 4 and L1 loss, the minimax rule improves
on the equalizer rule by only .00000047), so whether or not the equalizer rule is minimax
is much a matter of chance. For large n , there is a much greater possibility of having a
complex estimator uniformly improve on the equalizer rule. What is perhaps surprising is
that, except for n = 4 and loss L1 , there seems to be a sharp cutoff for n at which the
equalizer rule is minimax: 13 for L1 and 11 for L2 .

Brown, Chow and Fong (1992) have shown that the maximum likelihood estimator
of the variance of a binomial distribution under squared error loss is admissible for n ≤ 5
and inadmissible for n ≥ 6. The admissibility of S̃2

n = (n+ 1)−1(n− 1)θ̃n for the L1 , L2

and L3 loss functions for all F is established by Meeden, Ghosh and Vardeman (1985).
Other papers such as Aggarwal (1955), Phadia (1973), Cohen and Kuo (1985), Brown
(1988), and Yu (1989), study the nonparametric estimation of a distribution function from
a decision theoretic point of view.

2. Equalizer Rules for the Bernoulli Distributions, n ≥ 2 .
In this section, we restrict attention to the Bernoulli distributions and find constant

risk decision rules for both loss functions, L1 and L2 for sample of size n ≥ 2. For
later use, we first give a formula for the risk function under squared error loss, L1 , of an
arbitrary linear function of θ̃n , for arbitrary distributions F having finite fourth moment.

Lemma 2.1. Let µ4 represent the fourth moment of F about the mean. Then,

(2.1) R1(F, aθ̃n + b) =
a2

n
µ4 +

(
(1− a)2 − (n− 3)a2

n(n − 1)

)
θ2 − 2b(1 − a)θ + b2.

Proof.
R1(F, aθ̃n + b) = EL1(F, aθ̃n + b)

= E(aθ̃n + b − θ)2

= a2Var(θ̃n) + (b − θ(1 − a))2 .
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The formula follows using the expression,

Var(θ̃n) =
µ4

n
− (n− 3)θ2
n(n− 1) ,

(see, for example, S. S. Wilks (1962), p. 199) and collecting terms in µ4 , θ2 and θ .

For the Bernoulli distributions, Bp , the sample variance takes on the simple form,
θ̃n = Wn(n−Wn)/(n(n− 1)), where Wn =

∑n
i=1Xi is the number of ones in the sample.

The variance of Bp is θ = p(1 − p), and the fourth moment about the mean is µ4 =
p(1− p)4+(1− p)p4 = p(1− p)(1− 3p+3p2) = θ(1− 3θ). Substituting this into (2.1) and
collecting terms gives the following corollary to Lemma 2.1.

Lemma 2.2.

(2.2) R1(Bp, aθ̃n + b) =
(
(1− a)2 − (4n− 6)a2

n(n− 1)

)
θ2 +

(
a2

n
− 2b(1 − a)

)
θ + b2.

We may use this formula to derive the equalizer rules, to be denoted by δn ,

(2.3) δn = anθ̃n + bn,

by equating the coefficients of θ and θ2 to zero. This leads to the equations,

(2.4) 2bn(1 − an) = a2
n/n

and

(2.5) 1− 2an + zna2
n = 0,

where

(2.6) zn =
(n− 2)(n − 3)
n(n − 1) .

Also note that the constant risk of the rule, δn , is

R1(Bp, δn) = b2n.

For n = 2 and n = 3, (2.5) is linear in an , and the equations (2.4) and (2.5) have a
unique solution,

(2.7)
a2 =

1
2

b2 =
1
8

a3 =
1
2

b3 =
1
12
.
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For n ≥ 4, (2.5) has two roots and the equations have two solutions. We choose as δn the
solution with the smaller risk, b2n , namely, δn = anθ̃n + bn , where,

(2.8) an =
1−

√
1− zn
zn

and bn =
a2

n

2n(1− an)
.

Under the weighted squared error loss function, L2 , the risk function of the rule aθ̃n + b
is found by dividing (2.2) by θ ,

(2.9) R2(Bp, aθ̃n + b) =
(
(1− a)2 − (4n− 6)a2

n(n− 1)

)
θ +

(
a2

n
− 2b(1− a)

)
+ b2/θ.

For this to be constant, the first and the last coefficients must vanish. This leads to
equalizer rules, denoted by dn , which differ from δn by the removal of the term bn ,

(2.10) dn = anθ̃n,

where the an are as given in (2.5) and (2.6). The constant risk of these decision rules is

R2(Bp, dn) = a2
n/n.

3. Reduction to the Bernoulli Case for Linear Estimates.

In this section, we show that in the nonparametric problem of estimating a variance of
a distribution on [0, 1] by a linear function of θ̃n , the worst case distribution is Bernoulli.
The proof is based on the following lemma of independent interest. For the remarkably
simple proof of this lemma, we are indebted to Thomas Liggett.

Lemma 3.1. If X ∈ [0, 1] , then,

µ4 + 3σ4 ≤ σ2,

with equality if and only if X is Bernoulli or degenerate.

Proof. Let X and Y be i.i.d. on [0, 1] . Then (X − Y )2 ∈ [0, 1] , so that E(X − Y )4 ≤
E(X − Y )2 with equality if and only if X is Bernoulli or degenerate. This inequality is
equivalent to

E((X − µ)− (Y − µ))4 ≤ E((X − µ)− (Y − µ))2

which reduces to
2µ4 + 6σ4 ≤ 2σ2.

From this, the main result follows easily.
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Theorem 3.1. For every a and b, and for every F in F[0,1] , there exists a Bernoulli
distribution, Bp in F{0,1} such that

R1(F, aθ̃n + b) ≤ R1(Bp, aθ̃n + b).

Similarly for the risk function, R2 .

Proof. The variance of any F ∈ F[0,1] satisfies 0 ≤ θ ≤ 1/4 so we can find Bp ∈ F{0,1}
with the same variance. The substitution of µ4 with θ − 3θ2 in the R1(F, aθ̃n + b) of
Lemma 2.1 results in the R1(Bp, aθ̃n + b) of Lemma 2.2 with this Bp . Lemma 3.1 shows
that the substitution results in an increase. Since R2 is equal to R1 divided by θ , the
same result holds for R2 as well.

4. Minimax Estimator of the Variance of the Binomial Distribution.

Minimax estimation of the variance of the restricted family F{0,1} is studied in this
section. Thus, we deal with the sufficient statistic, Wn , the number of 1’s in the sample,
which has a binomial distribution, B(n, p). The minimum variance unbiased estimate (1.1)
of the variance, θ = p(1− p), reduces to θ̃n = Wn(n−Wn)/(n(n− 1)). In Section 4.1, we
find the minimax estimator of θ within the class of linear functions of θ̃n , and in Section
4.2, we show this estimator is minimax and admissible within the class of all estimators
for certain values of n .

4.1 Minimax Linear Estimators.

First we show that for squared error loss the equalizer rule, δn = anθ̃n+bn with an and
bn given by (2.7) and (2.8), is minimax within the class of all estimators that are linear in
θ̃n , for all n ≥ 3. In the proof, we use the principle that if an equalizer rule d is a Bayes rule
within a class C of decision rules, then d is minimax within C . For if d ∈ C is not minimax,
then there is an ε > 0 and a rule d∗ ∈ C such that maxθR(θ, d∗) < maxθ R(θ, d) − ε ,
which implies, if d is an equalizer rule, that R(θ, d∗) < R(θ, d)− ε for all θ , which in turn
implies for any prior that the Bayes risk of d∗ is at least ε smaller that the Bayes risk of
d , so that d cannot be Bayes within C for any prior.

Theorem 4.1. For all n ≥ 3 , the equalizer rule, δn , is minimax with respect to squared
error loss, L1(p, a) = (θ − a)2 where θ = p(1− p) , within the class of estimators that are
linear functions of θ̃n .

Proof. We take C to be the class of linear rules, aθ̃n + b , and from Lemma 2.2 note that
the risk function of such rules may be written as

R1(θ, aθ̃n + b) = Aθ2 +Bθ + C,
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where
A = a2zn − 2a+ 1 = (1 − a)2 − a2(1− zn)

B =
a2

n
− 2b(1 − a)

C = b2

zn =
(n− 2)(n − 3)
n(n− 1) .

To show that for n ≥ 3 the equalizer rule, δn = anθ̃n + bn where an and bn are given
in (2.7) and (2.8), is minimax within C , it is sufficient to show that there exists a prior
distribution, π , for θ in the interval [0, 1/4] such that δn is Bayes with respect to π within
C .

The Bayes risk of a linear rule with respect to a prior distribution, π , may be written
as

(4.1)
r(π, aθ̃n + b) = Aµ2 +Bµ1 +C

= µ2((1− a)2 − a2(1− zn)) + µ1(
a2

n
− 2b(1 − a)) + b2

where µi = Eπθ
i . We are to show that there exists a prior π such that the minimum of

(4.1) over all a and b occurs at that a and b that make the coefficients A and B zero.
For fixed a , (4.1) is a quadratic function of b with a minimum at b = µ1(1 − a). With
this value of b , the Bayes risk becomes

(4.2) r(π, aθ̃n + b) = µ2((1 − a)2 − a2(1 − zn)) + µ1(
a2

n
− 2µ1(1− a)2) + µ2

1(1− a)2.

If both coefficients A and B are to be zero, then we must have (1− a)2 = a2(1− zn) and
a2/n = 2µ1(1 − a)2 , which, eliminating a , gives

µ1 =
1

2n(1− zn)
=

n− 1
4(2n− 3)

as a necessary condition for the desired prior. With this value of µ1 , we may write (4.2)
as

(4.3) r(π, aθ̃n + b) = (µ2 − 2µ2
1)((1 − a)2 − a2(1− zn)) + µ2

1(1− a)2.

We must show that there exists a choice of µ2 as a second moment of a distribution on
[0, 1/4] whose first moment is µ1 = 1/(2n(1− zn)), such that the minimum of (4.3) occurs
at a point a that satisfies (1− a)2 = a2(1− zn). (4.3) is a quadratic function of a with a
minimum at the point

a =
µ2 − µ2

1

(µ2 − µ2
1)zn + µ

2
1(1− zn)

.
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The equation, (1−a)2 = a2(1−zn), becomes equivalent to (µ2−µ2
1)2 = (1−zn)(2µ2

1−µ2)2 .
We may solve this for µ2 in the interval (µ2

1, 2µ2
1) by taking square roots, µ2 − µ2

1 =√
1− zn(2µ2

1 − µ2), or equivalently,

µ2 = µ2
1

1 + 2
√
1− zn

1 +
√
1− zn

.

It remains to be shown that there is a distribution on [0, 1/4] with µ1 and µ2 as the
first two moments. For this it is necessary and sufficient that µ2

1 ≤ µ2 ≤ µ1/4 ≤ 1/16.
The first and third inequalities are clear. To show µ2 ≤ µ1/4, we replace µ2 by its value
in terms of µ1 and cancel µ1 and find that it is equivalent to show

µ1 ≤ 1 +
√
1− zn

4(1 + 2
√
1− zn)

.

We replace µ1 by its value and find it is equivalent to show

n− 1
2n− 3 ≤ 1 +

√
1− zn

1 + 2
√
1− zn

.

This reduces to
√
1− zn ≤ n− 2, which is valid for all n ≥ 3.

When n = 2, the equalizer rule, a2θ̃n + b2 is not minimax. In this case, the class of
linear estimators coincides with the class of all estimators. In Section 4.2, we show that
ã2θ̃2 + b̃2 is minimax, where ã2 = 1− (

√
2)−1 and b̃2 = (

√
2− 1)/4.

The corresponding result for scaled squared error loss, L2(p, a) = (θ − a)2/θ , is much
easier.

Theorem 4.2. For all n ≥ 2 , the equalizer rule, dn = anθ̃n , is minimax with respect to
the loss, L2(p, a) , within the class of estimators that are linear functions of θ̃n .

Proof. From (2.9), we see that the risk of aθ̃n+b is of the form Aθ+B+b2/θ . Therefore,
we must have b = 0 to have a bounded risk. Then since R2(p, aθ̃n) is linear in θ , it achieves
its maximum at the boundary points θ = 0 and θ = 1/4, corresponding to say p = 0 and
p = 1/2, so that

(4.4)
max

0≤p≤1
R2(p, aθ̃n) = max{R2(0, aθ̃n), R2(

1
2
, aθ̃n)}

= max{a
2

n
,
a2zn − 2a+ 1

4
+
a2

n
}.

The left and right terms of this maximum are equal if a is equal to the an given in (2.7)
and (2.8), while for a ≤ an the right side is decreasing in a and for a ≥ an the left side is
increasing in a . This implies that the minimum of this maximum occurs at a = an with
a minimax value of a2

n/n .
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4.2 Minimaxity of δn and dn within all Estimators.

In this section, we investigate whether or not the minimax linear estimator of Section
4.1 is minimax overall. We first treat the L1 loss function. It suffices to show that
the equalizer rule for n ≥ 3 is Bayes with respect to some prior distribution on [0,1].
Unfortunately, the conjugate prior does not work. The Bayes rules with respect to the
beta distributions, Be(α,α), with squared error loss are dα(Wn) = (2α + n)−1(2α + n+
1)−1{Wn(n − Wn) + α(α + n)} . None of these rules come close to the equalizer rule.
Instead, we find necessary and sufficient conditions on the first few moments of the prior
distribution in order that the equalizer rule be Bayes with respect to this prior. Then we
check whether or not there exists a distribution with these first few moments.

We show that δn = anθ̃n+ bn is minimax for n = 3, 5, 6, . . . , 13. For n = 4, a4θ̃4+ b4
is not Bayes with respect to any prior distribution on [0,1], nor is it minimax. We obtain
a minimax estimator by direct calculation in this case in Theorem 4.4.

Theorem 4.3. In the problem of estimating θ = p(1 − p) with loss L1(p, a) = (θ − a)2

based on W ∈ B(n, p) , the equalizer rule, δn , is admissible and minimax for n = 3 and
5 ≤ n ≤ 13 .

Proof. The result for n = 3 follows immediately from Theorem 4.1 since θ̃3 assumes only
two values and any function defined on only two values is linear. Assume then that n ≥ 4
where (2.8) holds for an and bn . Since the problem is invariant under the transformation
x→ 1− x , we may restrict attention in our search for a minimax rule to rules depending
only on Yn = min{Wn, n−Wn} . The density of Yn given θ = p(1− p) is

P(Yn = y|θ) =
{ (

n
y

)
θy [(1− p)n−2y + pn−2y], for 0 ≤ y < n/2(

n
y

)
θy , if n is even and y = n/2.

Since this depends on p only through θ , we may, with some algebraic manipulations, write
this density as

P(Yn = y|θ) =
(
n

y

)
θyqn−2y(θ),

where q0(θ) = 1 and

qk(θ) =
	k/2
∑
j=0

k

k − j

(
k − j
j

)
(−θ)j , for k ≥ 1,

and �x� denotes the greatest integer less than or equal to x . The first few functions, qk ,
are: q1(θ) = 1; q2(θ) = 1− 2θ ; q3(θ) = 1− 3θ ; q4(θ) = 1− 4θ+2θ2 ; q5(θ) = 1− 5θ+5θ2 ;
q6(θ) = 1− 6θ + 9θ2 − 2θ3 ; etc.

Thus, qk(θ) is a polynomial of degree �k/2� in θ , and P(Yn = y|θ) is a polynomial
of degree �n/2� in θ . The risk function depends only on θ so we write it as R(θ, d) and
evaluate it as

R(θ, d) =
	n/2
∑
y=0

P(Yn = y|θ)(θ − d(y))2 .

10



This is a polynomial of degree �n/2� + 1. (The coefficient of the highest term gets can-
celled.)

To find a Bayes rule with respect to a given prior, π , we minimize EπR(θ, d) separately
for each d(y). Thus, the Bayes rule is

d(y) =
Eπθ

y+1qn−2y(θ)
Eπθyqn−2y(θ)

, for y = 0, 1, . . . , �n/2�.

The question is: Does there exist a prior distribution, π(θ) for θ in [0, 1/4] , such that

(4.5)
Eπθ

y+1qn−2y(θ)
Eπθyqn−2y(θ)

= δn(y) = an
y(n− y)
n(n− 1) + bn for all y = 0, 1, . . . , �n/2�?

If so, the equalizer rule, being Bayes, will be minimax. Moreover, being unique Bayes,
it is admissible among invariant rules and hence admissible (Theorem 4.3.2 of Ferguson
(1967)).

Equation (4.5) is essentially a linear system of �n/2�+1 equations in the first �n/2�+1
moments of the prior distribution. Let µi = Eπθ

i . For fixed n , we can solve these equations
for µ1, . . . , µ	n/2
+1 , and then check whether or not there exists a distribution on [0, 1/4]
having these moments.

These equations may be written Aµ = b , where µ = (µ1, . . . , µ	n/2
+1)T , where
b = (−bn, 0, . . . , 0)T , and where A is the (�n/2� + 1)× (�n/2� + 1) matrix whose i, jth

entry is given by
Aij = (−1)j−i+1(δn(i− 1)bij + cij),

where

bij =




(n−2i+2)(n−i−j)!
(j−i+1)!(n−2j)! , for i = 1, . . . , �n/2�, j = i− 1, . . . , �n/2�
1 for i = �n/2�+ 1, j = �n/2�
0 otherwise,

cij =




(n−2i+2)(n−i−j+1)!
(j−i)!(n−2j+2)! , for i = 1, . . . , �n/2�, j = i, . . . , �n/2�+ 1

1 for i = j = �n/2�+ 1
0 otherwise.

The solution to the problem of determining whether a given sequence of numbers,
m1, . . . ,mk , can be the first k moments of a distribution on [0, 1] is a well-known result
in the theory of moments. See Chapter III of Shohat and Tamarkin (1943) or Chapter
IV of Karlin and Shapley (1953). We give a brief description of these results in terms of
the matrices �

k
and �k defined as follows. For k even, let �

k
, (resp. �k ), be the

(k
2 + 1) × (

k
2 + 1) matrix, (resp.

k
2 × k

2 matrix), whose ijth element is mi+j−2 , (resp.
mi+j−1 − mi+j ). For k odd, let �

k
, (resp. �k ), be the (

k+1
2 ) × (k+1

2 ) matrix whose
ijth element is mi+j−1 , (resp. mi+j−2 −mi+j−1 ), where m0 is defined to be 1. Then, a
necessary and sufficient condition for the existence of a distribution on [0, 1] with moments
m1, . . . ,mk is that the determinants of �1

,�1, . . . ,�k
,�k be nonnegative.
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Using this result, we may check whether the µi found by solving Aµ = b , is a moment
sequence of a distribution on [0, 1/4] by checking whether mi = 4iµi is a moment sequence
on the interval [0, 1] . This was carried out on a computer for values of n from 3 to 33
inclusive, where it was determined that for n = 3 and 5 ≤ n ≤ 13 the sequence µi is
indeed a moment sequence.

For n = 4 and 14 ≤ n ≤ 33, it was determined that the µi is not a moment sequence,
so that the corresponding equalizer rule is not a Bayes rule.

For n = 4, it is of interest to find how much smaller we can make the minimax risk
than the value .00512425 · · · achieved by the equalizer rule. The risk function of a rule d
as a function of y = min(W4, 4−W4) is

R1(θ, d) = (1 − 4θ + 2θ2)(θ − d(0))2 + 4θ(1 − 2θ)(θ − d(1))2 + 6θ2(θ − d(2))2,
which is a cubic function of θ . The maximum of this risk can be found at the boundary
or at the roots of (∂/∂θ)R1(θ, d) = 0. One may then use a numerical procedure, such
as the Nelder-Meade downhill simplex method, to find the minimum of maxθ R1(θ, d) as
a function of the three variables, d(0), d(1) and d(2). Algebraically, the least favorable
distribution is determined by two equations in two unknowns, π and z . The first equation
is that the risk function of the Bayes rule with respect to the prior have a local maximum
at θ = z . The other is that the value of the risk function at θ = 1/4 be equal to the value
of the risk function at θ = z . We find

Theorem 4.4. For n = 4 and squared error loss, the minimax rule is given by d(0) =
.07151065 · · ·, d(1) = .2024725 · · · and d(2) = .2443337 · · ·, and the minimax value is
.00512378 · · ·. This rule is Bayes with respect to the prior distribution giving probability
π = .5138768 · · · to the point θ = .25 and probability 1 − π to the point θ = z =
.04313538 · · ·.

This gives an improvement to the minimax value of only .00000047 · · · over the equal-
izer rule. Next, we consider the case n = 2.

Theorem 4.5. For n = 2 and squared error loss, the invariant rule defined by d(0) =
(
√
2− 1)/4 and d(1) = 1/4 is admissible and minimax. This rule has the form ã2θ̃2 + b̃2 ,

where ã2 = 1− (
√
2/2) and b̃2 = (

√
2− 1)/4 .

Proof. The risk is

R1(θ, d) = (1 − 2θ)(θ − d(0))2 + 2θ(θ − d(1))2

= θ2(1 + 4d(0)− 4d(1)) + θ(−2d(0)− 2d(0)2 + 2d(1)2) + d(0)2.
Since 0 ≤ θ ≤ 1/4, we may take 0 ≤ d(0) ≤ 1/4 and 0 ≤ d(1) ≤ 1/4 without loss of
generality. Therefore, the coefficient of θ2 is 1 + 4d(0) − 4d(1) ≥ 0. Hence R1(θ, d) is
convex in θ , and

max
0≤θ≤1/4

R1(θ, d) = max{R1(0, d), R1(1/4, d)}

= max{d(0)2, 1
2
d(0)2 − 1

4
d(0) +

1
2
d(1)2 − 1

4
d(1) +

1
16

}.
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The minimum of this function over d(1) occurs at d(1) = 1/4. Thus,

(4.6) min
d(1)

max
θ
R1(θ, d) = max(d(0)2,

1
2
d(0)2 − 1

4
d(0) +

1
32
).

Equation (4.6) has a minimum over d(0) at d(0)2 = d(0)2/2− d(0)/4 + 1/32, i.e. d(0) =
(
√
2 − 1)/4. The minimum value is mind(0),d(1)maxθ R1(θ, d) = (

√
2 − 1)2/16, which is

achieved at d(0) = (
√
2−1)/4 and d(1) = 1/4. This shows that the stated rule is minimax.

Since it is a unique Bayes rule among invariant rules, it is admissible among invariant rules
and hence admissible.

We remark that this rule is not an equalizer rule. It has smaller maximum risk than
the equalizer rule. The least favorable distribution is concentrated at θ = 0 and 1/4 with
probabilitities π and 1− π , where π =

√
2− 1.

Theorem 4.6. Consider the problem of estimating θ with loss L2(p, a) = (θ − a)2/θ
where θ = p(1 − p) , based on W ∈ B(n, p) . The estimate dn = anθ̃n is minimax and
admissible when 2 ≤ n ≤ 11 .

Proof. We follow the proof of Theorem 4.3 but we must modify the argument. The result
for n = 2 and n = 3 follows directly from Theorem 4.2 since then θ̃n takes on only two
values and any function defined on two values is linear. We restrict attention to n ≥ 4
and to rules that are functions of Yn = min{Wn, n−Wn} .

First note that it is sufficient to show that dn is minimax within the class C0 of rules
d that have d(0) = 0. For if d(0) > 0, the risk function is unbounded above, and if
d(0) < 0, we may replace d(0) with 0 and obtain an everywhere smaller risk. Second,
note by the principle stated before Theorem 4.1 that it is sufficient to show that dn is
Bayes within the class C0 .

Analogous to (4.5) we have dn is Bayes within C0 with respect to a prior π if

(4.7)
Eπθ

yqn−2y(θ)
Eπθy−1qn−2y(θ)

= dn(y) = an
y(n− y)
n(n− 1) for all y = 1, . . . , �n/2�.

This is a linear system of �n/2� equations in the first �n/2� moments of π , which may be
written as Aµ = b , where µ = (µ1, . . . , µ	n/2
)T , where b = (−an, 0, . . . , 0)T , and where
is the �n/2� × �n/2� matrix whose i, jth entry is given by

Aij = (−1)j−i+1(dn(i)bij + cij),

where

bij =




(n−2i)(n−i−j−2)!
(j−i+1)!(n−2j−2)! , for i = 1, . . . , �n/2� − 1, j = i− 1, . . . , �n/2� − 1
1 for i = �n/2�, j = �n/2� − 1
0 otherwise,
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cij =




(n−2i)(n−i−j−1)!
(j−i)!(n−2j)! , for i = 1, . . . , �n/2� − 1, j = i, . . . , �n/2�

1 for i = �n/2�, j = �n/2� − 1
0 otherwise.

As in Theorem 4.3, by computing the determinants of �
1
,�1, . . . ,�	n/2
,�	n/2
 we may

check whether or not the resulting sequence µ1, . . . , µ	n/2
 of numbers forms a moment
sequence. When this is done it is found that this is a sequence of moments for n = 4, . . . , 11,
but not for n = 12, . . . , 31.
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